INFORMIX-Universal
Server

Informix Guide to SQL: Syntax

Version 9.1
March 1997
Set No. 000-3878

INFORMIX

Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright ” 1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX"; INFORMIX"-OnLine Dynamic Server(; Illustrall ; DataBlade”

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Regents of the University of California: BSDO
Microsoft Corporation: Microsoft”; MS™; MS-DOS";

(“DOS” as used herein refers to MS-DOS and/or PC-DOS operating systems.)
X/Open Company Ltd.: UNIXY; X/Open”

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Diana Chase, Sally Cox, Barbara Daniell, Brian Deutscher, Geeta Karmarkar,
Abby Knott, Dawn Maneval, Virginia Panlasigui, Judith Sherwood

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary

large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party

intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-

party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend

must reproduce the legend.

Chapter 1

Table of Contents

Introduction

About This Manual .
Organization of This Manual
Types of Users . .
Software Dependencies .
Assumptions About Your Locale.
Demonstration Database
Major Features .
Documentation Conventlons
Typographical Conventions
Icon Conventions .
Syntax Conventions .
Sample-Code Conventions.
Additional Documentation
On-Line Manuals .
Printed Manuals
Error Message Files
Documentation Notes, Release Notes Machlne Notes
Compliance with Industry Standards
Informix Welcomes Your Comments .

SQL Statements

How to Enter SQL Statements .
How to Enter SQL Comments .
Categories of SQL Statements
ANSI Compliance and Extensions

Statements .
ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR.
ALLOCATE ROW. .
ALTER FRAGMENT .
ALTER INDEX .

© O N OO 0101l bW

N e ol e
OO ©w©Ow’W N O

NN
[A- QA

1-6

1-9
1-12
1-17
1-19
1-20
1-22
1-25
1-27
1-49

iv

Informix Guide to SQL: Syntax

ALTER TABLE

BEGIN WORK.

CLOSE .o

CLOSE DATABASE .
COMMIT WORK.
CONNECT. .

CREATE CAST . .
CREATE DATABASE . .
CREATE DISTINCT TYPE
CREATE FUNCTION . . .
CREATE FUNCTION FROM.
CREATE INDEX . .
CREATE OPAQUE TYPE .
CREATE OPCLASS . .
CREATE PROCEDURE

CREATE PROCEDURE FROM .

CREATEROLE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SCHEMA .
CREATE SYNONYM
CREATE TABLE . .
CREATE TRIGGER .
CREATE VIEW
DATABASE.

DEALLOCATE COLLECTION .
DEALLOCATE DESCRIPTOR .

DEALLOCATE ROW
DECLARE .

DELETE.

DESCRIBE . .
DISCONNECT

DROP CAST . . .
DROP DATABASE .
DROP FUNCTION .
DROP INDEX . .
DROP OPCLASS . .
DROP PROCEDURE
DROP ROLE

DROP ROUTINE.
DROP ROW TYPE
DROP SYNONYM
DROP TABLE . .
DROP TRIGGER .
DROP TYPE

DROP VIEW
EXECUTE
EXECUTE FUNCTION.
EXECUTE IMMEDIATE

1-52

1-88

1-90

1-94

1-96

1-98
1-109
1-114
1-118
1-122
1-131
1-134
1-164
1-171
1-178
1-188
1-190
1-192
1-194
1-201
1-204
1-208
1-255
1-286
1-292
1-294
1-296
1-298
1-300
1-324
1-335
1-343
1-347
1-349
1-351
1-355
1-357
1-359
1-363
1-365
1-369
1-371
1-373
1-376
1-378
1-380
1-382
1-394
1-401

EXECUTEPROCEDURE 1404
FETCH. 1408
FLUSH. 1423
FREE . . T £ VA6
GET DESCRIPTOR e, R0
GET DIAGNOSTICS 1438
GRANT 1458
GRANT FRAGMENT e R Y
INFO . 1486
INSERT 149
LOAD . 1b12
LOCKTABLE 1522
OPEN . 152
OUtpUT 153
PREPARE. 1538
PUT. . . T R Y
RENAME COLUMN .o 1565
RENAMEDATABASE 1568
RENAMETABLE 1569
REVOKE . . . e R Y 4
REVOKE FRAGMENT 1586
ROLLBACKWORK 1591
SELECT 1593
SET. . . e (7)
SET AUTOFREE . YA
SET CONNECTION 1682
SETDATASKIP. 1689
SET DEBUGFILETO. 1692
SET DEFERRED_PREPARE 169
SET DESCRIPTOR. 1699
SETEXPLAIN 1/m
SETISOLATION 1719
SETLOCKMODE. 1724
SETLOG . . . e Y
SET OPTIMIZATION Y R 1)
SET PDQPRIORITY 173
SETROLE . . e Y A7)
SET SESSION AUTHORIZATION e Y A1)
SET TRANSACTION. 1-738
START VIOLATIONSTABLE 1744
STOP VIOLATIONSTABLE 1-763
UNLOAD. 1765
UNLOCKTABLE 1773
UPDATE . . . e YA &
UPDATE STATISTICS e R J0X
WHENEVER. 1814

Segments . 182
Argument. . . T < o2
Collection Derived Table B R A

Table of Contents v

Condition 1-831
ConstraintName. 1-850
Database Name 1-852
DataType 1-855
DATETIME Field Qualifier 1-874
Expression 1-876
External Routine Reference 1-956
FunctionName 1-959
Identifier 1-962
Index Name 1-980
INTERVAL Field Qualifier 1-982
Literal Collection. 1-985
Literal DATETIME 1-991
Literal INTERVAL 1-994
Literal Number 1-997
LiteralRow. 1-999
Procedure Name 1-1004
Quoted Pathname 1-1007
Quoted String. 11010
Relational Operator 11014
ReturnClause. 1-1020
Routine Modifier. 1-1022
Routine Parameter List. 1-1028
Specific Name. 11034
StatementBlock 1-1037
SynonymName 11042
Table Name. 1-1044
ViewName. 1-1047

Chapter 2 SPL Statements

CALL.o 2-4
CONTINUE 2-7
DEFINE. 2-8
N 2-20
FOR 2-22
FOREACH 2-27
IF . . . 2-34
LETo 2-39
ON EXCEPTION. 2-43
RAISE EXCEPTION. 2-49
RETURN 2-51
SYSTEM. 2-54
TRACE 2-57
WHILE 2-61

Index

vi Informix Guide to SQL: Syntax

Introduction

About This Manual. .
Organization of This Manual
Types of Users .

Software Dependenmes .
Assumptions About Your Locale.
Demonstration Database

Major Features

Documentation Conventions
Typographical Conventions
Icon Conventions .
Comment Icons
Feature and Product Icons
Compliance Icons
Syntax Conventions . .
Elements That Can Appear on the Path .
How to Read a Syntax Diagram.
Sample-Code Conventions .

Additional Documentation .
On-Line Manuals .
Printed Manuals
Error Message Files
Documentation Notes, Release Notes Machme Notes

Compliance with Industry Standards

Informix Welcomes Your Comments .

o © ~ o o O1 01 AW

2 Informix Guide to SQL: Syntax

ead this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual

The Informix Guide to SQL: Syntax manual contains syntax descriptions for the
Structured Query Language (SQL) and Stored Procedure Language (SPL)
statements that Universal Server supports.

This manual is part of a series of manuals that discusses the Informix imple-
mentation of SQL. This volume and the Informix Guide to SQL: Reference are
references that you can use on a daily basis after you finish reading the
Informix Guide to SQL: Tutorial.

Important: This manual does not cover the product called INFORMIX-SQL or any
other Informix application development tool.

Introduction 3

Organization of This Manual

Organization of This Manual

This manual includes the following chapters:

= This Introduction provides an overview of the manual and describes
the documentation conventions used.

» Chapter 1, “SQL Statements,” describes SQL statements and seg-
ments. The chapter is divided into six sections. The first four sections
provide an introduction to the statements and segments. These sec-
tions cover the following subjects: entry of SQL statements, entry of
SQL comments, categories of SQL statements, and categories of ANSI
compliance. The fifth and sixth sections, “Statements” and “Seg-
ments,” are the major sections of the chapter.

o “Statements” explains the workings of all the SQL statements
that Informix products support. Detailed syntax diagrams walk
you through every clause of each SQL statement, and syntax
tables explain the input parameters for each clause. Thorough
usage instructions, pertinent examples, and references to related
material complete the description of each SQL statement.

o “Segments” explains all the SQL segments. SQL segments are
language elements, such as table names and expressions, that
occur in many SQL statements. Instead of describing each
segment in each statement where it occurs, this manual provides
a comprehensive stand-alone description of each segment.
Whenever a segment occurs within a given syntax diagram, the
diagram points to the stand-alone description of the segment in
this section for further information.

s Chapter 2, “SPL Statements,” presents all the detailed syntax dia-
grams and explanations for SPL statements. You can use stored
procedures to perform any function you can perform in SQL as well
as to expand what you can accomplish with SQL alone. You write a
stored procedure using SPL and SQL statements. For task-oriented
information about using stored procedures, see the Informix Guide to
SQL: Tutorial.

= The Index is a combined index for the manuals in the SQL series.
Each page reference in the index ends with a code that identifies the
manual in which the page appears. The same index also appears in
the Informix Guide to SQL.: Reference and the Informix Guide to SQL:
Tutorial.

4 INFORMIX

Types of Users

The following items are an integral part of this manual although they do not
appear in it:

A description of the structure and contents of the stores7 demon-
stration database appears in the Informix Guide to SQL: Reference.

A glossary of object-relational database terms that are used in the

SQL manual series appears in the Informix Guide to SQL: Reference.

Types of Users

This manual is written for SQL users, database administrators and SQL devel-
opers who use Informix products and SQL on a regular basis.

Software Dependencies

This manual assumes that you are using the following Informix software:

INFORMIX-Universal Server, Version 9.1

The database server must be installed either on your computer or on
another computer to which your computer is connected over a
network.

In this manual, all instances of Universal Server refer to INFORMIX-
uUniversal Server.

An Informix SQL application programming interface (API), such as
INFORMIX-ESQL/C, Version 9.1, or the DB-Access database access
utility, which is shipped as part of your database server.

The SQL API or DB-Access enables you to compose queries, send
them to the database server, and view the results that the database
server returns.

Introduction 5

Assumptions About Your Locale

6

INFORMIX

Assumptions About Your Locale

Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the 1SO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, &, and f.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the Guide to GLS Functionality.

Demonstration Database

The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. Sample
command files are also included.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
dbaccessdemo? and is located in the SINFORMIXDIR/bin directory. For a
complete explanation of how to create and populate the demonstration
database on your database server, refer to the DB-Access User Manual.

Major Features

Major Features

The following SQL features are new with Universal Server, Version 9.1.

ALLOCATE COLLECTION
ALLOCATE ROW

CREATE CAST

CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE ROUTINE FROM
CREATE ROW TYPE
DEALLOCATE COLLECTION
DEALLOCATE ROW

DROP CAST

DROP FUNCTION

DROP OPCLASS

DROP ROUTINE

DROP ROW TYPE

DROP TYPE

EXECUTE FUNCTION
SET AUTOFREE

SET DEFERRED_PREPARE
Argument

Collection Derived Table
External Routine Reference
Function Name

Literal Collection

Literal Row

Quoted Pathname
Return Clause

Routine Modifier
Routine Parameter List
Specific Name
Statement Block

Introduction 7

Major Features

8

INFORMIX

The following SQL features are enhanced for use with Universal Server,

Version 9.1.

ALLOCATE DESCRIPTOR
ALTER FRAGMENT
ALTER INDEX

ALTER TABLE

CREATE INDEX

CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE SCHEMA
CREATE SYNONYM
CREATE TABLE

CREATE VIEW
DEALLOCATE DESCRIPTOR
DECLARE

DELETE

DESCRIBE

DROP INDEX

DROP PROCEDURE
DROP TABLE

EXECUTE

EXECUTE PROCEDURE
FETCH

FLUSH

FREE

GET DESCRIPTOR
GET DIAGNOSTICS
GRANT

INFO

INSERT

OPEN

PREPARE

PUT

REVOKE

SELECT

SET DESCRIPTOR
SET EXPLAIN
UPDATE

UPDATE STATISTICS
Condition

Data Type
Expression
Procedure Name
Quoted String

The Introduction to each Version 9.1 product manual contains a list of major
features for that product. The Introduction to each manual in the Version 9.1
Informix Guide to SQL series contains a list of new SQL features.

Major features for Version 9.1 Informix products also appear in release notes.

Documentation Conventions

Documentation Conventions

This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

= Typographical conventions
= Icon conventions

= Syntax conventions

= Sample-code conventions

Typographical Conventions

This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,

functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

(1 of2)

Introduction 9

Icon Conventions

10

INFORMIX

Convention Meaning

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

¢ This symbol indicates the end of feature-, product-, platform-,

or compliance-specific information.

(2 of 2)

Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions

Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

Icon

Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Icon Conventions

Feature and Product Icons

Feature and product icons identify paragraphs that contain feature-specific
or product-specific information.

%)
o)
=]

Description

GLS

Identifies information that relates to the Informix Global
Language Support (GLS) feature.

D/B

Identifies information that is valid only for DB-Access.

ESQL

Identifies information that is valid only for SQL statements
in INFORMIX-ESQL/C.

E/C

Identifies information that is valid only for
INFORMIX-ESQL/C.

Identifies information that is valid only for
INFORMIX-OnLine/Optical.

SPL

Identifies information that is valid only if you are using
Informix Stored Procedure Language (SPL).

These icons can apply to arow in atable, one or more paragraphs, or an entire
section. A ¢ symbol indicates the end of the feature- or product-specific

information.

Introduction 11

Syntax Conventions

Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

Icon Description
Identifies information that is specific to an ANSI-compliant
database.

Identifies functionality that conforms to X/0Open. This
functionality is available when you compile your SQL API
with the -xopen flag.

XIO

These icons can apply to arow in atable, one or more paragraphs, or an entire
section. A ¢ symbol indicates the end of the compliance information.

Syntax Conventions

This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Figure 1
Example of a Simple Syntax Diagram

SET EXPLAIN \ ON |
OFF /

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.

12 INFORMIX

Syntax Conventions

Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise from
the right. Unless otherwise noted, at least one blank character separates
syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(.,;@+*-7/) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

Single quotes are literal symbols that you must enter
as shown.

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

DD A reference in a box represents a subdiagram. Imagine
Clause that the subdiagram is spliced into the main diagram
p. 1-14 at this point. When a page number is not specified, the

subdiagram appears on the same page.
ADD Clause

(1 0of3)

Introduction 13

Syntax Conventions

14

INFORMIX

Element Description
An icon is a warning that this path is valid only for
E/C some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.
These icons might appear in a syntax diagram:
D/B This path is valid only for DB-Access.
This path is valid only for
INFORMIX-ESQL/C.
This path is valid for external routines.
SPL This path is valid only if you are using
Informix Stored Procedure Language
(SPL).
This path is valid for the SQL Editor.
| oP | This path is valid only for
INFORMIX-OnLine/Optical.
This path is an Informix extension to
ANSI SQL-92 entry-level standard SQL. If
you initiate Informix extension checking
and include this syntax branch, you
receive a warning. If you have set the
DBANSIWARN environment variable at
compile time, or have used the -ansi
compile flag, you receive warnings at
compile time. If you have DBANSIWARN
set at runtime, or if you compiled with
the -ansi flag, warning flags are set in the
sqlwarn structure.
GLS This path is valid only if your database or
application uses a nondefault GLS locale.
— ALL - A shaded option is the default action.
» > Syntax that is enclosed between a pair of arrows is

a subdiagram.

(2 of 3)

Syntax Conventions

Element Description
The vertical line terminates the syntax diagram.
IS NULL A branch below the main path indicates an optional
i { path. (Any term on the main path is required, unless
NOT a branch can circumvent it.)
NOT FOUND A set of multiple branches indicates that a choice
among more than two different paths is available.
ERROR
WARNING

, A loop indicates a path that you can repeat.
f _) Punctuation along the top of the loop indicates the
variable separator symbol for list items. If no symbol appears,

m a blank space is the separator.
Statement

, A gate (/3\) on a path indicates that you can only use
') that path the indicated number of times, even if it is
size part of a larger loop. Here you can specify size no more

than three times.

(30f3)

Introduction 15

Syntax Conventions

How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses many of the elements that are
listed in the previous table.

Figure 2
Example of a Syntax Diagram
SQLE
DELETE Table WHERE Condition !
FROM)) i Jame [(J p. 1-824 a
\- onLY (| Table) SPL
Name \\
p. 1-1034 cursor
CURRENT OF name
N View /|
Name
p. 1-1038
\— |synonym|__/
Name
p. 1-1032
Collection
- E/IC Derived Table /
p. 1-821 1 j
WHERE CURRENT OF ¢Ursor
name

The three icons at the top left of this diagram indicate that you can construct
this statement if you are using DB-Access, ESQL/C, or the SQL Editor. To use
the diagram to construct a statement, begin at the far left with the keywords
DELETE FROM. Then follow the diagram to the right, proceeding through the
options that you want.

16 INFORMIX

Syntax Conventions

To construct a DELETE statement

1. You must type the words DELETE FROM.

2. Ifyouare using DB-Access, ESQL/C, or the SQL Editor, you can delete
atable, view, or synonym:

Follow the diagram by typing the table name, view name, or
synonym, as desired. Refer to the appropriate segment for
available syntax options.

You must type the keyword WHERE.

If you are using DB-Access or the SQL Editor, you must include

the Condition clause to specify a condition to delete. To find the
syntax for deleting a condition, go to the “Condition” segment

on page 1-803.

If you are using ESQL/C or SPL, you can include either the
Condition clause to delete a specific condition or the CURRENT
OF cursorname clause to delete a row from the table.

3. Ifyou are using ESQL/C, you can also choose to delete from a
collection-derived table:

Follow the diagram by going to the segment “Collection Derived
Table” on page 1-800. Follow the syntax for the segment.

You can stop, taking the direct route to the terminator, or you can
include the WHERE CURRENT OF cursorname clause to delete a
row from a collection-derived table.

4. Follow the diagram to the terminator. Your DELETE statement is
complete.

Introduction 17

Sample-Code Conventions

18

INFORMIX

Sample-Code Conventions

Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores7/

DELETE FROM customer
WHERE customer_num = 121

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using the Query-language option of
DB-Access, you must delimit multiple statements with semicolons. If you are
using an SQL API, you must use EXEC SQL at the start of each statement and
a semicolon (or other appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.

Additional Documentation

Additional Documentation

For additional information, you might want to refer to the following types of
documentation:

= On-line manuals

= Printed manuals

s Error message files

= Documentation notes, release notes, and machine notes

On-Line Manuals

A CD that contains Informix manuals in electronic format is provided with
your Informix products. You can install the documentation or access it
directly from the CD. For information about how to install, read, and print on-
line manuals, see either the installation guide for your product or the instal-
lation insert that accompanies the documentation CD.

The documentation set that is provided on the CD describes Universal Server,
its implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

Printed Manuals

The Universal Server documentation set describes Universal Server, its
implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com.

Please provide the following information:

= The documentation that you need
= The quantity that you need
= Your name, address, and telephone number

Introduction 19

Error Message Files

Error Message Files

Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To read the error messages in the
ASCII file, Informix provides scripts that let you display error messages on
the screen (finderr) or print formatted error messages (rofferr). For a detailed
description of these scripts, see the Introduction to the Informix Error Messages
manual.

Documentation Notes, Release Notes, Machine Notes

In addition to printed documentation, the following on-line files, located in
the SINFORMIXDIR/release/en_us/0333 directory, supplement the infor-
mation in this manual.

On-Line File Purpose

SQLSDOC 9.1 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

SERVERS 9.1 The release-notes file describes feature differences from earlier

versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IUNIVERSAL_9.1 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.

Please examine these files because they contain vital information about
application and performance issues.

20 INFORMIX

Compliance with Industry Standards

Compliance with Industry Standards

The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to 1SO 9075:1992, on INFORMIX-Universal Server. In addition, many features
of Universal Server comply with the SQL-92 Intermediate and Full Level and
X/0pen SQL CAE (common applications environment) standards.

Informix Welcomes Your Comments

Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

= The name and version of the manual that you are using
= Any comments that you have about the manual
= Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.

SCT Technical Publications Department
4100 Bohannon Drive

Menlo Park, CA 94025

If you prefer to send email, our address is:
doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:
415-926-6571

We appreciate your feedback.

Introduction 21

SQL Statements

How to Enter SQL Statements 1-6
How to Enter SQL Comments 1-9
Categories of SQL Statements 112
ANSI Compliance and Extensions 117
Statements. 119
ALLOCATE COLLECTION 120
ALLOCATE DESCRIPTOR. 122
ALLOCATEROW. 125
ALTERFRAGMENT 127
ALTERINDEX 149
ALTERTABLE 15k2
BEGINWORK 188
CLOSE. 19
CLOSEDATABASE 19
COMMITWORK 19
CONNECT . 1o
CREATECAST. 1109
CREATEDATABASE. l114
CREATEDISTINCTTYPE. 1118
CREATEFUNCTION 1122
CREATEFUNCTIONFROM 1131
CREATEINDEX 1134
CREATEOPAQUETYPE 1164
CREATEOPCLASS 1l1n
CREATEPROCEDURE 1-178
CREATE PROCEDUREFROM 1-188

CREATEROLE. 119

CREATEROUTINEFROM. 119
CREATEROWTYPE. 119
CREATESCHEMA 1201
CREATESYNONYM. 1204
CREATETABLE 1-208
CREATETRIGGER 1255
CREATEVIEW 1286
DATABASE 1292
DEALLOCATE COLLECTION 1294
DEALLOCATE DESCRIPTOR. 129
DEALLOCATEROW. 1298
DECLARE . 1300
DELETE . 134
DESCRIBE . 133%
DISCONNECT 1343
DROPCAST.13
DROP DATABASE. 1349
DROPFUNCTION 135
DROPINDEX 135
DROP OPCLASS 1357
DROPPROCEDURE 1359
DROPROLE. 1363
DROPROUTINE 1365
DROPROWTYPE. 1369
DROP SYNONYM. 131
DROPTABLE 1373
DROP TRIGGER 1376
DROPTYPE. 1378
DROPVIEW. 1380
EXECUTE. 138
EXECUTEFUNCTION 13%
EXECUTE IMMEDIATE. 1401
EXECUTEPROCEDURE 1404
FETCH. 1408
FLUSH. 1423
FREE . 142
GET DESCRIPTOR 143
GET DIAGNOSTICS 1438
GRANT . 1458

1-2 Informix Guide to SQL: Syntax

GRANT FRAGMENT .
INFO .

INSERT .

LOAD

LOCK TABLE .

OPEN.

OUTPUT

PREPARE

PUT S
RENAME COLUMN
RENAME DATABASE .
RENAME TABLE.
REVOKE .o
REVOKE FRAGMENT .
ROLLBACK WORK .
SELECT .

SET .o

SET AUTOFREE .

SET CONNECTION.
SET DATASKIP . .
SET DEBUG FILE TO
SET DEFERRED_PREPARE .
SET DESCRIPTOR

SET EXPLAIN.

SET ISOLATION .

SET LOCK MODE

SET LOG .
SET OPTIMIZATION
SET PDQPRIORITY .
SET ROLE .

SET SESSION AUTHORIZATION .

SET TRANSACTION . . .
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE .
UNLOAD

UNLOCK TABLE.

UPDATE. .o
UPDATE STATISTICS .
WHENEVER .

C1-477
.1-486
.1-492
.1-512
.1-522
.1-525
.1-536
.1-538
.1-552
. 1-565
.1-568
. 1-569
.1-572
.1-586
.1-591
.1-593
.1-644
.1-673
.1-682
.1-689
.1-692
. 1-695
.1-699
.1-711
.1-719
.1-724
L1-727
.1-729
.1-731
.1-734
.1-736
.1-738
.1-744
.1-763
.1-765
.1-773
.1-775
.1-801
.1-814

SQL Statements

1-3

Segments .18
Argument. . . . RSt 2
Collection Derived Table A S YA
Condition. .183
ConstraintName 1850
Database Name. 1852
Data Type. . . Y Rt 16
DATETIME Field Quallfler e . e 1874
Expression . . . Y RS 1A
External Routine Reference e e 116
FunctionName 199
Identifier . 1962
Index Name ee {0}
INTERVAL Field QuaI|f|er C e oo 1982
Literal Collection 1985
Literal DATETIME. 1921
Literal INTERVAL 19%
Literal Number. 1997
LiteralRow . 199
ProcedureName 11004
Quoted Pathname 1-1007
Quoted String 11010
Relational Operator 11014
ReturnClause 11020
Routine Modifier 11022
Routine Parameter List 1-1028
SpecificName 11034
StatementBlock. 11037
Synonym Name. 1-1042
TableName . 11044
ViewName .1-1047

1-4 Informix Guide to SQL: Syntax

his chapter provides comprehensive reference information about

SQL statements and the SQL segments that recur in SQL statements. It is
organized into the following sections:

“How to Enter SQL Statements” shows how to use the information
in the statement descriptions to enter SQL statements correctly.

“How to Enter SQL Comments” shows how to enter comments for
your SQL statements in DB-Access command files, SQL APIs, and
stored procedures.

“Categories of SQL Statements” divides SQL statements into several
functional categories and lists the statements within each category.
Some examples of these categories are data definition statements,
data manipulation statements, and data integrity statements.

“ANSI Compliance and Extensions” explains how the SQL state-
ments in this manual comply with the ANSI SQL standard. This
section provides a list of ANSI-compliant statements, a list of ANSI-
compliant statements with Informix extensions, and a list of state-
ments that are Informix extensions to the ANSI standard.

“Statements” gives comprehensive descriptions of SQL statements.
The statements are listed in alphabetical order.

“Segments” gives comprehensive descriptions of SQL segments. The
segments are listed in alphabetical order. SQL segments are language
elements, such as table names and expressions, that occur in many
SQL statements. Instead of describing each segment in each
statement where it occurs, this chapter provides a comprehensive
stand-alone description of each segment. Whenever a segment
occurs within the syntax diagram for an SQL statement, the diagram
points to the stand-alone description of the segment for further
information.

SQL Statements 1-5

How to Enter SQL Statements

1-6

The following table summarizes the sections of this chapter.

Section

Starting Page

Scope

“How to Enter
SQL Statements”

“How to Enter
SQL Comments”

“Categories of SQL
Statements”

“ANSI
Compliance and
Extensions”

“Statements”

“Segments”

1-6

1-12

1-17

1-19

1-821

This section shows how to use the
statement descriptions to enter SQL
statements correctly.

This section shows how to enter
comments for SQL statements.

This section lists SQL statements by
functional category.

This section lists SQL statements by
degree of ANSI compliance.

This section gives reference descriptions
of all SQL statements.

This section gives reference descriptions
of all SQL segments.

diagram

Informix Guide to SQL: Syntax

How to Enter SQL Statements

The purpose of the statement descriptions in this chapter is to help you to
enter SQL statements successfully and to understand the behavior of the
statements. Each statement description includes the following information:
= A brief introduction that explains the purpose of the statement
= A syntax diagram that shows how to enter the statement correctly
= A syntax table that explains each input parameter in the syntax

= Rules of usage, including examples that illustrate these rules

How to Enter SQL Statements

If a statement consists of multiple clauses, the statement description provides
the same set of information for each clause.

Each statement description concludes with references to related information
in this manual and other manuals.

The major aids for entering SQL statements successfully include:

= the combination of the syntax diagram and syntax table.
= the examples of syntax that appear in the rules of usage.
» the references to related information.

Using Syntax Diagrams and Syntax Tables

Before you try to use the syntax diagrams in this chapter, it is helpful to read
“Syntax Conventions” on page 12 of the Introduction. This section is the key
to understanding the syntax diagrams in the statement descriptions.

The “Syntax Conventions” section explains the elements that can appear in a
syntax diagram and the paths that connect the elements to each other. This
section also includes a sample syntax diagram that illustrates the major
elements of all syntax diagrams. The narrative that follows the sample
diagram shows how to read the diagram in order to enter the statement
successfully.

When a syntax diagram within a statement description includes input
parameters, the syntax diagram is followed by a syntax table that shows how
to enter the parameters without generating errors. Each syntax table includes
the following columns:

= The Elements column lists the name of each parameter as it appears
in the syntax diagram.

= The Purpose column briefly states the purpose of the parameter. If
the parameter has a default value, it is listed in this column.

= The Restrictions column summarizes the restrictions on the
parameter, such as acceptable ranges of values.

= The Syntax column refers to the SQL segment that gives the detailed
syntax for the parameter.

SQL Statements 1-7

How to Enter SQL Statements

1-8

Using Examples

To understand the main syntax diagram and subdiagrams for a statement,
study the examples of syntax that appear in the rules of usage for each
statement. These examples have two purposes:

= To show how to accomplish particular tasks with the statement or its
clauses

= To show how to use the syntax of the statement or its clauses in a
concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram. By
mapping the concrete elements of the example to the abstract elements of the syntax
diagram, you can understand the syntax diagram and use it more effectively.

For an explanation of the conventions used in the examples in this manual,
see “Sample-Code Conventions” on page 18 of the Introduction.

Using References

For help in understanding the concepts and terminology in the SQL
statement description, check the “References” section at the end of the
description.

The “References” section points to related information in this manual and
other manuals that helps you to understand the statement in question. This
section provides some or all of the following information:

= The names of related statements that might contain a fuller
discussion of topics in this statement

= The titles of other manuals that provide extended discussions of
topics in this statement

= The chapters in the Informix Guide to SQL: Tutorial that provide a task-
oriented discussion of topics in this statement

Tip: 1f you do not have extensive knowledge and experience with SQL, the “Informix
Guide to SQL: Tutorial” gives you the basic SQL knowledge that you need to under-
stand and use the statement descriptions in this manual.

Informix Guide to SQL: Syntax

How to Enter SQL Comments

How to Enter SQL Comments

You can add comments to clarify the purpose or effect of particular SQL state-
ments. Your comments can help you or others to understand the role of the
statement within a program, stored procedure, or command file. The code
examples in this manual sometimes include comments that clarify the role of

an SQL statement within the code.

The following table shows the SQL comment symbols that you can enter in
your code. A'Y in a column signifies that you can use the symbol with the

product or database type named in the column heading. An N in a column
signifies that you cannot use the symbol with the product or database type

that the column heading names.

Comment SQL Stored DB-Access ANSI- Databases Description
Symbol APIs Procedures Compliant That Are
(SPL) Databases Not ANSI
Compliant

double Y Y Y Y Y The double dash precedes the

dash comment. The double dash can

--) comment only a single line. To
comment more than one line,
you must put the double dash
at the beginning of each
comment line.

curly N Y Y Y Y Curly brackets enclose the

brackets comment. The { precedes the

® comment, and the } follows the

comment. You can use curly
brackets for single-line
comments or for multiple-line
comments.

SQL Statements 1-9

How to Enter SQL Comments

ESQL

If the product that you are using supports both comment symbols, your
choice of a comment symbol depends on your requirements for ANSI
compliance:

= The double dash (--) complies with the ANSI SQL standard.
»s Curly brackets ({}) are an Informix extension to the standard.

If ANSI compliance is not an issue, your choice of comment symbols is a mat-
ter of personal preference.

You can use either comment symbol when you enter SQL statements with the
SQL editor and when you create SQL command files with the SQL editor or a
system editor. An SQL command file is an operating-system file that contains
one or more SQL statements. Command files are also known as command
scripts. For more information about command files, see the discussion of
command scripts in the Informix Guide to SQL: Tutorial. For information on
creating and modifying command files with the SQL editor or a system editor
in DB-Access, see the DB-Access User Manual. 4

You can use either comment symbol in any line of a SPL routine. See the
discussion of commenting and documenting a procedure in the Informix
Guide to SQL.: Tutorial. ¢

You can use the double dash (--) to comment SQL statements in your SQL API.
For further information on the use of SQL comment symbols and language-
specific comment symbols in application programs, see the manual for your
SQL API. ¢

Examples of SQL Comment Symbols

Some simple examples can help to illustrate the different ways of using the
SQL comment symbols.

Examples of the Double-Dash Symbol

The following example shows the use of the double dash (--) to comment an
SQL statement. In this example, the comment appears on the same line as the
statement.

SELECT * FROM customer -- Selects all columns and rows

1-10 Informix Guide to SQL: Syntax

GLS

How to Enter SQL Comments

In the following example, the user enters the same SQL statement and the
same comment as in the preceding example, but the user places the comment
on a line by itself:

SELECT * FROM customer
- Selects all columns and rows

In the following example, the user enters the same SQL statement as in the
preceding example but now enters a multiple-line comment:

SELECT * FROM customer
-- Selects all columns and rows
- from the customer table

Examples of the Curly-Brackets Symbols

The following example shows the use of curly brackets ({}) to comment an
SQL statement. In this example, the comment appears on the same line as the
statement.

SELECT * FROM customer {Selects all columns and rows}

In the following example, the user enters the same SQL statement and the
same comment as in the preceding example but places the comment on a line
by itself:

SELECT * FROM customer
{Selects all columns and rows}

In the following example, the user enters the same SQL statement as in the
preceding example but enters a multiple-line comment:

SELECT * FROM customer
{Selects all columns and rows
from the customer table}

Non-ASCII Characters in SQL Comments

You can enter non-ASCII characters (including multibyte characters) in SQL
comments if your locale supports a code set with the non-ASCII characters.
For further information on the GLS aspects of SQL comments, see the Guide to
GLS Functionality. ¢

SQL Statements 1-11

Categories of SQL Statements

Categories of SQL Statements

SQL statements are divided into the following categories:

= Access method statements

= Auxiliary statements

= Client/server connection statements
= Cursor manipulation statements

= Data access statements

= Data definition statements

= Data integrity statements

= Data manipulation statements

= Dynamic management statements

= Query optimization information statements
= Routine definition statements

= SPL statements

The specific statements for each category are listed below.

Access Method Statements

ALTER ACCESS_METHOD (See the Virtual-Table Interface Programmer’s
Manual.)

CREATE ACCESS_METHOD (See the Virtual-Table Interface Programmer’s
Manual.)

CREATE OPCLASS

DROP ACCESS_METHOD (See the Virtual-Table Interface Programmer’s Manual.)
DROP OPCLASS

Auxiliary Statements

INFO

OUTPUT

GET DIAGNOSTICS
WHENEVER

1-12 Informix Guide to SQL: Syntax

Categories of SQL Statements

Client/Server Connection Statements

CONNECT
DISCONNECT
SET CONNECTION

Cursor Manipulation Statements

CLOSE
DECLARE
FETCH
FLUSH
FREE
OPEN
PUT

Data Access Statements

GRANT

GRANT FRAGMENT
LOCK TABLE
REVOKE

REVOKE FRAGMENT
SET ISOLATION

SET LOCK MODE
SET ROLE

SET SESSION AUTHORIZATION
SET TRANSACTION
UNLOCK TABLE

SQL Statements 1-13

Categories of SQL Statements

Data Definition Statements

ALTER FRAGMENT
ALTER INDEX
ALTER TABLE
CLOSE DATABASE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE INDEX
CREATE OPAQUE TYPE
CREATE ROLE
CREATE ROW TYPE
CREATE SCHEMA
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DATABASE

DROP CAST

DROP DATABASE
DROP INDEX

DROP ROLE

DROP ROW TYPE
DROP SYNONYM
DROP TABLE

DROP TRIGGER
DROP TYPE

DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME TABLE

1-14 Informix Guide to SQL: Syntax

Categories of SQL Statements

Data Integrity Statements

BEGIN WORK

CHECK TABLE

COMMIT WORK

CREATE AUDIT

DROP AUDIT

RECOVER TABLE

REPAIR TABLE

ROLLBACK WORK
ROLLFORWARD DATABASE
SET

SET LOG

START DATABASE

START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

Data Manipulation Statements

DELETE
INSERT
LOAD
SELECT
UNLOAD
UPDATE

Dynamic Management Statements

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE

EXECUTE

EXECUTE IMMEDIATE
FREE

GET DESCRIPTOR

PREPARE

SET DESCRIPTOR

SQL Statements 1-15

Categories of SQL Statements

Query Optimization Information Statements

SET EXPLAIN

SET OPTIMIZATION
SET PDQPRIORITY
UPDATE STATISTICS

Routine Definition Statements

CREATE FUNCTION
CREATE FUNCTION FROM
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROUTINE FROM
DROP FUNCTION

DROP PROCEDURE

DROP ROUTINE

EXECUTE FUNCTION
EXECUTE PROCEDURE

SPL Statements

CALL

CONTINUE
DEFINE

EXIT

FOR

FOREACH

LET

ON EXCEPTION
RAISE EXCEPTION
RETURN

SET DEBUG FILE TO
SYSTEM

TRACE

WHILE

1-16 Informix Guide to SQL: Syntax

ANSI Compliance and Extensions

ANSI Compliance and Extensions

The following lists show statements that are compliant with the ANSI SQL-92
standard at the entry level, statements that are ANSI compliant but include
Informix extensions, and statements that are Informix extensions to the ANSI
standard.

ANSI-Compliant Statements

CLOSE

COMMIT WORK

ROLLBACK WORK

SET SESSION AUTHORIZATION
SET TRANSACTION

ANSI-Compliant Statements with Informix Extensions

CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DECLARE
DELETE
EXECUTE

FETCH

GRANT

INSERT

OPEN

SELECT

SET CONNECTION
UPDATE
WHENEVER

Statements That Are Extensions to the ANSI Standard

ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW

ALTER FRAGMENT
ALTER INDEX

ALTER TABLE

BEGIN WORK

SQL Statements 1-17

ANSI Compliance and Extensions

CLOSE DATABASE
CONNECT

CREATE CAST

CREATE DATABASE
CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX

CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE

CREATE ROUTINE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SYNONYM
CREATE TRIGGER
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE

DISCONNECT

DROP CAST

DROP DATABASE

DROP FUNCTION

DROP INDEX

DROP OPCLASS

DROP PROCEDURE
DROP ROLE

DROP ROW TYPE

DROP SYNONYM

DROP TABLE

DROP TRIGGER

DROP TYPE

DROP VIEW

EXECUTE FUNCTION
EXECUTE IMMEDIATE
EXECUTE PROCEDURE
FLUSH

FREE

GET DESCRIPTOR

GET DIAGNOSTICS

1-18 Informix Guide to SQL: Syntax

Statements

GRANT FRAGMENT
INFO

LOAD

LOCK TABLE
OUTPUT

PREPARE

PUT

RENAME COLUMN
RENAME DATABASE
RENAME TABLE
REVOKE

REVOKE FRAGMENT
SET

SET DATASKIP

SET DEBUG FILE TO
SET DESCRIPTOR
SET EXPLAIN

SET ISOLATION

SET LOCK MODE
SET LOG

SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE

START VIOLATIONS TABLE
STOP VIOLATIONS TABLE
UNLOAD

UNLOCK TABLE
UPDATE STATISTICS

Statements

This section gives comprehensive reference descriptions of SQL statements.
The statement descriptions appear in alphabetical order. For an explanation
of the structure of statement descriptions, see “How to Enter SQL State-
ments” on page 1-6.

SQL Statements 1-19

ALLOCATE COLLECTION

ALLOCATE COLLECTION

Use the ALLOCATE COLLECTION statement to allocate memory for an
INFORMIX-ESQL/C collection variable.

Syntax
Il
[E/C |
ALLOCATE COLLECTION variable |

name |

Element Purpose Restrictions Syntax

variable name Variable name that identifiesa Variable must contain the name Name must conform
typed or untyped collection of an unallocated ESQL/C to language-specific
variable for which to allocate collection host variable. rules for variable
memory names.

Usage

The ALLOCATE COLLECTION statement creates a place in memory for the
data in the collection variable that variable name identifies. To create a
collection variable for an ESQL/C program, perform the following steps:

1. Declare the collection variable as a client collection variable in an
ESQL/C program.

The collection variable can be a typed or untyped collection
variable.

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

3. Populate the collection variable with elements.

If you wish to modify elements into an existing collection, select the
existing elements of the collection column into a collection variable
with the SELECT statement (with no Collection Derived Table
clause).

1-20 Informix Guide to SQL: Syntax

ALLOCATE COLLECTION

The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;

Ekéc SQL deallocate collection :a_set;

The following example uses ALLOCATE COLLECTION to allocate resources
for a typed collection variable, a_typed_set:
EXEC SQL BEGIN DECLARE SECTION;

client collection set(integer not null) a_typed set;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_typed_set;
Ekéc SQL deallocate collection :a_typed_set;
The ALLOCATE COLLECTION statement sets SQLCODE (sqglca.sqglcode) to

zero if the memory allocation was successful and to a negative error code if
the allocation failed.

Tip: The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
collection variable only. To allocate memory for ESQL/C row variables, use the
ALLOCATE ROW statement.

You must explicitly release memory with the DEALLOCATE COLLECTION
statement. Once you free the collection variable with the DEALLOCATE
COLLECTION statement, you can reuse the collection variable.

References

See the ALLOCATE ROW and DEALLOCATE COLLECTION statements in this
manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of collection data
types in Chapter 10, “Understanding Complex Data Types.” In the
INFORMIX-ESQL/C Programmer’s Manual, see the chapter that discusses
complex data types.

SQL Statements 1-21

ALLOCATE DESCRIPTOR

ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate memory for a system-

descriptor area.

Syntax

I

ESQL

DESCRIPTOR]

ALLOCATE ' descriptor"

descriptor /\WITH MAX

variable

occurrences
: occurrences

variable

Element Purpose Restrictions Syntax
descriptor Quoted string that identifiesa Use single quotes. String must ~ Quoted String,
system-descriptor area represent the name of an unallo- p. 1-1010
cated system-descriptor area.
descriptor Host-variable name that Variable must contain the name Name must conform
variable identifies a system-descriptor of an unallocated system- to language-specific
area descriptor area. rules for variable
names.
occurrences The number of item descriptors Value must be unsigned Literal Number,
in the system-descriptor area INTEGER. Default value is 100. p. 1-997
occurrences Host variable that contains the Data type must be INTEGER or ~ Name must conform
variable number of occurrences SMALLINT. to language-specific

rules for variable
names.

1-22 Informix Guide to SQL: Syntax

SPL

ALLOCATE DESCRIPTOR

Usage

The ALLOCATE DESCRIPTOR statement creates a place in memory for a
system-descriptor area. The descriptor parameter or the descriptor variable
parameter identifies this area. A system-descriptor area holds information
that a DESCRIBE...USING SQL DESCRIPTOR statement obtains or it holds infor-
mation about the WHERE clause of a dynamically executed statement.

A DESCRIBE...USING SQL DESCRIPTOR statement also obtains information for
the stored functions. For more information about stored functions, see the
DESCRIBE statement on page 1-335 and Chapter 2, “SPL Statements.” ¢

A system-descriptor area contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive
or send. The item descriptors also contain information about the data such as
type, length, scale, precision, and nullability. Initially, all fields in the item-
descriptor area are undefined.

The WITH MAX clause of ALLOCATE DESCRIPTOR sets the COUNT field to the
number of occurrences that you specified in the occurrences parameter or the
occurrences variable parameter. The DESCRIBE...USING SQL DESCRIPTOR
statement sets other fields in the system-descriptor area. For more infor-
mation, see “USING SQL DESCRIPTOR Clause” on page 1-338.

If the name that you assign to a system-descriptor area matches the name of
an existing system-descriptor area, the database server returns an error. If
you free the descriptor with the DEALLOCATE DESCRIPTOR statement, you
can reuse the descriptor.

WITH MAX Clause

You can use the optional WITH MAX clause to indicate the number of item
descriptors you need. Either the occurrences parameter or the occurrences
variable parameter specifies the number of item descriptors that you want in
the system-descriptor area. This number must be greater than zero. When
you do not specify the WITH MAX clause, the database server uses a default
value of 100 for the occurrences parameter.

SQL Statements 1-23

ALLOCATE DESCRIPTOR

1-24

The following examples show the ALLOCATE DESCRIPTOR statement that
includes the WITH MAX clause. The first line uses an embedded variable
name to identify the system-descriptor area and the desired number of item
descriptors. The second line uses a quoted string to identify the system-
descriptor area and an unsigned integer to specify the desired number of
item descriptors.

EXEC SQL allocate descriptor :descname with max :occ;

EXEC SQL allocate descriptor 'descl' with max 3;

References

See the DEALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH,
GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR statements in
this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of system-descriptor
areas in Chapter 5.

Informix Guide to SQL: Syntax

ALLOCATE ROW

ALLOCATE ROW

Use the ALLOCATE ROW statement to allocate memory for an
INFORMIX-ESQL/C row variable.

Syntax

I

E/C

ALLOCATE ROW variable '
name

Element Purpose Restrictions Syntax

variable name Variable name that identifiesa Variable must contain the name Name must conform
typed or untyped row variable of an unallocated ESQL/C row to language-specific
for which to allocate memory host variable. rules for variable

names.
. __|

Usage

The ALLOCATE ROW statement creates a place in memory for data in the row
variable that variable name identifies. To create a row variable, perform the
following steps in your ESQL/C program:
1. Declare the row variable.
The row variable can be a typed or untyped row variable.

2. Allocate memory for the row variable with the ALLOCATE ROW
statement.

3. Populate the row variable with field values.

Select the elements of an existing row-type column into a row
variable with the SELECT statement (with no Collection Derived
Table clause).

SQL Statements 1-25

ALLOCATE ROW

The following example shows how to allocate resources with the ALLOCATE
ROW statement for the typed row variable, a_row:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;

ékéc SQL allocate row :a_row;
ékéc SQL deallocate row :a_row;

The ALLOCATE ROW statement sets SQLCODE (sqlca.sqlcode) to zero if the
memory allocation was successful and to a negative error code if the
allocation failed.

Tip: The ALLOCATE ROW statement allocates memory for an ESQL/C row variable
only. To allocate memory for ESQL/C collection variables, use the ALLOCATE
COLLECTION statement.

You must explicitly release memory with the DEALLOCATE ROW statement.
Once you free the row variable with the DEALLOCATE ROW statement, you
can reuse the row variable.

References

See the ALLOCATE COLLECTION and DEALLOCATE ROW statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of rows in Chapter 10.
In the INFORMIX-ESQL/C Programmer’s Manual, see the chapter that
discusses complex types.

1-26 Informix Guide to SQL: Syntax

ALTER FRAGMENT

ALTER FRAGMENT

Use the ALTER FRAGMENT statement to alter the fragmentation strategy of an
existing table or index or to fragment an existing nonfragmented table.

Important: You cannot use ALTER FRAGMENT on a typed table.

Syntax
| DB _|
ALTER FOR’\']“GMENT TABLE —— surviving table — 'g;ﬁgg' 7—|
. 1-30
SQLE p
DETACH
o N Clause -
INDEX — surviving index — p. 1-35
INIT
N~ Clause L
p. 1-36
ADD
N Clause |
p. 1-43
DROP
N~ Clause L
p. 1-45
\ MODIFY |/
Clause
p. 1-46
Element Purpose Restrictions Syntax
surviving index The index on which you execute The index must exist at the time Index Name,
the ALTER FRAGMENT statement you execute the statement. All p. 1-980
indexes are detached. You cannot
alter an index to become attached
or detached.
surviving table The table on which you execute The table must exist at the time Table Name,
the ALTER FRAGMENT statement you execute the statement. p. 1-1044

SQL Statements 1-27

ALTER FRAGMENT

1-28

Usage

You can alter the fragmentation strategy of an existing table or index, or you
can create a fragmentation strategy for nonfragmented tables. Use the ALTER
FRAGMENT statement to tune your fragmentation strategy.

The clauses of the ALTER FRAGMENT statement let you perform the
following tasks.

Clause Purpose

ATTACH Combines tables that contain identical table structures into a single
fragmented table.

DETACH Detaches a table fragment from a fragmentation strategy and
places it in a new table.

INIT Defines and initializes a new fragmentation strategy on a nonfrag-
mented table or index, or modifies an existing fragmentation
strategy. You can also use this clause to change the order of evalu-
ation of fragment expressions.

ADD Adds an additional fragment to an existing fragmentation list.
DROP Drops an existing fragment from a fragmentation list.
MODIFY Changes an existing fragmentation expression.

You must have the Alter or the DBA privilege to change the fragmentation
strategy of a table. You must have the Index or the DBA privilege to alter the
fragmentation strategy of an index.

INIT and ATTACH are the only operations that you can perform for tables that
are not already fragmented.

You cannot use the ALTER FRAGMENT statement on a temporary table or a
view.

Informix Guide to SQL: Syntax

ALTER FRAGMENT

How Is the ALTER FRAGMENT Statement Executed?

If your database uses logging, the ALTER FRAGMENT statement is executed
within a single transaction. When the fragmentation strategy uses large
numbers of records, you might run out of log space or disk space. (The
database server requires extra disk space for the operation; it later frees the
disk space).

Making More Space

When you run out of log space or disk space, try one of the following
procedures to make more space available:

= Turnofflogging and turn it back on again at the end of the operation.
This procedure indirectly requires a backup of the root dbspace.

For more information about the ontape utility to start and stop
logging, see the INFORMIX-Universal Server Administrator’s Guide.

= Split the operations into multiple ALTER FRAGMENT statements,
moving a smaller portion of records at each time.

For information about log-space requirements and disk-space requirements,
refer to the INFORMIX-Universal Server Administrator’s Guide. That guide also
contains detailed instructions about how to turn off logging.

Determining the Number of Rows in the Fragment

You can place as many rows into a fragment as the available space in the
dbspace allows. To find out how many rows are in a fragment, perform these
steps:

1. Runthe UPDATE STATISTICS statement on the table. This step fills the
sysfragments system catalog table with the current table
information.

2. Query the sysfragments system catalog table to examine the npused
and nrows fields. The npused field gives you the number of data
pages used in the fragment, and the nrows field gives you the
number of rows in the fragment.

SQL Statements 1-29

ALTER FRAGMENT

ATTACH Clause

Important: Use the CREATE TABLE statement or the ALTER FRAGMENT INIT
statement to create fragmented tables.

Use the ATTACH clause to combine tables that contain identical table
structures into a fragmentation strategy. Transforming tables with identical
table structures into fragments in a single table allows the database server to
manage the fragmentation instead of the application managing the fragmen-
tation. The distribution scheme can be either round-robin or expression

based.
ATTACH
Clause
—p» ATTACH consumed table f -
I AS frag-expression
(' > BEFORE —— dbspace /
surviving table)
\ / AFTER
AS frag-expression AS REMAINDER
Element Purpose Restrictions Syntax
consumed table A nonfragmented table on The table must exist at the time Table Name,
which you execute the ATTACH you execute the statement. No p. 1-1044
clause serial columns, referential
constraints, primary-key
constraints, or unique
constraints are allowed in the
table. The table can have check
constraints and not-null
constraints, but these constraints
are dropped after the ATTACH
clause is executed.
dbspace The dbspace name that specifies The dbspace must exist at the Identifier, p. 1-962
where the consumed table time you execute the statement.
expression occurs in the
fragmentation list

(10f2)

1-30 Informix Guide to SQL: Syntax

ALTER FRAGMENT

Element Purpose Restrictions Syntax
frag-expression An expression that defines a The frag-expression element can Condition, p. 1-831
fragment using a range, hash, or contain only columns from the
arbitrary rule current table and only data

surviving table

values from a single row. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in
frag-expression.

The fragmented table that The table must exist at the time Table Name,
survives the execution of ALTER you execute the statement. No p. 1-1044
FRAGMENT referential constraints, primary-

key constraints, unique
constraints, check constraints, or
not-null constraints are allowed
in the table.

(2 of 2)

Any tables that you attach must have been created previously in separate
dbspaces. You cannot attach the same table more than once. You cannot
attach a fragmented table to another fragmented table.

You must be the DBA or the owner of the tables that are involved to use the
ATTACH clause.

After the tables are attached, the consumed table that is specified on the
ATTACH clause no longer exists. The records that were in the consumed table
must be referenced through the surviving table that is specified in the ALTER
FRAGMENT ON TABLE statement.

Each table that is described in the ATTACH clause must be identical in
structure; that is, all column definitions must match. The number, names,
data types, and relative position of the columns must be identical. However,
you cannot attach tables that contain serial columns. In addition, indexes and
triggers on the surviving table survive the ATTACH, but indexes and triggers
on the consumed table are dropped. Triggers are not activated with the
ATTACH clause.

Tip: In Universal Server, all indexes are detached.

SQL Statements 1-31

ALTER FRAGMENT

1-32

Combining Identically Structured Nonfragmented Tables

To make a single, fragmented table from two or more nonfragmented tables,
the ATTACH clause must contain the surviving table as the first element of the
attach list. The attach list is the list of tables in the ATTACH clause. For
example, if you attach the tables cur_acct and new_acct, which were previ-
ously created in separate dbspaces, the surviving table cur_acct must be the
first element in the attach list. The following statement illustrates this rule:

ALTER FRAGMENT ON TABLE cur_acct ATTACH cur_acct, new_acct

If you want a new rowid column on the single fragmented table, attach all
tables first and then add the rowid with the ALTER TABLE statement.

Attaching a Nonfragmented Table to a Fragmented Table

To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must
have the same table structure as the fragmented table. The following example
shows how to attach a nonfragmented table, old_acct, which was previously
created in dbsp3, to a fragmented table, cur_acct:

ALTER FRAGMENT ON TABLE cur_acct ATTACH old_acct

BEFORE and AFTER Clauses

The BEFORE and AFTER clauses allow you to place a new fragment in a
dbspace either before or after an existing dbspace. Use the BEFORE and
AFTER clauses only when the distribution scheme is expression based (not
round-robin). Attaching a new fragment without an explicit BEFORE or
AFTER clause places the added fragment at the end of the fragmentation list.
You cannot attach a new fragment after the remainder fragment.

Informix Guide to SQL: Syntax

ALTER FRAGMENT

Using ATTACH to Fragment Tables: Round-Robin

The following example combines nonfragmented tables pen_types and
pen_makers into a single, fragmented table, pen_types. Table pen_types
resides in dbspace dbsp1l, and table pen_makers resides in dbspace dbsp2.
Table structures are identical in each table.

ALTER FRAGMENT ON TABLE pen_types
ATTACH pen_types, pen_makers

After you execute the ATTACH clause, the database server fragments the table
pen_types round-robin into two dbspaces: the dbspace that contained
pen_types and the dbspace that contained pen_makers. Table pen_makers
is consumed, and no longer exists; all rows that were in table pen_makers are
now in table pen_types.

Using ATTACH to Fragment Tables: Fragment Expression

Consider the following example that combines tables cur_acct and new_acct
and uses an expression-based distribution scheme. Table cur_acct was origi-
nally created as a fragmented table and has fragments in dbspaces dbsp1 and
dbsp2. The first statement of the example shows that table cur_acct was
created with an expression-based distribution scheme. The second statement
of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct.
Table structures (columns) are identical in each table.

CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION
a <5 in dbspl,
a >=5 and a < 10 in dbsp2;

CREATE TABLE new_acct (a int) IN dbsp3;

ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;

SQL Statements 1-33

ALTER FRAGMENT

1-34

When you examine the sysfragments system catalog table after you have
altered the fragment, you see that table cur_acct is fragmented by expression
into three dbspaces. For additional information about the sysfragments
system catalog table, see Chapter 2 of the Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment
by expression with hash or arbitrary rules. For a discussion of all types of
expressions in an expression-based distribution scheme, see “FRAGMENT
BY Clause for Tables” on page 1-41.

Warning: When you specify a date value in a fragment expression, make sure to
specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the
distribution scheme and can produce unpredictable results. For more information on
the DBCENTURY environment variable, see the “Informix Guide to SQL:
Reference.”

What Happens to Columns That Contain Large Objects?

In every table that is named in the ATTACH clause, each column that contains
a large object must have the same storage type. For example, if a TEXT
column is in a blobspace, the same column in all tables must be in the same
blobspace. If the TEXT column is in the tblspace, the same column must be in
the tblspace in all tables.

What Happens to Indexes and Triggers?

Unless you create separate index fragments, the index fragmentation is the
same as the table fragmentation.

When you attach tables, any indexes or triggers that are defined on the
consumed table no longer exist, and all rows in the consumed table
(new_acct) are subject to the indexes and triggers that are defined in the
surviving table (cur_acct). No triggers are activated with the ATTACH clause,
but subsequent data manipulation operations on the “new” rows can fire
triggers.

At the end of the ATTACH operation, indexes on the surviving table that were
explicitly given a fragmentation strategy remain intact with that
fragmentation strategy.

Informix Guide to SQL: Syntax

ALTER FRAGMENT

DETACH Clause

Use the DETACH clause to detach a table fragment from a distribution scheme
and place the contents into a new nonfragmented table. For an explanation
of distribution schemes, see “FRAGMENT BY Clause for Tables” on

page 1-41.

DETACH
Clause

—»— DETACH ——

dbspace-name ——— new table |

Element Purpose Restrictions Syntax

dbspace-name The name of the dbspace that The dbspace must exist when Identifier, p. 1-962
contains the fragment to be you execute the statement.
detached

new table The table that results after you The table must not exist before Table Name,
execute the ALTER FRAGMENT you execute the statement. p. 1-1044
statement

The DETACH clause cannot be applied to a table if that table is the parent of
a referential constraint or if a rowid column is defined on the table.

The new table that results from the execution of the DETACH clause does not
inherit any indexes or constraints from the original table. Only the data
remains.

The following example shows the table cur_acct fragmented into two
dbspaces, dbspl and dbsp2:

ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts

SQL Statements 1-35

ALTER FRAGMENT

This example detaches dbsp?2 from the distribution scheme for cur_acct and
places the rows in a new table, accounts. Table accounts now has the same
structure (column names, number of columns, data types, and so on) as table
cur_acct, but the table accounts does not contain any indexes or constraints
from the table cur_acct. Both tables are now nonfragmented.

The following example shows a table that contains three fragments:
ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct

This statement detaches dbsp3 from the distribution scheme for bus_acct
and places the rows in a new table, cli_acct. Table cli_acct now has the same
structure (column names, number of columns, data types, and so on) as
bus_acct, but the table cli_acct does not contain any indexes or constraints
from the table bus_acct. Table cli_acct is a nonfragmented table, and table
bus_acct remains a fragmented table.

INIT Clause
Use the INIT clause to perform the following functions:
= Change the fragmentation strategy on a single, fragmented table

including changing the order of evaluating fragment expressions

= Define and initialize a new fragmentation strategy on a
nonfragmented table

= Convert a fragmented table to a nonfragmented table

1-36 Informix Guide to SQL: Syntax

ALTER FRAGMENT

INIT
Clause

FRAGMENT BY -

' INIT Clause
for Tables
WITH ROWIDS

FRAGMENT BY

Clause
for Indexes
Clause
for Tables
C
—p» FRAGMENT BY ROUND ROBIN IN — dbspace —, dbspace
Cragen
EXPRESSION — frag-expression — frag-expression
IN dbspace IN dbspace
(___ REMAINDER IN
FRAGMENT BY ! remainder dbspace
Clause
for Indexes
)
frag-expression frag-expression
—»— FRAGMENT BY — EXPRESSION — "|§ dbspace ' IN dbspace
___ REMAINDER IN
! remainder dbspace

SQL Statements 1-37

ALTER FRAGMENT

Element Purpose Restrictions Syntax
dbspace The dbspace that contains the ~ The dbspace must exist at the Identifier, p. 1-962
fragmented information time you execute the statement.

When you use the FRAGMENT
BY clause, you must specify at
least two dbspaces. You can
specify a maximum of 2,048

dbspaces.
frag-expression An expression that defines a If you specify a value for Condition, p. 1-831,
fragment using a range, hash, or remainder dbspace, you must and Expression,
arbitrary rule specify at least one fragment p. 1-876

expression. If you do not specify
a value for remainder dbspace,
you must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or aggre-
gates are allowed in
frag-expression.

remainder The dbspace that contains data If you specify two or more Identifier, p. 1-962
dbspace that does not meet the condi- fragment expressions, remainder

tions defined in any fragment dbspace is optional. If you

expression specify only one fragment

expression, remainder dbspace is
required. The dbspace that is
specified in remainder dbspace
must exist at the time you

execute the statement.
|

The INIT clause allows you to fragment an existing table or index that is not
fragmented without redefining the table or index. With the INIT clause, you
can also convert an existing fragmentation strategy on a table or index to
another fragmentation strategy. Any existing fragmentation strategy is
discarded, and records are moved to fragments as defined in the new
fragmentation strategy. The INIT clause also allows you to convert a
fragmented table or index to a nonfragmented table or index.

1-38 Informix Guide to SQL: Syntax

ALTER FRAGMENT

When you use the INIT clause to fragment an existing nonfragmented table,
all indexes on the table become fragmented in the same way as the table.

Changing an Existing Fragmentation Strategy

You can redefine a fragmentation strategy if you decide that your initial
strategy does not fulfill your needs. The following example shows the
statement that originally defined the fragmentation strategy on the table
account and then shows the ALTER FRAGMENT statement that redefines the
fragmentation strategy:

CREATE TABLE account (coll int, col2 int)
FRAGMENT BY ROUND ROBIN IN dbspl, dbsp2;

ALTER FRAGMENT ON TABLE account
INIT FRAGMENT BY EXPRESSION

MOD(coll, 3) = 0 in dbspl,
MOD(coll, 3) = 1 in dbsp2,
MOD(coll, 3) = 2 in dbsp3;

When you want to redefine a fragmentation strategy, and any existing
dbspaces are full, you must fragment the table in different dbspaces than the
full dbspaces.

Fragmenting Unique and System Indexes

You can fragment unique indexes only if the table uses an expression-based
distribution scheme. The columns that are referenced in the fragment
expression must be indexed columns. If your ALTER FRAGMENT INIT
statement fails to meet either of these restrictions, the INIT fails, and work is
rolled back.

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if the indexes exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created. To fragment a system index, create
the fragmented index on the constraint columns, and then use the ALTER
TABLE statement to add the constraint.

SQL Statements 1-39

ALTER FRAGMENT

1-40

Converting a Fragmented Table to a Nonfragmented Table

You might decide that you no longer want a table to be fragmented. You can
use the INIT clause to convert a fragmented table to a nonfragmented table.

The following example shows the original fragmentation definition as well as
how to use the ALTER FRAGMENT statement to convert the table:

CREATE TABLE checks (coll int, col2 int)
FRAGMENT BY ROUND ROBIN IN dbspl, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbspl;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a
nonfragmented table (that is, to rid the table of any fragmentation strategy),
all indexes that are fragmented in the same way as the table become nonfrag-
mented indexes. System indexes are not affected by the use of the INIT clause
on the table.

Defining a Fragmentation Strategy on a Nonfragmented Table

You can use the INIT clause to define a fragmentation strategy on a
nonfragmented table. It does not matter whether the table was created with
a storage option. The following example shows the original table definition
as well as how to use the ALTER FRAGMENT statement to fragment the table:

CREATE TABLE balances (coll int, col2 int) IN dbspl;

ALTER FRAGMENT ON TABLE balances INIT
FRAGMENT BY EXPRESSION
coll <= 500 IN dbspl,
coll > 500 and coll <=1000 IN dbsp2,
REMAINDER IN dbsp3;

Informix Guide to SQL: Syntax

ALTER FRAGMENT

WITH ROWIDS Clause

Nonfragmented tables contain a pseudocolumn called the rowid column.
Fragmented tables do not contain this column unless it is explicitly created.

Use the WITH ROWIDS clause to add a new column called the rowid column.
the database server assigns a unique number to each row that remains stable
for the existence of the row. The database server creates an index that it uses
to find the physical location of the row.After you add the WITH ROWIDS
clause, each row contains an additional 4 bytes to store the rowid column.

You cannot use the WITH ROWIDS clause on typed tables.

Important: Informix recommends that you use primary keys, rather than the rowid
column, as an access method.

FRAGMENT BY Clause for Tables

Use the FRAGMENT BY clause for tables to define the distribution scheme,
which is either round-robin or expression based.

In around-robin distribution scheme, specify at least two dbspaces where the
fragments are placed. As records are inserted into the table, they are placed

in the first available dbspace. the database server balances the load between
the specified dbspaces as you insert records and distributes the rows so that
the fragments always maintain approximately the same number of rows. In
this distribution scheme, the database server must scan all fragments when it
searches for a row.

SQL Statements 1-41

ALTER FRAGMENT

1-42

In an expression-based distribution scheme, each fragment expression in a
rule specifies a dbspace. The rule specifies how the database server deter-
mines the fragment into which a row is placed. Each fragment expression
within the rule isolates data and aids the database server in searching for
rows. You can specify one of the following rules:

= Rangerule

A range rule uses a range to specify which rows are placed in a
fragment, as the following example shows:

FRAGMENT BY EXPRESSION

cl < 100 IN dbspl,

cl >= 100 and cl < 200 IN dbsp2,
cl >= 200 IN dbsp3;

= Hashrule

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

.FRAGMENT BY EXPRESSION

MOD(id_num, 3) = 0 IN dbspl,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3;

= Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num
zip_num = 91120 OR zip_num
REMAINDER IN dbsp5;

95443 IN dbsp2,
92310 IN dbsp4,

FRAGMENT BY Clause for Indexes

Use the FRAGMENT BY clause for indexes to define the expression-based
distribution scheme. Like the FRAGMENT BY clause for tables, the
FRAGMENT BY clause for indexes supports range rules, hash rules, and
arbitrary rules. See “FRAGMENT BY Clause for Tables” on page 1-41 for an
explanation of these rules.

Informix Guide to SQL: Syntax

ADD Clause

ALTER FRAGMENT

Use the ADD clause to add another fragment to an existing fragmentation list.

ADD
Clause

—®— ADD ~

N frag-expression IN new dbspace

new dbspace

i

~— REMAINDER IN new dbspace

existing dbspacej

BEFOREj
AFTER

J

e e

Element

Purpose

Restrictions

Syntax

existing dbspace

frag-expression

new dbspace

A dbspace name specified in an
existing fragmentation list

The range, hash, or arbitrary
expression that defines the
added fragment

The added dbspace in a round-
robin distribution scheme

CREATE TABLE book (coll INT,
FRAGMENT BY ROUND ROBIN in dbspl,

The dbspace must exist at the
time you execute the statement.

The frag-expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or aggre-
gates are allowed in
frag-expression.

The dbspace must exist at the
time you execute the statement.

col2 title)
dbspd;

Identifier, p. 1-962

Condition, p. 1-831,
and Expression,
p. 1-876

Identifier, p. 1-962

Adding a New Dbspace to a Round-Robin Distribution Scheme

You can add more dbspaces to a round-robin distribution scheme. The
following example shows the original round-robin definition:

SQL Statements 1-43

ALTER FRAGMENT

1-44

To add another dbspace, use the ADD clause, as the following example
shows:

ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding Fragment Expressions

Adding a fragment expression to the fragmentation list in an expression-
based distribution scheme can shuffle records from some existing fragments
into the new fragment. When you add a new fragment into the middle of the
fragmentation list, all the data existing in fragments after the new one must
be re-evaluated. The following example shows the original expression
definition:

FRAGMENT BY EXPRESSION

cl < 100 IN dbspl,

cl >= 100 and cl1 < 200 IN dbsp2,
REMAINDER IN dbsp3;

If you want to add another fragment to the fragmentation list and have this
fragment hold rows between 200 and 300, use the following ALTER
FRAGMENT statement:

ALTER FRAGMENT ON TABLE news ADD
cl >= 200 and cl1 < 300 IN dbsp4;

Any rows that were formerly in the remainder fragment and that fit the
criteriacl >=200and cl < 300 are moved to the new dbspace.

BEFORE and AFTER Clauses

The BEFORE and AFTER clauses allow you to place a new fragment in a
dbspace either before or after an existing dbspace. Use the BEFORE and
AFTER clauses only when the distribution scheme is expression based (not
round-robin). You cannot add a new fragment after the remainder fragment.
Adding a new fragment without an explicit BEFORE or AFTER clause places
the added fragment at the end of the fragmentation list. However, if the
fragmentation list contains a REMAINDER clause, the added fragment is
added before the remainder fragment (that is, the remainder remains the last
item on the fragment list).

Informix Guide to SQL: Syntax

ALTER FRAGMENT

REMAINDER Clause

You cannot add a remainder fragment when one already exists. When you
add a new fragment to the end of the fragmentation list, and a remainder
fragment exists, the records in the remainder fragment are retrieved and re-
evaluated. These records can be moved to the new fragment. The remainder
fragment always remains the last item in the fragment list.

DROP Clause

Use the DROP clause to drop an existing fragment from a fragmentation list.

DROP
Clause

—p» DROP _____ dbspace-name -

Element Purpose Restrictions Syntax

dbspace-name The name of the dbspace that ~ The dbspace must exist at the Identifier, p. 1-962

contains the dropped fragment time you execute the statement.
|

You cannot drop one of the fragments when the table contains only two
fragments. You cannot drop a fragment in a table that is fragmented with an
expression-based distribution scheme if the fragment contains data that
cannot be moved to another fragment. If the distribution scheme contains a
REMAINDER clause, or if the expressions were constructed in an overlapping
manner, you can drop a fragment that contains data.

When you want to make a fragmented table nonfragmented, use either the
INIT or DETACH clause.

When you drop a fragment from a dbspace, the underlying dbspace is not
affected. Only the fragment data within that dbspace is affected. When you
drop a fragment all the records located in the fragment move to another
fragment. The destination fragment might not have enough space for the
additional records. When this happens, follow one of the procedures that are
listed in “Making More Space” on page 1-29 to increase your space, and retry
the procedure.

SQL Statements 1-45

ALTER FRAGMENT

The following examples show how to drop a fragment from a fragmentation
list. The first line shows how to drop an index fragment, and the second line
shows how to drop a table fragment.

ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbspl;

MODIFY Clause

Use the MODIFY clause to change an existing fragment expression on an
existing dbspace. You can also use the MODIFY clause to move a fragment
expression from one dbspace to a different dbspace.

MODIFY
Clause

—p— MODIFY L mod-dbspace — TO Efiag-expression IN new-dbspace

REMAINDER IN new-dbspace

Element Purpose Restrictions Syntax
frag-expression The modified range, hash, or The fragment expression can Condition, p. 1-831,
arbitrary expression contain only columns from the and Expression,
current table and only data p. 1-876

values from a single row. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in
frag-expression.

mod-dbspace The modified dbspace The dbspace must exist when Identifier, p. 1-962
you execute the statement.

new-dbspace The dbspace that contains the ~ The dbspace must exist when Identifier, p. 1-962

modified information you execute the statement.
|

1-46 Informix Guide to SQL: Syntax

ALTER FRAGMENT

General Usage

When you use the MODIFY clause, the underlying dbspaces are not affected.
Only the fragment data within the dbspaces is affected.

You cannot change a REMAINDER fragment into a nonremainder fragment if
records within the REMAINDER fragment do not pass the new expression.

Changing the Expression in an Existing Dbspace

When you use the MODIFY clause to change an expression without changing
the dbspace storage for the expression, you must use the same name for the
mod dbspace and the new dbspace.

The following example shows how to use the MODIFY clause to change an
existing expression:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbspl to acct_num < 65 IN dbspl

Moving an Expression from One Dbspace to Another

When you use the MODIFY clause to move an expression from one dbspace
to another, mod-dbspace is the name of the dbspace where the expression was
previously located, and new-dbspace is the new location for the expression.

The following example shows how to use the MODIFY clause to move an
expression from one dbspace to another:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbspl to acct_num < 35 in dbsp?2

In this example, the distribution scheme for the cust_acct table is modified so
that all row items in the column acct_num that are less than 35 are now
contained in the dbspace dbsp2. These items were formerly contained in the
dbspace dbsp1.

SQL Statements 1-47

ALTER FRAGMENT

Changing the Expression and Moving It to a New Dbspace

When you use the MODIFY clause to change the expression and move itto a
new dbspace, change both the expression name and the dbspace name.

References

See the CREATE TABLE, CREATE INDEX, ALTER TABLE statements in this
manual. Also see the Condition, Data Type, Expression, and Identifier
segments.

For a task-oriented discussion of each clause in the ALTER FRAGMENT
statement, see Chapter 9 of the Informix Guide to SQL: Tutorial.

1-48 Informix Guide to SQL: Syntax

ALTER INDEX

ALTER INDEX

Use the ALTER INDEX statement to put the data in a table in the order of an
existing index or to release an index from the clustering attribute.

Syntax

n
S|zl -
rrlO

ALTER INDEX ———— /”gei_g’gge TO \ / CLUSTER —]
NOT

Usage

The ALTER INDEX statement works only on indexes that are created with the
CREATE INDEX statement; it does not affect constraints that are created with
the CREATE TABLE statement.

You cannot alter the index of a temporary table.

TO CLUSTER Option

The TO CLUSTER option causes the rows in the physical table to reorder in the
indexed order.

The following example shows how you can use the ALTER INDEX TO
CLUSTER statement to order the rows in the orders table physically. The
CREATE INDEX statement creates an index on the customer_num column of
the table. Then the ALTER INDEX statement causes the physical ordering of
the rows.

CREATE INDEX ix_cust ON orders (customer_num);

ALTER INDEX ix_cust TO CLUSTER;

SQL Statements 1-49

ALTER INDEX

Reordering causes rewriting the entire file. This process can take a long time,
and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, the table is locked IN EXCLUSIVE MODE. When
another process is using the table to which index name belongs, the database
server cannot execute the ALTER INDEX statement with the TO CLUSTER
option; it returns an error unless lock mode is set to WAIT. (When lock mode
is set to WAIT, the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier
cluster to disappear because rows are added in space-available order, not
sequentially. You can the table to regain performance by issuing another
ALTER INDEX TO CLUSTER statement on the clustered index. You do not need
to drop a clustered index before you issue another ALTER INDEX TO CLUSTER
statement on a currently clustered index.

TO NOT CLUSTER Option

The NOT option drops the cluster attribute on the index name without
affecting the physical table. Because only one clustered index per table can
exist, you must use the NOT option to release the cluster attribute from one
index before you assign it to another. The following statements illustrate how
to remove clustering from one index and how a second index physically
reclusters the table:

CREATE UNIQUE INDEX ix_ord
ON orders (order_num);

CREATE CLUSTER INDEX ix_cust
ON orders (customer_num);

ALTER INDEX ix_cust TO NOT CLUSTER;
ALTER INDEX ix_ord TO CLUSTER;

The first two statements create indexes for the orders table and cluster the
physical table in ascending order on the customer_num column. The last two
statements recluster the physical table in ascending order on the order_num
column.

1-50 Informix Guide to SQL: Syntax

ALTER INDEX

References
See the CREATE INDEX and CREATE TABLE statements in this chapter.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
clustered indexes.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause in
Chapter 4. Also see the discussion of creating a database and tables in
Chapter 9.

See the SET statement in this manual for information on object modes.

SQL Statements 1-51

ALTER TABLE

ALTER TABLE

Use the ALTER TABLE statement to modify both typed and untyped tables.

You can add, modify, or drop the constraints that are placed on a column or
composite list of columns or change the extent size. You can change an
untyped table to a typed table or drop the type from a typed table.

For untyped tables, you can also add, drop, or modify a column from a table,
and add or drop a rowid column for a fragmented table.

You cannot alter a temporary table.

Syntax

n
S|zlg|-
rrlO

1-52

ALTER TABLE

Table Name
Alter Clause
p. 1-1044 for Untyped Tables
p. 1-54
Synonym

p.l\fﬂ)iz Alter Clause

for Typed Tables
p. 1-86

Usage

To use the ALTER TABLE statement, you must meet one of the following
conditions:

= You must have the DBA privilege on the database where the table
resides.
= You must own the table.

= You must have the Alter privilege on the specified table and the
Resource privilege on the database where the table resides.

Informix Guide to SQL: Syntax

ANSI

ALTER TABLE

In addition to the basic privileges required for altering a table, you need the
following privileges for specific operations:

= To add or drop a type, you must have the Usage privilege on the
type.

= Todrop aconstraint in a database, you must have the DBA privilege
or be the owner of the constraint. If you are the owner of the
constraint but not the owner of the table, you must have Alter
privilege on the specified table. You do not need the References
privilege to drop a constraint.

= To add a referential constraint to an untyped table, you must have
the DBA or References privilege on either the referenced columns or
the referenced table.

When you add any kind of constraint, the name of the constraint must be
unique within the database.

When you add any kind of constraint, the owner.name combination (the
combination of the owner name and constraint name) must be unique within
the database. ¢

Altering a table on which a view depends might invalidate the view.

Restrictions for Violations and Diagnostics Tables

Keep the following considerations in mind when you use the ALTER TABLE
statement in connection with violations and diagnostics tables:

= You cannot add, drop, or modify a column if the table that contains
the column has violations and diagnostics tables associated with it.

= You cannot alter a violations or diagnostics table.

= You cannot add a constraint to a violations or diagnostics table.

See the START VIOLATIONS TABLE statement on page 1-744 for further
information on violations and diagnostics tables.

SQL Statements 1-53

ALTER TABLE

Alter Clause for Untyped Tables

The database server performs the actions in the Alter Clause in the order that
you specify. If any of the actions fails, the entire operation is cancelled.

Alter Clause
for Untyped Tables

—> ~ (\ ADD Clause 7) 7 |
p. 1-55

DROP Clause
p. 1-71

[
[{

MODIFY Clause
p. 1-74

ADD CONSTRAINT
Clause p. 1-78

[[

DROP CONSTRAINT
Clause p. 1-82

.

ADD TYPE
Clause p.1-83

MODIFY NEXT SIZE
Clause p. 1-84

L

-

LOCK MODE
Clause p. 1-84

ROWIDSClause]/
p. 1-85

{ééﬁ

1-54 Informix Guide to SQL: Syntax

ADD Clause

ALTER TABLE

Use the ADD clause to add a column to an existing untyped table. You cannot
add a SERIAL or SERIALS column to a table if the table contains data.

ADD Clause

—p»— ADD New Column >
Clause
)
C eramm])
Clause
New Column
Clause
new
—p»— column — Data Type -
name p. 1-855
DEFAULT
Clause
Column- column
p- 1-58 Constraint BEFORE — name
Definition
p. 1-61

page 1-54.

Element Purpose Restrictions Syntax
column name The name of a column before The column must already exist Identifier, p. 1-962
which the new column isto be in the table.
placed
new column The name of the column that This name must not be used for Identifier, p. 1-962
name you are adding any existing columns in the

table. You cannot add a SERIAL
or SERIALS column if the table
contains data.

The ADD clause appears in the Alter Clause for Untyped Table clause on

SQL Statements 1-55

ALTER TABLE

Algorithms for Adding Columns to Tables

INFORMIX-Universal Server uses the following two algorithms for adding
columns to tables:

s If you execute an ALTER TABLE statement that adds a column or list
of columns to the end of a table, the database server uses the in-place
alter algorithm. This algorithm allows the database server to alter the
table definition without making the table unavailable to users for
longer than the time it takes to update the table definition.
Furthermore, the physical addition of the new columns to the table
definition occurs essentially in place as rows are updated, without
requiring a second copy of the table to be created.

= Ifyouexecute an ALTER TABLE statement that does not add a column
or list of columns to the end of a table, the database server uses a
slower algorithm. When it uses this slower algorithm, the database
server performs the alter operation by placing an exclusive lock on
the table while it copies the table to be altered to a new table that
contains the new table definition. After the copy operation is
complete, the database server drops the older version of the table.

Tip: To add a column to the end of a table, omit the BEFORE option from the ADD
clause. When you do not specify a column before which the new column is to be
added, the database server adds the new column to the end of the table by default.

1-56 Informix Guide to SQL: Syntax

ALTER TABLE

Scope of the In-Place Alter Algorithm

The database server uses the in-place alter algorithm if you specify the ADD
clause without the BEFORE option and if you specify any clauses other than
the following:

= The DROP clause

= A MODIFY clause that changes the data type of a column or changes
the number of characters in a character column

Benefits of the In-Place Alter Algorithm

The in-place alter algorithm lets you alter tables in place instead of creating a
new table with the latest table definition and copying rows from the original
table to the new table. The in-place alter method reduces the space that is
required for altering tables and also increases the availability of the tables
that are being altered.

The database server uses the slower algorithm for altering tables whenever
your ALTER TABLE statement does not match the conditions for using the in-
place alter algorithm. The database server uses the slower algorithm under
the following conditions:

= The database server uses the slower algorithm if you specify an ADD
clause with the BEFORE option.

= The database server uses the slower algorithm if you specify an ADD
clause without the BEFORE option, but you also specify one of the
following clauses:

o The DROP clause

o A MODIFY clause that changes the data type of a column or
changes the number of characters in a character column

SQL Statements 1-57

ALTER TABLE

DEFAULT Clause
DEFAULT
Clause
—pp»——— DEFAULT < literal Y
N\ NULL /|
CURRENT
N p. 1-892 <
\ DATETIME /
Field Qualifier
p. 1-893
N USER Y
p. 1-890
\. | TOopAY |
p. 1-891
\ SITENAME)
p. 1-890
___ |DBSERVERNAME| __/
p. 1-890
Element Purpose Restrictions Syntax
literal A literal term that defines alpha Term must be appropriate type Constant Expres-
or numeric constant characters for the column. See “Literal sions, p. 1-887
to be used as the default value Terms” on page 1-59.
for the column

You can specify a default value that the database server inserts into the
column when you do not specify an explicit value. When a default is not
specified, and the column allows nulls, the default is NULL. When you
designate NULL as the default value for a column, you cannot place a not-null
constraint on the column.

You cannot place a default on SERIAL or SERIALS8 columns.

When the altered table already has rows in it, the new column contains the
default value for all existing rows.

The DEFAULT clause appears in the ADD clause on page 1-55.

1-58 Informix Guide to SQL: Syntax

ALTER TABLE

Literal Terms

You can designate literal terms as default values. Use a literal term to define
alpha or numeric constant characters. To use a literal term as a default value,
you must adhere to the rules in the following table.

Use a Literal With Columns of Data Type

INTEGER INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
SMALLFLOAT, INT8

DECIMAL DECIMAL, MONEY, FLOAT, SMALLFLOAT

CHARACTER CHAR, VARCHAR, NCHAR, NVARCHAR,
CHARACTER VARYING, DATE

INTERVAL INTERVAL

DATETIME DATETIME

CHARACTER Opaque data types

Characters must be enclosed in quotation marks. Date literals must be
formatted in accordance with the DBDATE environment variable. When
DBDATE is not set, the format mm/dd/yyyy is assumed.

Opague data types support only string literals for default values. The default
value must be specified at the column level and not at the table level.

For information on using a literal INTERVAL, see the Literal INTERVAL
segment on page 1-994. For more information on using a literal DATETIME,
see the Literal DATETIME segment on page 1-991.

SQL Statements 1-59

ALTER TABLE

Data-Type Requirements

The following table indicates the data type requirements for columns that
specify the CURRENT, DBSERVERNAME, SITENAME, TODAY, or USER
functions as the default value.

Function Name Data Type Requirements
CURRENT DATETIME column with matching qualifier
DBSERVERNAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER

VARYING column at least 18 characters long

SITENAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

TODAY DATE column

USER CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

You cannot designate a server-defined function (that is, CURRENT, USER,
TODAY, SITENAME or DBSERVERNAME) as the default value for opaque or
distinct data types.

Example of a Literal Default Value

The following example adds a column to the items table. In items, the new
column item_weight has a literal default value:

ALTER TABLE items
ADD item_weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_price

In this example, each existing row in the items table has a default value of
2.00 for the item_weight column.

1-60 Informix Guide to SQL: Syntax

ALTER TABLE

‘ Column-Constraint Definition

Column-
Constraint
Definition

o
\ NOT

C
/ N s

NULL
h N UNIQUE—

L Constraint-

Mode LDISTINCT—/

Definition Constraint-
. 1-62 / Mode
> N PRIMARY Definition
KEY
p. 1-62

N_| REFERENCES y
Clause
p. 1-65

CHECK

Clause
N p. 1-70 —

When you do not indicate a default value for a column, the default is null
unless you place a not-null constraint on the column. In this case, if the not-
null constraint is used, no default value exists for the column, and the column
does not allow nulls. When the table contains data, however, you cannot
specify a not-null constraint when you add a column (unless both the not-
null constraint and a default value other than null are specified).

You cannot specify a unique or primary-key constraint on a new column if
the table contains data. However, in the case of a unique constraint, the table
can contain a single row of data. When you want to add a column with a
primary-key constraint, the table must be empty when you issue the ALTER
TABLE statement.

SQL Statements 1-61

ALTER TABLE

The following rules apply when you place unique or primary-key constraints
on existing columns;

= When you place a unique or primary-key constraint on a column or
set of columns, and a unique index already exists on that column or
set of columns, the constraint shares the index. However, if the
existing index allows duplicates, the database server returns an error.
You must then drop the existing index before you add the constraint.

= When you place a unique or primary-key constraint on a column or
set of columns, and a referential constraint already exists on that
column or set of columns, the duplicate index is upgraded to unique
(if possible), and the index is shared.

You cannot have a unique constraint on a BYTE or TEXT column, nor can you
place referential or check constraints on these types of columns. A check
constraint on a BYTE or TEXT column can check only for IS NULL, IS NOT
NULL, or LENGTH.

The Column-Constraint Definition appears in the New Column clause on
page 1-55.

Constraint-Mode Definition

Constraint-Mode

Definition
\ NSTRAINT Constraint —/ DISABLED —/
CONS — e s
p. 1-850)
ENABLED
FILTERING — /
N_/ WITHOUT »_
ERROR
\. WITH __/
ERROR

1-62 Informix Guide to SQL: Syntax

ALTER TABLE

You can use the Constraint-Mode Definition option for the following
purposes:

= To assign a name to a constraint on a column

= To set a constraint to one of the following object modes: disabled,
enabled, or filtering

The Constraint-Mode Definition appears in the Column-Constraint
Definition on page 1-61.
Description of Constraint Modes

You can set constraints to the following modes: disabled, enabled, or filtering.
These modes are described in the following table.

Constraint

Mode Effect

disabled A constraint that is created in disabled mode is not enforced during
insert, delete, and update operations.

enabled A constraint that is created in enabled mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement fails.

filtering A constraint that is created in filtering mode is enforced during

insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement continues processing, but
the bad row is written to the violations table that is associated with
the target table. Diagnostic information about the constraint
violation is written to the diagnostics table that is associated with
the target table.

SQL Statements 1-63

ALTER TABLE

1-64

If you chose the filtering mode, you can specify the WITHOUT ERROR options.
The following table describes these options.

Error Option Effect

ERROR

WITHOUT When a filtering mode constraint is violated during an insert,

delete, or update operation, no integrity-violation error is returned
to the user.

WITH ERROR When a filtering mode constraint is violated during an insert,

delete, or update operation, an integrity-violation error is returned
to the user.

Using Constraint Modes

You must observe the following rules when you use constraint modes:

If you do not specify the object mode of a column-level or table-level
constraint explicitly, the default mode is enabled.

If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering mode constraint, the default error option is WITHOUT
ERROR.

When you add a constraint to a table and specify the disabled object
mode for the constraint, your ALTER TABLE statement succeeds even
if existing rows in the table violate the constraint.

When you add a column-level or table-level constraint to a table and
specify the enabled or filtering object mode for the constraint, your
ALTER TABLE statement succeeds if no existing rows in the table
violate the new constraint. However, if any existing rows in the table
violate the constraint, your ALTER TABLE statement fails and returns
an error.

When you add a column-level or table-level constraint to a table in
the enabled or filtering object mode, and existing rows in the table
violate the constraint, erroneous rows in the base table are not
filtered to the violations table. Thus, you cannot use a violations table
to detect the erroneous rows in the base table.

Informix Guide to SQL: Syntax

ALTER TABLE

REFERENCES Clause
REFERENCES
Clause
—®— REFERENCES — table name j ; |
(gup) k ON DELETE J
name CASCADE
Element Purpose Restrictions Syntax

column name A referenced column or setof You must observe restrictions Identifier, p. 1-962
columns in the referenced table. on the number of columns you
If the referenced table is can specify, the data type of the
different from the referencing columns, and the existing
table, the default is the primary- constraints on the columns. See
key column. If the referenced “Restrictions on the REFER-
table is the same as the refer- ENCES Clause” on page 1-66.
encing table, there is no default.

table name The name of the referenced table The referenced table can be the Table Name,
same table as the referencing p. 1-1044
table, or it can be a different
table in the same database.

The REFERENCES clause appears in the Column-Constraint Definition on
page 1-61.

SQL Statements 1-65

ALTER TABLE

Restrictions on the REFERENCES Clause

Observe the following restrictions on the referenced column (the column or
set of columns that you specify in the column name variable).

The following restrictions apply to the number of columns that you can
specify in the column name variable:

= The number of referenced columns in the referenced table must
match the number of referencing columns in the referencing table.

» If you are using the REFERENCES clause within the ADD or MODIFY
clauses, you can specify only one column in the column name
variable.

= If you are using the REFERENCES clause within the ADD
CONSTRAINT clause, you can specify one column or multiple
columns in the column name variable.

= The maximum number of columns and the total length of columns
vary with the database server:

You can specify a maximum of 16 column names. The total length of
all the columns cannot exceed 390 bytes.

The data type of each referenced column must be identical to the data type of
the corresponding referencing column. The only exception is that a
referencing column must be INTEGER or INTS if the referenced column is
SERIAL or SERIALS.

The referenced column or set of columns must be a unique or primary-key
column. That is, the referenced column in the referenced table must already
have a unique or primary-key constraint placed upon it.

Using the REFERENCES Clause in ALTER TABLE

Use the REFERENCES clause to reference a column or set of columns in
another table or the same table. When you are using the ADD or MODIFY
clause, you can reference a single column. When you are using the ADD
CONSTRAINT clause, you can reference a single column or a set of columns.

The table that is referenced in the REFERENCES clause must reside in the same
database as the altered table.

1-66 Informix Guide to SQL: Syntax

ALTER TABLE

A referential constraint establishes the relationship between columns in two
tables or within the same table. The relationship between the columns is
commonly called a parent-child relationship. For every entry in the child
(referencing) columns, a matching entry must exist in the parent (referenced)
columns.

The referenced column (parent or primary-key) must be a column that is a
unique or primary-key constraint. When you specify a column in the
REFERENCES clause that does not meet this criterion, the database server
returns an error.

The referencing column (child or foreign key) that you specify in the Add
Column clause can contain null or duplicate values, but every value (that is,
all foreign-key columns that contain non-null values) in the referencing
columns must match a value in the referenced column.

Relationship Between Referencing and Referenced Columns

A referential constraint has a one-to-one relationship between referencing
and referenced columns. If the primary key is a set of columns, the foreign
key also must be a set of columns that corresponds to the primary key. The
following example creates a new column in the cust_calls table, ref_order.
The ref_order column is a foreign key that references the order_num column
in the orders table.

ALTER TABLE cust_calls
ADD ref_order INTEGER
REFERENCES orders (order_num)
BEFORE user_id

When you reference a primary key in another table, you do not have to
explicitly state the primary-key columns in that table. Referenced tables that
do not specify the referenced column default to the primary-key column. In
the previous example, because order_num is the primary key in the orders
table, you do not have to reference that column explicitly.

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.

SQL Statements 1-67

ALTER TABLE

The data types of the referencing and referenced column must be identical,
unless the primary-key column is SERIAL or SERIALS data type. When you
add a column that references a SERIAL of SERIAL8 column, the column that
you add must be an INTEGER or an INT8 column.

Locks Held During Creation of a Referential Constraint

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released after you finish with the ALTER TABLE
statement or at the end of a transaction (if you are altering a table in a
database with transactions, and you are using transactions).

Using ON DELETE CASCADE

Cascading deletes allow you to specify whether you want rows deleted in the
child table when rows are deleted in the parent table. Normally, you cannot
delete data in the parent table if child tables are associated with it. You can
specify that you want the rows in the child table deleted with ON DELETE
CASCADE. With ON DELETE CASCADE (or cascading deletes), when you
delete a row in the parent table, any rows that are associated with that row
(foreign keys) in a child table are also deleted. The principal advantage to the
cascading-deletes feature is that it allows you to reduce the quantity of SQL
statements you need to perform delete actions.

For example, the stock table contains the stock_num column as a primary
key. The catalog table refers to the stock_num column as a foreign key. The
following ALTER TABLE statements drop an existing foreign-key constraint
(without cascading delete) and add a new constraint that specifies cascading
deletes:

ALTER TABLE catalog DROP CONSTRAINT aa
ALTER TABLE catalog ADD CONSTRAINT

(FOREIGN KEY (stock_num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab)

1-68 Informix Guide to SQL: Syntax

ALTER TABLE

With cascading deletes specified on the child table, in addition to deleting a
stock item from the stock table, the delete cascades to the catalog table that is
associated with the stock_num foreign key. Of course, this cascading delete
works only if the stock_num that you are deleting has not been ordered;

otherwise, the constraint from the items table would disallow the cascading
delete. For more information, see “What Happens to Multiple Child Tables?”.

You specify cascading deletes with the REFERENCES clause on the ADD
CONSTRAINT clause. You need only the References privilege to indicate
cascading deletes. You do not need the Delete privilege to specify cascading
deletes in tables; however, you do need the Delete privilege on tables that are
referenced in the DELETE statement. After you indicate cascading deletes,
when you delete a row from a parent table, Universal Server deletes any
associated matching rows from the child table.

Use the ADD CONSTRAINT clause to add a REFERENCES clause with the ON
DELETE CASCADE constraint.

What Happens to Multiple Child Tables?

When you have a parent table with two child tables, one with cascading

deletes specified and the other without cascading deletes, and you attempt to
delete a row from the parent table that applies to both child tables, the delete
statement fails, and no rows are deleted from either the parent or child tables.

In the previous example, the stock table is also parent to the items table.
However, you do not need to add the cascading-delete clause to the items
table if you are planning to delete only unordered items. The items table is
used only for ordered items.

Locking and Logging

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables. You must turn logging on when you
perform the deletes. When logging is turned off in a database, even tempo-
rarily, deletes do not cascade. This restriction applies because you have no
way to roll back actions if logging is turned off. For example, if a parent row
is deleted, and the system crashes before the child rows are deleted, the
database would have dangling child records. Such records would violate
referential integrity. However, when logging is turned back on, subsequent
deletes cascade.

SQL Statements 1-69

ALTER TABLE

Restriction on Cascading Deletes

Cascading deletes can be used for most deletes except correlated subqueries.
In correlated subqueries, the subquery (or inner SELECT) is correlated when
the value it produces depends on a value produced by the outer SELECT
statement that contains it. If you have implemented cascading deletes, you
cannot write deletes that use a child table in the correlated subquery. You
receive an error when you attempt to delete from a query that contains such
a correlated subquery.

ON DELETE CASCADE appears in the REFERENCES clause on page 1-65.

CHECK Clause
CHECK
Clause
— — (—] Condition |__
CHECK (Sondior) -

A check constraint designates a condition that must be met before data can be
inserted into a column. If a row evaluates to false for any check constraint
that is defined on a table during an insert or update, the database server
returns an error.

Check constraints are defined using search conditions. The search condition
cannot contain the following items: subqueries, aggregates, host variables,
rowids, or stored procedure calls. In addition, the search condition cannot
contain the following functions: the CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY functions.

You cannot create check constraints for columns across tables. When you are
using the ADD or MODIFY clause, the check constraint cannot depend upon
values in other columns of the same table. The following example adds a new
column, unit_price, to the items table and includes a check constraint that
ensures that the entered value is greater than 0:

ALTER TABLE items
ADD (unit_price MONEY (6,2) CHECK (unit_price > 0))

1-70 Informix Guide to SQL: Syntax

ALTER TABLE

To create a constraint that checks values in more than one column, use the
ADD CONSTRAINT clause. The following example builds a constraint on the
column that was added in the previous example. The check constraint now
spans two columns in the table.

ALTER TABLE items ADD CONSTRAINT
CHECK (unit_price < total_price)

The CHECK clause appears in the Column-Constraint Definition on
page 1-61.

BEFORE Option

Use the BEFORE option of the ADD clause to specify the column before which
a new column or list of columns is to be added. The column that you specify
in the BEFORE option must be an existing column in the table.

If you do not include the BEFORE option in the ADD clause, the database
server adds the new column or list of columns to the end of the table
definition by default.

In the following example, to add the item_weight column before the
total_price column, include the BEFORE option in the ADD clause:
ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL
BEFORE total_price)

In the following example, to add the item_weight column to the end of the
table, omit the BEFORE option from the ADD clause:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL)

The BEFORE option appears in the ADD clause on page 1-55.

DROP Clause

SQL Statements 1-71

ALTER TABLE

DROP
Clause

—p»— DROP column name o

(L column name —2)

Element Purpose Restrictions Syntax
column name The name of the column that The column must already exist Identifier, p. 1-962
you want to drop in the table. If the column is

referenced in a fragment
expression, it cannot be
dropped.

Use the DROP clause to drop one or more columns from a table.

The DROP clause appears in the Alter Clause for Untyped Tables on
page 1-54.

1-72 Informix Guide to SQL: Syntax

ALTER TABLE

How Dropping a Column Affects Constraints

When you drop a column, all constraints placed on that column are dropped,
as the following list describes:

= All single-column constraints are dropped.
= All referential constraints that reference the column are dropped.
= All check constraints that reference the column are dropped.

» If the column is part of a multiple-column unique or primary-key
constraint, the constraints placed on the multiple columns are also
dropped. This action, in turn, triggers the dropping of all referential
constraints that reference the multiple columns.

Because any constraints that are associated with a column are dropped when
the column is dropped, the structure of other tables might also be altered
when you use this clause. For example, if the dropped column is a unique or
primary key that is referenced in other tables, those referential constraints
also are dropped. Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers

When you drop a column that occurs in the triggering column list of an
UPDATE trigger, the column is dropped from the triggering column list. If the
column is the only member of the triggering column list, the trigger is
dropped from the table. See the CREATE TRIGGER statement on page 1-255
for more information on triggering columns in an UPDATE trigger.

How Dropping a Column Affects Views

When you alter a table by dropping a column, views that depend on the
column are not modified. However, if you attempt to use the view, you
receive an error message indicating that the column was not found.

Views are not dropped because you can change the order of columns in a
table by dropping a column and then adding a new column with the same
name. Views based on that table continue to work. They retain their original
sequence of columns.

SQL Statements 1-73

ALTER TABLE

MODIFY Clause

Use the MODIFY clause to change the data type of a column and the length of
a character column, to add or change the default value for a column, and to
allow or disallow nulls in a column.

Clause

MODIFY
Clause
—p»—— MODIFY Modify Column
Clause
i)
(L Modify cm)
Clause
Modify Column

name

p. 1-855

—p——column__Tpae Type -
\ DEFAULT /
Clause Column-Constraint

p. 1-58 Definition

p. 1-61

Element Purpose Restrictions Syntax
column name The name of the columnthatyou The column must already exist Identifier, p. 1-962
want to modify in the table.

You cannot modify a column whose data type is a collection type. You cannot
modify a column type to be a collection type or a row type.

When you modify a column, all attributes previously associated with that
column (that is, default value, single-column check constraint, or referential
constraint) are dropped. When you want certain attributes of the column to
remain, such as PRIMARY KEY, you must respecify those attributes. For
example, if you are changing the data type of an existing column, quantity,
to SMALLINT, and you want to keep the default value (in this case, 1) and
non-null attributes for that column, you can issue the following ALTER TABLE
statement:

ALTER TABLE items
MODIFY (quantity SMALLINT DEFAULT '1' NOT NULL)

1-74 Informix Guide to SQL: Syntax

ALTER TABLE

Tip: Both attributes are specified again in the MODIFY clause.

When you modify a column that has column constraints associated with it,
the following constraints are dropped:

= All single-column constraints are dropped.
= All referential constraints that reference the column are dropped.

= If the modified column is part of a multiple-column unique or
primary-key constraint, all referential constraints that reference the
multiple columns also are dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other
tables, those referential constraints are also dropped. In addition, if the
column is part of a multiple-column unique or primary-key constraint, the
multiple-column constraints are not dropped, but any referential constraints
placed on the column by other tables are dropped. For example, a column is
part of a multiple-column primary-key constraint. This primary key is refer-
enced by foreign keys in two other tables. When this column is modified, the
multiple-column primary-key constraint is not dropped, but the referential
constraints placed on it by the two other tables are dropped.

If you modify a column that appears in the triggering column list of an
UPDATE trigger, the trigger is unchanged.

The MODIFY clause appears in the Alter clause for Untyped Tables on
page 1-54.

Altering Large-Object Characteristics

You cannot use the ALTER TABLE statement to modify the characteristics of a
smart large object column. To modify a smart-large-object column, you must
use one of the following:

s Theifx_lo_alter() function in ESQL/C

For more information, refer to the INFORMIX-ESQL/C Programmer’s
Manual.

= The DataBlade API function mi_lo_alter() in external functions

For more information, refer to the DataBlade API Programmer’s
Manual.

SQL Statements 1-75

ALTER TABLE

Altering the Next Serial Number

You can use the MODIFY clause to reset the next value of a SERIAL or SERIALS
column. You cannot set the next value below the current maximum value in
the column because that action can cause the database server to generate
duplicate numbers. However, you can set the next value to any value higher
than the current maximum, which creates gaps in the sequence.

Altering the Structure of Tables

When you use the MODIFY clause, you can also alter the structure of other
tables. If the modified column is referenced by other tables, those referential
constraints are dropped. You must add those constraints to the referencing
tables again, using the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted
to the new data type, including numbers to characters and characters to
numbers (if the characters represent numbers). The following statement
changes the data type of the quantity column:

ALTER TABLE items MODIFY (quantity CHAR(6))

When a unique or primary-key constraint exists, however, conversion takes
place only if it does not violate the constraint. If a data-type conversion
would result in duplicate values (by changing FLOAT to SMALLFLOAT, for
example, or by truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for Null Values

You can modify an existing column that formerly permitted nulls to disallow
nulls, provided that the column contains no null values. To do this, specify
MODIFY with the same column name and data type and the NOT NULL
keywords. The NOT NULL keywords create a not-null constraint on the
column.

You can modify an existing column that did not permit nulls to permit nulls.
To do this, specify MODIFY with the column name and the existing data type,
and omit the NOT NULL keywords. The omission of the NOT NULL keywords
drops the not-null constraint on the column. However, if a unique index
exists on the column, you can remove it using the DROP INDEX statement.

1-76 Informix Guide to SQL: Syntax

ALTER TABLE

An alternative method of permitting nulls in an existing column that did not
permit nulls is to use the DROP CONSTRAINT clause to drop the not-null
constraint on the column.

Adding a Constraint When Existing Rows Violate the Constraint

If you use the MODIFY clause to add a constraint in the enabled mode and
receive an error message because existing rows would violate the constraint,
you can take the following steps to add the constraint successfully:

1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the
DISABLED keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue a SET statement to switch the object mode of the constraint to
the enabled mode.

When you issue this statement, existing rows in the target table that
violate the constraint are duplicated in the violations table; however,
you receive an integrity-violation error message, and the constraint
remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.

5. Take corrective action on the rows in the target table that violate the
constraint.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled constraint to the enabled
mode.

This time the constraint is enabled, and no integrity-violation error
message is returned because all rows in the target table now satisfy
the new constraint.

SQL Statements 1-77

ALTER TABLE

ADD CONSTRAINT Clause

ADD CONSTRAINT

Clause

Table-Level

—p»— ADD CONSTRAINT Constraint >

Definition
p. 1-79

(; TabIej-LeveI 2)

Constraint
Definition
p. 1-79

Use the ALTER TABLE statement with the ADD CONSTRAINT keywords to
specify a constraint on a new or existing column or on a set of columns. For
example, to add a unique constraint to the fname and Iname columns of the
customer table, use the following statement:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname)

To name the constraint, change the preceding statement, as the following
example shows:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (Tname, fname) CONSTRAINT u_cust

When you do not provide a constraint name, the database server provides
one. You can find the name of the constraint in the sysconstraints system
catalog table. For more information about the sysconstraints system catalog
table, refer to Chapter 2 of the Informix Guide to SQL: Reference.

The ADD CONSTRAINT clause appears in the Alter Clause for Untyped Tables
on page 1-54 and the Alter Clause for Typed Tables on page 1-86.

1-78 Informix Guide to SQL: Syntax

ALTER TABLE

‘ Table-Level Constraint Definition

Table-Level

Constraint Definition Q— d
colunD
AFTEUN'QUE (S-Soumn—) 7 e j >

- DISTINCT Constraint-Mode
Definitions
__ PRIMARY p. 1-62
KEY :
() REFERENCES
N— FOREIGN KEY — (~~-column_2) _IF=Feoe ="
name
p. 1-65
_ CHECK)
Clause
p. 1-70

Element Purpose Restrictions Syntax
column name The name of the column or col- The maximum number of col- Identifier, p. 1-962
umns on which the constraint is umns is 16, and the total length
placed of all the columns cannot exceed
390 bytes.

Use the Table-Level Constraint Definition option to add a table-level
constraint. You can define a table-level constraint on one column or a set of
columns. You can assign a name to the constraint and set its object mode by
means of the Constraint Mode Definitions option. See page 1-62 for further
information.

The Table-Level Constraint Definition clause appears in the Add Constraints
clause on page 1-78.

SQL Statements 1-79

ALTER TABLE

Adding a Unique Constraint
You must follow certain rules when you add a unique constraint.
The column or columns can contain only unique values.

When you place a unique constraint on a column or set of columns, and a
unique index already exists on that column or set of columns, the constraint
shares the index. However, if the existing index allows duplicates, the
database server returns an error. You must then drop the existing index
before adding the unique constraint.

When you add a unique constraint, the name of the constraint must be
unique within the database.

When you add a unique constraint, the owner.name combination (the combi-
nation of the owner name and constraint name) must be unique within the
database. ¢

A composite list can include no more than 16 column names. The total length
of all the columns cannot exceed 390 bytes.

Adding a Primary-Key or Unique Constraint

You must follow certain rules when you add a unique or primary-key
constraint.

When you place a unique or primary-key constraint on a column or set of
columns, and a unique index already exists on that column or set of columns,
the constraint shares the index. However, if the existing index allows dupli-
cates, the database server returns an error. You must then drop the existing
index before adding the constraint.

When you place a unique or primary-key constraint on a column or set of
columns, and a referential constraint already exists on that column or set of
columns, the duplicate index is upgraded to unique (if possible) and the
index is shared.

1-80 Informix Guide to SQL: Syntax

ANSI

ALTER TABLE

When you place a referential constraint on a column or set of columns, and a
referential constraint already exists on that column or set of columns, the
duplicate index is upgraded to unique (if possible), and the index is shared.

When you add a unique or primary-key constraint, the name of the
constraint must be unique within the database.

When you add a unique or primary-key constraint, the owner.name combi-
nation (the combination of the owner name and constraint name) must be
unique within the database. ¢

Privileges Required for Adding Constraints

When you own the table or have the Alter privilege on the table, you can
create a unique, primary-key, or check constraint on the table and specify
yourself as the owner of the constraint. To add a referential constraint, you
must have the References privilege on either the referenced columns or the
referenced table. When you have the DBA privilege, you can create
constraints for other users.

Recovery from Constraint Violations

If you use the ADD CONSTRAINT clause to add a table-level constraint in the
enabled mode and receive an error message because existing rows would
violate the constraint, you can follow a procedure to add the constraint
successfully. See “Adding a Constraint When Existing Rows Violate the
Constraint” on page 1-77.

SQL Statements 1-81

ALTER TABLE

DROP CONSTRAINT Clause
DROP CONSTRAINT
Clause

—— DROP CONSTRAINT Constraint >

p. 1-850
g Constraint 2
(Name)

p. 1-850

Use the DROP CONSTRAINT clause to drop any type of constraint, including
not-null constraints.

To drop an existing constraint, specify the DROP CONSTRAINT keywords and
the name of the constraint. The following statement is an example of
dropping a constraint:

ALTER TABLE manufact DROP CONSTRAINT con_name

If a constraint name is not specified when the constraint is created, the
database server generates the name. You can query the sysconstraints system
catalog table for the names (including the owner) of constraints. For example,
to find the name of the constraint placed on the items table, you can issue the
following statement:

SELECT constrname FROM sysconstraints
WHERE tabid = (SELECT tabid FROM systables
WHERE tabname = 'items')

When you drop a unique or primary-key constraint that has a corresponding
foreign key, the referential constraints is dropped. For example, if you drop
the primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential
relationship is also dropped.

The DROP CONSTRAINT clause appears in the Alter Clause for Untyped
Tables on page 1-54.

1-82 Informix Guide to SQL: Syntax

ALTER TABLE

ADD TYPE Clause

Use the ALTER TABLE command to change an untyped table into a typed
table. When you specify ADD TYPE, you assign a named row type to the table.

ADD TYPE
Clause

—pp»—— ADDTYPE —— row type name |

S —

Element Purpose Restrictions Syntax
row type name The name of the row type being The field types of this row type Data Type, p. 1-855
added to the table must match the column types of
the table.

You cannot add a type to a
fragmented table that has
rowids.

Use the ADD TYPE clause to convert an untyped table to a typed table of the
named row type.

You cannot combine the ADD TYPE clause with any clause that changes the
structure of the table. That is, you cannot use an ADD, DROP, or MODIFY
clause in the same statement as the ADD TYPE clause.

Tip: To change the data type of a column within an untyped table, use the MODIFY
clause.

When you add a named row type to a table, be sure that:

= the type already exists.
» thefields in the named row type match the column types in the table.

Important: You must have the Usage privilege to add a type to a table.

The ADD TYPE clause appears in the Alter Clause for Untyped Tables on
page 1-54.

SQL Statements 1-83

ALTER TABLE

MODIFY NEXTSIZE Clause

MODIFY NEXT SIZE
Clause

— MODIFY NEXT SIZE

kbytes |

Element Purpose Restrictions Syntax

kbytes The length in kilobytes that you The minimum length is four Expression, p. 1-876
want to assign for the next times the disk page size on your
extent for this table system. For example, if you

have a 2-kilobyte page system,
the minimum length is

8 kilobytes. The maximum
length is equal to the chunk size.

Use the MODIFY NEXT SIZE clause to change the size of new extents. If you
want to specify an extent size of 32 kilobytes, use a statement such as the one
in the following example:

ALTER TABLE customer MODIFY NEXT SIZE 32

The size of existing extents is not changed.

The MODIFY NEXT SIZE clause appears in the Alter Clause for Untyped
Tables on page 1-54.

LOCK MODE Clause

LOCK MODE
Clause

—p»—— LOCK MODE

(PAGE) >
T ROW /

1-84 Informix Guide to SQL: Syntax

ALTER TABLE

U se the LOCK MODE keywords to change the locking mode of a table. The
default lock mode is PAGE; it is set if the table is created without using the
LOCK MODE clause. You must use the LOCK MODE clause to change from
page to row locking, as the following example shows:

ALTER TABLE items LOCK MODE (ROW)

The LOCK MODE clause appears in the Alter Clause for Untyped Tables on
page 1-54.

ROWIDS Clause

Use the ROWIDS clause to add or remove rowids from a column in a
fragmented table. By default, fragmented tables do not contain the hidden
rowid column.

ROWIDS
Clause

ﬁ ADD 7— ROWIDS ——
DROP

Use ADD ROWIDS to add a new column called rowid for use with fragmented
tables. For each row, the database server assigns a unique number that
remains stable for the life of the row. The database server creates an index that
it uses when search to find the physical location of the row. After you add the
rowid column, each row contains an additional 4 bytes to store the rowid
value.

You can use DROP ROWIDS to drop a rowid column only if you created the

rowid column with the CREATE TABLE or ALTER FRAGMENT statements on
fragmented tables. You cannot drop the rowid columns of a nonfragmented
table.

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. Informix recommends that you use
primary keys as an access method rather than exploiting the rowid column.

The ROWIDS clause appears in the Alter Clause for Untyped Tables on
page 1-54.

SQL Statements 1-85

ALTER TABLE

For additional information about the rowid column, refer to the
INFORMIX-Universal Server Administrator’s Guide.

Alter Clause for Typed Tables

The database server performs the actions in the Alter Clause in the order that
you specified. If any of the actions fails, the entire operation is cancelled.

Alter Clause
for Typed Tables

- C DI

N 4 !
ADD CONSTRAINT
N_ Clause, p. 1-78 Y
N DROP CONSTRAINT|__/
Clause, p. 1-82

N/ DROPTYPE —

N—/T\— MODIFY NEXT SIZE — kilobytes —|

\ f:} LOCK MODE J

Clause p. 1-84

The Alter Clause for Typed Tables appears in the ALTER TABLE syntax on
page 1-52.

Altering Subtables and Supertables

The following considerations apply to tables that are part of inheritance
hierarchies:

= For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not
allowed on inherited constraints.

= For supertables, ADD CONSTRAINT and DROP CONSTRAINT
propagate to all subtables.

1-86 Informix Guide to SQL: Syntax

ALTER TABLE

DROP TYPE Clause

Use DROP TYPE to drop the type from a table. DROP TYPE changes a typed
table to an untyped table. You must drop the type from a typed table before
you can modify, drop, or change the data type of a column in the table.

If a table is part of a table hierarchy, you cannot drop its type unless it is the
last subtype in the hierarchy. That is, you can only drop a type from a table if
that table has no subtables. When you drop the type of a subtable, it is
automatically removed from the hierarchy. The table rows are deleted from
all indexes defined by its supertables.

MODIFY NEXT SIZE Clause

Use the MODIFY NEXT SIZE clause to change the size of new extents. If you
want to specify an extent size of 32 kilobytes, use a statement such as the one
in the following example:

ALTER TABLE customer MODIFY NEXT SIZE 32

The size of existing extents is not changed.

References

See the CREATE TABLE, DROP TABLE, and LOCK TABLE statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause in
Chapter 4. Also see the discussion of creating a database and tables in
Chapter 9.

See the SET statement in this manual for information on object modes.

SQL Statements 1-87

BEGIN WORK

BEGIN WORK

Use the BEGIN WORK statement to start a transaction (a sequence of database
operations that the COMMIT WORK or ROLLBACK WORK statement
terminates).

Syntax

\\\WNORK—//, |

Usage

The following code fragment shows how you might place statements within
a transaction:

BEGIN WORK

LOCK TABLE stock

UPDATE stock SET unit_price = unit_price * 1.10
WHERE manu_code = 'KAR'

DELETE FROM stock WHERE description = 'baseball bat'

INSERT INTO manufact (manu_code, manu_name, lead_time)
VALUES ('"LYM', 'LYMAN', 14)

COMMIT WORK

Each row that an UPDATE, DELETE, or INSERT statement affects during a
transaction is locked and remains locked throughout the transaction. A trans-
action that contains many such statements or that contains statements
affecting many rows can exceed the limits that your operating system or the
INFORMIX-Universal Server configuration imposes on the maximum number
of simultaneous locks. If no other user is accessing the table, you can avoid
locking limits and reduce locking overhead by locking the table with the
LOCK TABLE statement after you begin the transaction. Like other locks, this
table lock is released when the transaction terminates.

1-88 Informix Guide to SQL: Syntax

ESQL

BEGIN WORK

You can issue the BEGIN WORK statement only if a transaction is not in
progress. If you issue a BEGIN WORK statement while you are in a
transaction, the database server returns an error.

If you use the BEGIN WORK statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping if the
ROLLBACK WORK statement encounters an error or a warning. ¢

With ANSI-Compliant Databases

The BEGIN WORK statement is not needed because transactions are implicit.
A warning is generated if you use a BEGIN WORK statement immediately
after one of the following statements:

= DATABASE

= COMMIT WORK

s CREATE DATABASE
= ROLLBACK WORK

An error is generated if you use a BEGIN WORK statement after any other
statement. ¢
References

See the COMMIT WORK and ROLLBACK WORK statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of transactions and
locking in Chapter 4 and Chapter 7, respectively.

SQL Statements 1-89

CLOSE

CLOSE

Use the CLOSE statement to close a cursor in the following situations:

= Youno longer need to refer to the rows that a select or function cursor
produced.

= You want to flush and close an insert cursor.
= You no longer need to access a collection variable.

Syntax

I

E/C

CLOSE ——— cursor id |

S —

Element Purpose Restrictions Syntax
cursor id The name of the cursor to be The DECLARE statement must Identifier, p. 1-962
closed have previously declared the
cursor.

Usage

The CLOSE statement deallocates resources that have been allocated to a
cursor when it was opened with the OPEN statement. Closing a cursor makes
the cursor unusable for any statements except OPEN or FREE and releases
resources that the database server had allocated to the cursor. A CLOSE
statement treats a cursor that is associated with an INSERT statement (an
insert cursor) differently than one that is associated with a SELECT statement
(a select cursor) or an EXECUTE FUNCTION statement (a function cursor).

1-90 Informix Guide to SQL: Syntax

ANSI

CLOSE

You can close a cursor that was never opened or that has already been closed.
No action is taken in these cases.

You get an error if you close a cursor that was not open. No other action
occurs. ¢

Closing a Select or Function Cursor

When cursor id is associated with a SELECT statement (select cursor) or an
EXECUTE FUNCTION statement (function cursor), the CLOSE statement
terminates the SELECT or EXECUTE PROCEDURE statement. The database
server releases all resources that it might have allocated to the active set of
rows, for example, a temporary table that it used to hold an ordered set. The
database server also releases any locks that it might have held on rows that
were selected through the cursor. If a transaction contains the CLOSE
statement, the database server does not release the locks until you execute
COMMIT WORK or ROLLBACK WORK.

After you close a select or function cursor, you cannot execute a FETCH
statement that names that cursor until you have reopened it.

Closing an Insert Cursor

When cursor id is associated with an INSERT statement (insert cursor), the
CLOSE statement writes any remaining buffered rows into the database. The
number of rows that were successfully inserted into the database is returned
in the third element of the sqlerrd array in the sqlca structure
(sqlca.sglerrd[2]).For information on using SQLERRD to count the total
number of rows that were inserted, see the PUT statement on page 1-552.

he SQLCODE field of the sqlca structure (sqlca.sqlcode) indicates the result
of the CLOSE statement for an insert cursor. If all buffered rows are success-
fully inserted, the database server sets SQLCODE to zero. If an error is
encountered, the database server sets SQLCODE to a negative error message
number.

SQL Statements 1-91

CLOSE

When SQLCODE is zero, the row buffer space is released, and the cursor is
closed; that is, you cannot execute a PUT or FLUSH statement that names the
cursor until you reopen it.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

If the insert is not successful, the number of successfully inserted rows is
stored in sglerrd. Any buffered rows that follow the last successfully inserted
row are discarded. Because the CLOSE statement failed in this case, the cursor
is not closed. A second CLOSE statement can be successful because no
buffered rows exist. A subsequent OPEN statement should also be successful
because the OPEN statement performs a successful implicit close. For
example, a CLOSE statement can fail if insufficient disk space prevents some
of the rows from being inserted.

Closing a Collection Cursor

You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. (For more information, see the DECLARE
statement on page 1-300.) To close a collection cursor, use the CLOSE
statement. The CLOSE statement deallocates resources that have been
allocated for the collection cursor.

For more information on the use of OPEN with a collection cursor, see the
following sections in the FETCH statement: “Fetching From a Collection
Cursor” on page 1-419 and “Inserting into a Collection Cursor” on

page 1-560.

Using End of Transaction to Close a Cursor

The COMMIT WORK and ROLLBACK WORK statements close all cursors
except hold cursors (those that are declared with the WITH HOLD option of
DECLARE). It is better to close all cursors explicitly, however. For select or
function cursors, this action simply makes the intent of the program clear. It
also helps to avoid a logic error if the WITH HOLD clause is later added to the
declaration of a cursor.

1-92 Informix Guide to SQL: Syntax

CLOSE

For an insert cursor, it is important to use the CLOSE statement explicitly so
that you can test the error code. Following the COMMIT WORK statement,
SQLCODE reflects the result of the COMMIT statement, not the result of
closing cursors. If you use a COMMIT WORK statement without first using a
CLOSE statement, and if an error occurs while the last buffered rows are being
written to the database, the transaction is still committed. For the use of insert
cursors and the WITH HOLD clause, see the DECLARE statement on

page 1-300.

References

See the CLOSE, DECLARE and FREE statements in this manual for general
information about cursors. See the PUT and FLUSH statements in this manual
for information about insert cursors. See the FETCH statement in this manual
for information about select and function cursors.

In the Informix Guide to SQL.: Tutorial, see the discussion of cursors in
Chapter 5.

SQL Statements 1-93

CLOSE DATABASE

CLOSE DATABASE

Use the CLOSE DATABASE statement to close the current database.

Syntax

(72}
Slafg|
I'I'IO

CLOSE DATABASE }

Usage

Following the CLOSE DATABASE statement, you can use only the DATABASE,
CREATE DATABASE, and DROP DATABASE statements. A DISCONNECT
statement can also follow a CLOSE DATABASE statement, but only if an
explicit connection existed before you issue the CLOSE DATABASE statement.
A CONNECT statement can follow a CLOSE DATABASE statement without
any restrictions.

Issue the CLOSE DATABASE statement before you drop the current database.

If your database has transactions, and if you have started a transaction, you
must issue a COMMIT WORK statement before you use the CLOSE DATABASE
statement.

The following example shows how to use the CLOSE DATABASE statement to
drop the current database:

DATABASE stores7

CLOSE DATABASE
DROP DATABASE stores7

1-94 Informix Guide to SQL: Syntax

ESQL

CLOSE DATABASE

The CLOSE DATABASE statement cannot appear in a multistatement PREPARE
operation.

If you use the CLOSE DATABASE statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping if the ROLLBACK
WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, declared cursors are no
longer valid. You must redeclare any cursors that you want to use. ¢

References

See the CONNECT, DATABASE, CREATE DATABASE, DISCONNECT, and DROP
DATABASE statements in this manual.

SQL Statements 1-95

COMMIT WORK

COMMIT WORK

Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax
| DB |
| E/IC_| |
COMMIT |
\ WORK -/

ESQL

Usage

Use the COMMIT WORK statement when you are sure you want to keep
changes that are made to the database from the beginning of a transaction.
Use the COMMIT WORK statement only at the end of a multistatement
operation.

The COMMIT WORK statement releases all row and table locks.

The COMMIT WORK statement closes all open cursors except those declared
with hold. ¢

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant

In a database that is not ANSI compliant, you must issue a COMMIT WORK
statement at the end of a transaction if you initiated the transaction with a
BEGIN WORK statement. If you fail to issue a COMMIT WORK statement in
this case, the database server rolls back the modifications to the database that
the transaction made.

If you are using a database that is not ANSI compliant, and you do not issue
a BEGIN WORK statement, the database server executes each statement
within its own transaction. These single-statement transactions do not
require either a BEGIN WORK statement or a COMMIT WORK statement.

1-96 Informix Guide to SQL: Syntax

ANSI

COMMIT WORK

Issuing COMMIT WORK in an ANSI-Compliant Database

In an ANSI-compliant database, you do not need to mark the beginning of a
transaction. An implicit transaction is always in effect. You only need to mark
the end of each transaction. A new transaction starts automatically after each
COMMIT WORK or ROLLBACK WORK statement.

You must issue an explicit COMMIT WORK statement to mark the end of each
transaction. If you fail to do so, the database server rolls back the modifica-
tions to the database that the transaction made. ¢

References

See the BEGIN WORK, ROLLBACK WORK, and DECLARE statements in this
manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of transactions in
Chapter 4.

SQL Statements 1-97

CONNECT

CONNECT

Use the CONNECT statement to connect to a database environment.

Syntax
SQLE
CONNECT TO Database
\ Environment 7
p. 1-103
AS _' connection
name ' USER
Clause
conn_nm
AS — variable p. 1-106
N DEFAULT J

C .

atn o

1
- WITH CONCURRENT TRANSACTION J

Element Purpose Restrictions Syntax
connection Quoted string that assigns a If your application makes Quoted String,
name name to the connection multiple connections to thesame p. 1-1010

database environment, you must
specify a unique connection
name for each connection.
conn_nm Host variable that holds the Variable must be a fixed-length Variable name must
variable value of connection name character data type. conform to
language-specific
rules for variable

names.

1-98 Informix Guide to SQL: Syntax

CONNECT

Usage

The CONNECT statement connects an application to a database environment.
The database environment can be a database, a database server, or a database
and a database server. If the application successfully connects to the specified
database environment, the connection becomes the current connection for
the application. SQL statements fail if no current connection exists between an
application and a database server. If you specify a database name, the
database server opens the database.You cannot use the CONNECT statement
in a PREPARE statement.

An application can connect to several database environments at the same
time, and it can establish multiple connections to the same database
environment, provided each connection has a unique connection name. The
only restriction on this is that an application can establish only one
connection to each local server that uses the shared-memory connection
mechanism. To find out whether a local server uses the shared memory
connection mechanism or the local loopback connection mechanism,
examine the $INFORMIXDIR/etc/sqlhosts file. (See the INFORMIX-Universal
Server Administrator’s Guide for more information.)

Only one connection is current at any time; other connections are dormant.
The application cannot interact with a database through a dormant
connection. When an application establishes a new connection, that
connection becomes current, and the previous current transaction becomes
dormant. You can make a dormant connection current with the SET
CONNECTION statement. See “SET CONNECTION” on page 1-682.

Privileges for Executing the CONNECT Statement

The current user, or PUBLIC, must have the Connect database privilege on the
database specified in the CONNECT statement.

The user who executes the CONNECT statement cannot have the same user
name as an existing role in the database.

For information on using the USER clause to specify an alternate user name
when the CONNECT statement connects to a database server on a remote
host, see “USER Clause” on page 1-106.

SQL Statements 1-99

CONNECT

Connection Identifiers

The optional connection name is a unique identifier that an application can use
to refer to a connection in subsequent SET CONNECTION and DISCONNECT
statements. If the application does not provide connection name (or aconn_nm
host variable), it can refer to the connection using the database environment.
If the application makes more than one connection to the same database
environment, however, each connection must have a unique connection
name.

After you associate a connection name with a connection, you can refer to the
connection using only that connection name.

The value of connection name is case sensitive.

Connection Context

Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active trans-
action is associated with the connection). The connection context is saved
when an application becomes dormant, and this context is restored when the
application becomes current again. (For more information on dormant
connections, see “Making a Dormant Connection the Current Connection”
on page 1-683.)

DEFAULT Option

Use the DEFAULT option to request a connection to a default database server,
called a default connection. The default database server can be local or remote.
To designate the default database server, set its name in the environment
variable INFORMIXSERVER. This form of the CONNECT statement does not
open a database.

If you select the DEFAULT option for the CONNECT statement, you must use
the DATABASE statement, the CREATE DATABASE statement, or the START
DATABASE statement to open or create a database in the default database
environment.

1-100 Informix Guide to SQL: Syntax

CONNECT

Implicit Connection with DATABASE Statements

If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single
statement PREPARE for one of the following statements):

= DATABASE
s CREATE DATABASE
= DROP DATABASE

If one of these database statements is the first SQL statement in an application,
the statement establishes a connection to a server, which is known as an
implicit connection. If the database statement specifies only a database name,
the database server name is obtained from the DBPATH environment
variable. This situation is described in “Locating the Database” on

page 1-105.

An application that makes an implicit connection can establish other
connections explicitly (using the CONNECT statement) but cannot establish
another implicit connection unless the original implicit connection is discon-
nected. An application can terminate an implicit connection using the
DISCONNECT statement.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the server is the default specified
by the INFORMIXSERVER environment variable. This default allows the
application to refer to the implicit connection if additional explicit connec-
tions are made, because the implicit connection does not have an identifier.
For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you
establish an implicit connection, you cannot use the CONNECT DEFAULT
command because the implicit connection is considered to be the default
connection.

The database statements can always be used to open a database or create a
new database on the current database server.

SQL Statements 1-101

CONNECT

WITH CONCURRENT TRANSACTION Option

The WITH CONCURRENT TRANSACTION clause lets you switch to a different
connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a trans-
action is active. The CONNECT or SET CONNECTION statement fails,
returning an error, and the transaction in the current connection continues to
be active. In this case, the application must commit or roll back the active
transaction in the current connection before it switches to a different
connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection.The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans
databases over multiple connections. The COMMIT WORK and ROLLBACK
WORK statements do not act on databases across multiple connections.

The following example illustrates how to use the WITH CONCURRRENT
TRANSACTION clause:

main()

{

EXEC SQL connect to 'a@srvl' as 'A';

EXEC SQL connect to 'b@srv2' as 'B' with concurrent transaction;
EXEC SQL connect to 'c@srv3' as 'C'" with concurrent transaction;

/*
Execute SQL statements in connection 'C' , starting a
transaction

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'

/*
Execute SQL statements starting a transaction in 'B'.
Now there are two active transactions, one each in 'B'
and 'C'.

*/

EXEC SQL set connection 'A'; -- switch to connection 'A'

/*
Execute SQL statements starting a transaction in 'A'.
Now there are three active transactions, one each in 'A',
'B' and 'C'.

*/

EXEC SQL set connection 'C"'; -- ERROR, transaction active in 'A'

1-102 Informix Guide to SQL: Syntax

CONNECT

/*
SET CONNECTION 'C' fails (current connection is still 'A')
The transaction in 'A' must be committed/rolled back since
connection "A' was started without the CONCURRENT TRANSACTION
clause.

*/

EXEC SQL commit work;-- commit tx in current connection ('A")

/*
Now, there are two active transactions, in 'B' and in 'C',
which must be committed/rolled back separately

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'
EXEC SQL commit work; -- commit tx in current connection ('B")

EXEC SQL set connection 'C'; -- go back to connection 'C'
EXEC SQL commit work; -- commit tx in current connection ('C")

EXEC SQL disconnect all;
}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a deadlock
condition can occur. A deadlock condition occurs when one transaction obtains a lock
on a table, and a concurrent transaction tries to obtain a lock on the same table,
resulting in the application waiting for itself to release the lock.

Database Environment

Database

Environment

—

~ dbname -

— M db_env variable

SQL Statements 1-103

CONNECT

environment

dbname Quoted string that identifies the
name of the database to which a
connection is made
dbservername Quoted string that identifies the
name of the database server to
which a connection is made
dbname@ Quoted string that identifies the
dbservername name of the database and

database server to which a
connection is made

1-104 Informix Guide to SQL: Syntax

Element Purpose Restrictions Syntax
db_env variable Host variable that contains a Variable must be a fixed-length Variable name must
value representing a database character data type. The value conform to

stored in this host variable must
have one of the database-
environment formats listed in
the syntax diagram.

Specified database must already
exist. If you previously set the
DELIMIDENT environment
variable, surrounding quotes
must be single. If the
DELIMIDENT environment
variable has not been previously
set, surrounding quotes can be
single or double.

Specified database server must
match the name of aserver in the
sqlhosts file. If you previously
set the DELIMIDENT
environment variable,
surrounding quotes must be
single. If the DELIMIDENT
environment variable has not
been previously set,
surrounding quotes can be
single or double.

Specified database must already
exist. Specified database server
must match the name of a server
in the sqlhosts file. If you previ-
ously set the DELIMIDENT
environment variable,
surrounding quotes must be
single. If the DELIMIDENT
environment variable has not
been previously set,
surrounding quotes can be
single or double.

language-specific
rules for variable
names.

Quoted String,
p. 1-1010

Quoted String,
p. 1-1010

Quoted String,
p. 1-1010

CONNECT

Specifying the Database Environment

Using the options shown in the syntax diagram, you can specify either a
server and a database, a database server only, or a database only.

Specifying a Database Server Only

The @dbservername option establishes a connection to the named database
server only; it does not open a database. When you use this option, you must
subsequently use the DATABASE or CREATE DATABASE statement (or a
PREPARE statement for one of these statements and an EXECUTE statement)
to open a database.

Specifying a Database Only

The dbname option establishes connections to the default server or to another
database server in the DBPATH environment variable. It also locates and
opens the named database. The same is true of the db_env variable option if it
specifies only a database name. See “Locating the Database” for the order in
which an application connects to different database servers to locate a
database.

Locating the Database

How a database is located and opened depends on whether you specify a
database server name in the database environment expression

Database Server and Database Specified

If you specify both a database server and a database in the CONNECT
statement, your application connects to the database server, which locates
and opens the database. For the Universal Server database server, it uses
parameters that are specified in the ONCONFIG configuration file to locate the
database.

If the database server that you specify is not on-line, you get an error.

SQL Statements 1-105

CONNECT

Only Database Specified

If you specify only a database in your CONNECT statement, not a database
server, the application obtains the name of a database server from the
DBPATH environment variable. The database server in the
INFORMIXSERVER environment variable is always added in front of the
DBPATH value specified by the user. Set environment variables as the
following example shows:

setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://srvC

The resulting DBPATH used by your application is shown in the following
example:

//srvA://srvB://srvC

The application first establishes a connection to the database server specified
by INFORMIXSERVER. For the Universal Server database server, it uses
parameters that are specified in the configuration file to locate the database.

If the database does not reside on the default database server, or if the default
database server is not on-line, the application connects to the next database
server in DBPATH. In the previous example, this server would be srvB.

If a directory in DBPATH is an NFS-mounted directory, it is expanded to
contain the host name of the NFS computer and the complete pathname of the
directory on the NFS host. In this case, the host name must be listed in your
sqlhosts file as a dbservername, and an sqglexecd daemon must be running
on the NFS host.

USER Clause

1-106

USER
Clause

—— P USER ' user identifier ' USING — auth variable —pm—
; user_id _7_

variable

Informix Guide to SQL: Syntax

CONNECT

user_id variable

user identifier

name specified in user identifier
or user_id variable

The name of an ESQL/C host
variable that holds the value of
user identifier

Quoted string that is a valid
login name for the application

password stored in this variable
must exist in the /etc/passwd
file. If the application connects to
a remote database server, the
password must exist in this file
on both the local and remote

database servers.

Variable must be a fixed-length
character data type. The login
name stored in this variable is
subject to the same restrictions
as the user identifier variable.

Specified login name must exist
in the /etc/passwd file. If the

application connects to a remote
server, the login name must exist
in this file on both the local and

remote database servers.

Element Purpose Restrictions Syntax
auth variable Host variable that holds the Variable must be a fixed-length Variable name must
valid password for the login character data type. The conform to

language-specific
rules for variable
names.

Variable name must
conform to
language-specific
rules for variable
names.

Quoted String,
p. 1-1010

ESQL

X/IO0

specified user name.

phrase.

The User clause specifies information that is used to determine whether the
application can access the target computer when the CONNECT statement
connects to the database server on a remote host. Subsequent to the
CONNECT statement, all database operations on the remote host use the

The connection is rejected if the following conditions occur:

= The specified user lacks the privileges to access the database named
in the database environment.

» The specified user does not have the required permissions to connect
to the remote host.

= You supply a USER clause but do not include the USING auth variable

In compliance with the X/Open specification for the CONNECT statement, the
ESQL/C preprocessor allows a CONNECT statement that has a USER clause
without the USING auth variable phrase. The connection is rejected at runtime
by Informix database servers, however, if the auth variable is not present. ¢

SQL Statements 1-107

CONNECT

If you do not supply the USER clause, the connection is attempted using the
default user ID. The default Informix user ID is the login name of the user
running the application. In this case, network permissions are obtained using
the standard UNIX authorization procedures (for example, checking the
/etc/hosts.equiv file).

Connecting to INFORMIX-OnLine Dynamic Server Before
Version 6.0

The CONNECT statement syntax described in this chapter is valid for a
Version 6.0 or later application connecting to database servers earlier than
Version 6.0. As with Version 6.0 or later database servers, an implicit
connection can be made to a database server earlier than Version 6.0,
provided that no existing implicit connections exist and no implicit connec-
tions have been previously terminated.

Connections to pre-Version 6.0 OnLine database servers differ from
connections to Version 6.0 or later OnLine and Universal Server in the
following respects:

= The CLOSE DATABASE statement causes a connection to a pre-
Version 6.0 database server to be dropped. The same statement,
applied to a connection to a Version 6.0 or later database server,
causes the database to close, but the connection remains.

= If an application makes a connection to a pre-Version 6.0 database
server without using the WITH CONCURRENT TRANSACTION
clause, you must close the database (effectively dropping the
connection) before you switch to a different connection. Otherwise,
Version 6.0 and later OnLine and Universal Server return error
message -1800.

References

See the DISCONNECT, SET CONNECTION, DATABASE, START DATABASE, and
CREATE DATABASE statements in this manual.

For information on the contents of the sqlhosts file, refer to the
INFORMIX-Universal Server Administrator’s Guide.

1-108 Informix Guide to SQL: Syntax

CREATE CAST

CREATE CAST

Use the CREATE CAST statement to register a cast that converts data from one
data type to another.

Syntax
SQLE
source target
CREATE CAST — (data AS data) |
type type \ _f
__ function
IMPLICIT WITH name
EXPLICIT

Element Purpose Restrictions Syntax

source data type The data type to be converted The type must exist in the Data Type, p. 1-855
database at the time the cast is
registered. Either the source data
type or the target data type, but
not both, can be a built-in type.
Neither type can be a distinct
type of the other. The type

cannot be a collection data type.
__ |
(10of2)

SQL Statements 1-109

CREATE CAST

Element Purpose

Restrictions

Syntax

target data type The data type that results from
the conversion

function name The name of the function that
you register to implement the
cast

Usage

1-110 Informix Guide to SQL: Syntax

The type must exist in the
database at the time the cast is
registered. Either the source data
type or the target data type, but
not both, can be a built-in type.
Neither type can be a distinct
type of the other. The type
cannot be a collection data type.

See “WITH Clause” on
page 1-113.

s To return values from user-defined routines

Data Type, p. 1-855

Function Name,
p. 1-959

(2 of 2)

A cast is a mechanism that the database server uses to convert one data type
to another. The database server uses casts to perform the following tasks:

= Tocompare two values in the WHERE clause of a SELECT, UPDATE, or
DELETE statement

= To pass values as arguments to a user-defined routines

To create a cast, you must have the necessary privileges on both the source
data type and the target data type. All users have permission to use the built-in
data types. However, to create a cast to or from an opaque type, distinct type,
or named row type requires the Usage privilege on that type.

The CREATE CAST statement registers a cast in the syscasts system catalog
table. For more information on syscasts, see the chapter on system catalog
tables in the Informix Guide to SQL: Reference.

CREATE CAST

Source and Target Data Types

The CREATE CAST statement defines a cast that converts a source data type to
a target data type. Both the source data type and target data type must exist in the
database when you execute the CREATE CAST statement to register the cast.
The source data type and the target data type have the following restrictions:

= Either the source data type or the target data type, but not both, can be
a built-in type.

= Neither the source data type nor the target data type can be a distinct
type of the other.

= Neither the source data type nor the target data type can be a collection
data type.

Explicit and Implicit Casts

To process queries with multiple data types often requires casts that convert
data from one data type to another. You can use the CREATE CAST statement
to create the following kinds of casts:

= Use the CREATE EXPLICIT CAST statement to define an explicit cast.
= Use the CREATE IMPLICIT CAST statement to define an implicit cast.

Explicit Casts

An explicit cast is a cast that you must specifically invoke, with either the
CAST AS keywords or with the cast operator (::). The database server does not
automatically invoke an explicit cast to resolve data type conversions. The
EXPLICIT keyword is optional; by default, the CREATE CAST statement
creates an explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:

CREATE EXPLICIT CAST (rate_of_return AS percent)
WITH rate_to_prcnt

SQL Statements 1-111

CREATE CAST

The following SELECT statement explicitly invokes this explicit cast in its
WHERE clause to compare the bond_rate column (of type rate_of return) to
the yyy column (of type percent):

SELECT bond_rate FROM bond
WHERE bond_rate::percent > 15

Implicit Casts

The database server invokes system-defined casts to convert from one built-
in data type to another built-in type that is not directly substitutable. For
example, the database server performs conversion of a character type such as
CHAR to a numeric type such as INTEGER through a system-defined cast.

An implicit cast is a cast that the database server can invoke automatically
when it encounters data types that cannot be compared with system-defined
casts. This type of cast enables the database server to handle automatically
conversions between other data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that
the database server should automatically use the prcnt_to_char() function
when it needs to convert from the CHAR data type to a distinct data type,
percent:

CREATE IMPLICIT CAST (CHAR AS percent) WITH prcnt_to_char

This cast only provides the database server with the ability to automatically
convert from the CHAR data type to percent. For the database server to
convert from percent to CHAR, you need to define another implicit cast, as
follows:

CREATE IMPLICIT CAST (percent AS CHAR) WITH char_to_prcnt

The database server would automatically invoke the char_to_prcnt()
function to evaluate the WHERE clause of the following SELECT statement:

SELECT commission FROM sales_rep
WHERE commission > "25%"

Users can also invoke implicit casts explicitly. For more information on how
to explicitly invoke a casting function, see “Explicit Casts” on page 1-111.

1-112 Informix Guide to SQL: Syntax

CREATE CAST

When a system-defined cast does not exist for conversion between data
types, you can create user-defined casts to make the necessary conversion.
Universal Server supports the following types of casts:

WITH Clause

The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called
the casting function. You must specify a function name unless the source data
type and the target data type have identical representations. Two data types
have identical representations when the following conditions are met:

= Both data types have the same length and alignment
= Both data types are passed by reference or both are passed by value.

The casting function must be registered in the same database as the cast at the
time the cast is invoked, but need not exist when the cast is created. The
CREATE CAST statement does not check permissions on the specified function
name, or even verify that the casting function exists. Each time a user invokes
the cast explicitly or implicitly, the database server verifies that the user has
Execute privilege on the casting function.

References

See the CREATE FUNCTION statement in this manual for information about
registering the functions that are used to implement casts. See the CREATE
DISTINCT TYPE, CREATE OPAQUE TYPE, and CREATE ROW TYPE statements
in this manual for information about creating new data types. See the DROP
CAST statement in this manual for information about removing a cast from a
database.

See the Data Types segment in this manual and Chapter 2 in the Informix
Guide to SQL: Reference for more information about data types, casting, and
conversion.

In the Informix Guide to SQL: Tutorial, see Chapter 13 for examples that show
how to create and use casts.

SQL Statements 1-113

CREATE DATABASE

CREATE DATABASE
Use the CREATE DATABASE statement to create a new database.
Syntax
| DB
SQLE
CREATE Database

DATABASE Name
p. 1-852 N

|
_/ I

Log Clause

—p— WITH \ / LOG o
BUFFERED

LOG MODE ANSI

Element Purpose Restrictions Syntax

dbspace The name of the dbspace where The dbspace must already exist. Identifier, p.1-962
you want to store the data for
this database; default is the root

dbspace
pathname The full pathname, including the You cannot specify an existing The pathname and
file name, for the log file file. filename must

conform to the
conventions of your
operating system.

1-114 Informix Guide to SQL: Syntax

ESQL

ANSI

CREATE DATABASE

Usage
The database that you create becomes the current database.

The database name that you use must be unique within the database server
environment in which you are working. The database server creates the
system catalog tables that contain the data dictionary, which describes the
structure of the database in the dbspace. If you do not specify the dbspace,
The database server creates the system catalog tables in the root dbspace.

When you create a database, you alone have access to it. The database
remains inaccessible to other users until you, as DBA, grant database privi-
leges. For information on granting database privileges, see the GRANT
statement on page 1-458.

The following statement creates the vehicles database in the root dbspace:
CREATE DATABASE vehicles

The following statement creates the vehicles database in the research
dbspace:

CREATE DATABASE vehicles IN research

In SQL APIs, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation. ¢

ANSI-Compliant Databases

You have the option of creating an ANSI-compliant database. ANSI-compliant
databases differ from databases that are not ANSI compliant in the following
ways:

= All statements are automatically contained in transactions. All
databases on the database server use unbuffered logging.

= Owner-naming is enforced. You must use the owner name when you
refer to each table, view, synonym, index, or constraint unless you
are the owner.

SQL Statements 1-115

CREATE DATABASE

ANSI

= For databases on the database server, the default isolation level
available is Repeatable Read.

= Default privileges on objects differ from those in databases that are
not ANSI compliant. Users do not receive the PUBLIC privilege to
tables and synonyms by default.

Other slight differences exist between databases that are ANSI compliant and
those that are not. These differences are noted as appropriate with the related
SQL statement. ¢

Logging on INFORMIX-Universal Server

In the event of a failure, INFORMIX-Universal Server uses the log to re-create
all committed transactions in your database.

If you do not specify the WITH LOG clause, you cannot use transactions or the
statements that are associated with databases that have logging (BEGIN
WORK, COMMIT WORK, ROLLBACK WORK, SET LOG, and SET ISOLATION).

Designating Buffered Logging

The following example creates a database that uses a buffered log:
CREATE DATABASE vehicles WITH BUFFERED LOG

If you use a buffered log, you marginally enhance the performance of logging
at the risk of not being able to re-create the last few transactions after a failure.
(See the discussion of buffered logging in Chapter 9 of the Informix Guide to
SQL: Tutorial.)

An ANSI-compliant database does not use buffered logging. ¢

1-116 Informix Guide to SQL: Syntax

CREATE DATABASE

Designating an ANSI-Compliant INFORMIX-Universal Server Database
The following example creates an ANSI-compliant database:
CREATE DATABASE employees WITH LOG MODE ANSI

Creating an ANSI-compliant database does not mean that you receive ANSI
warnings when you run the database. You must use the -ansi flag or the
DBANSIWARN environment variable to receive warnings.

For additional information about -ansi and DBANSIWARN, see Chapter 3 in
the Informix Guide to SQL: Reference.
References

See the CLOSE DATABASE, CONNECT TO, DATABASE, DROP DATABASE, and
START DATABASE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating a database
in Chapter 9.

SQL Statements 1-117

CREATE DISTINCT TYPE

one type to the other.

Syntax

CREATE DISTINCT TYPE

Use the CREATE DISTINCT TYPE statement to create a new distinct type. A

distinct type is a data type based on a built-in type or an existing opaque type,
anamed row type, or another distinct type. Distinct types are strongly typed.
Although the distinct type has the same physical representation as data of its
source type, the two types cannot be compared without an explicit cast from

w
S|afg|+
I'I'IO

CREATE DISTINCT TYPE

distinct AS
type

source |
type |

Element Purpose

Restrictions Syntax

distinct type The name of the new data type

source type The name of an existing data
type on which the new type is

based

1-118 Informix Guide to SQL: Syntax

In an ANSI-compliant database,
the combination of the owner
and data type must be unique
within the database. In a
database that is not ANSI
compliant, the name of the data
type must be unique within the
database.

The type must be either a built-

in type or a type created with the
CREATE DISTINCT TYPE, CREATE

Data Type, p. 1-855

Data Type, p. 1-855

OPAQUE TYPE, or CREATE ROW
TYPE statement.

CREATE DISTINCT TYPE

Usage

To create a distinct type in a database, you must have the Resource privilege.
Any user with the Resource privilege can create a distinct type from one of
the built-in data types, which are owned by user informix.

Important: You cannot create a distinct type on the SERIAL or SERIALS data type.

To create a distinct type from an opaque type, a named row type, or another
distinct type, you must be the owner of the type or have the Usage privilege
on the type.

Once a distinct type is defined, only the type owner and the DBA can use it.
The owner of the type can grant other users the Usage privilege on the type.

A distinct type has the same storage structure as its source type.The
following statement creates the distinct type birthday, based on the built-in
data type, DATE:

CREATE DISTINCT TYPE birthday AS DATE

INFORMIX-Universal Server uses the same storage method for the distinct
type as it does for the source type of the distinct type. However, a distinct
type and its source type cannot be compared in an operation unless one type
is explicitly cast to the other type.

Support Functions and Casts

When you create a distinct type, Universal Server automatically defines two
explicit casts:

= A cast from the distinct type to its source type
= A cast from the source type to the distinct type

Because the two types have the same representation (the same length and
alignment), no support functions are required to implement the casts.

SQL Statements 1-119

CREATE DISTINCT TYPE

1-120

You can create an implicit cast between a distinct type and its source type.
However, to create an implicit cast, you must first drop the default explicit
cast between the distinct type and its source type.

All support functions and casts that are defined on the source type can be
used on the distinct type. However, casts and functions that are defined on
the distinct type are not available to the source type.

Manipulating Distinct Types

When you manipulate data of the distinct type and its source type, you must
explicitly cast one type to the other. This means that to insert or update a
column of one type with values of the other type, you must explicitly cast the
data to be inserted or updated. In addition, you cannot use a relational
operator to add, subtract, multiply, divide, compare, or otherwise manip-
ulate two values, one of the source type and one of the distinct type.

For example, suppose you create a distinct type, dist_type, that is based on
the NUMERIC data type. You then create a table with two columns, one of
type dist_type and one of type NUMERIC.

CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t(coll dist_type, col2 NUMERIC);

To directly compare the distinct type and its source type or assign a value of
the source type to a column of the distinct type, you must cast one type to the
other, as the following examples show:

INSERT INTO tab (coll) VALUES (3.5::dist_type);

SELECT coll, col?2
FROM t WHERE (coll::NUMERIC) > col2;

SELECT coll, col2, (coll + col2::dist_type) sum_col
FROM tab;

Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE

References

For information and examples that show how to use and cast distinct types,
see Chapter 13 of the Informix Guide to SQL.: Tutorial.

See the CREATE OPAQUE TYPE and CREATE ROW TYPE statements in this
manual for information about how to create opaque types and row types.

See the CREATE FUNCTION statement in this manual for information about
registering support functions for a type. See the CREATE CAST statement in
this manual for information about registering these functions as casts.

For information about how to remove opaque types and row types from a
database, see the DROP TYPE and DROP ROW TYPE statements in this manual.

For information about how to create a table that references a data type, see
the CREATE TABLE statement in this manual.

For information about built-in data types, user-defined types, and named
row types, see the Data Types segment in this manual.

SQL Statements 1-121

CREATE FUNCTION

CREATE FUNCTION

Use the CREATE FUNCTION statement to register an external function or to
write and register an SPL function.

Syntax
SQLE
—| Function |— — Return
CREATE FUNCTION
(; NialgSeQ (\ Function /) Clause ")
- 1- . 1-1020
DBA P Parameter P
List, p. 1-1028
(%
1 f j |
)
SPECIFIC Specific L .
Name ’ WITH (Function)
p. 1-1034 Modifier
p. 1-1022
J
Statement END
Block SPL FUNCTION ~
p. 1-1037
External
Routine
Reference \ END /
p. 1-956 FUNCTION
%
(;_|
1 g ' jf\WITH LISTING IN— ' pathname' ——
DOCUMENT Quoted
String
p. 1-1010

1-122 Informix Guide to SQL: Syntax

CREATE FUNCTION

Element Purpose Restrictions Syntax

pathname The pathname to a file in which The specified pathname must The pathname and
compile-time warnings are exist on the computer where the filename must
stored database resides. conform to the

conventions of your
operating system.

Usage

A function is a user-defined routine that can accept arguments and returns
one or more values. INFORMIX-Universal Server supports functions written
in the following languages:

= Stored Procedure Language (SPL functions)
An SPL function can return one or more values.

= One of the external languages (such as C) that INFORMIX-Universal
Server supports (External functions)

An external function can return only one value.

The entire length of a CREATE FUNCTION statement must be less than 64
kilobytes. This length is the literal length of the statement, including blank
space and tabs.

Routines, Functions, and Procedures

The generic term routine includes both procedures and functions. A procedure
is a routine that can accept arguments but does not return any values. A
function is routine that can accept arguments and returns one or more values.
INFORMIX-Universal Server treats any routine that includes a Return clause
as a function.

Legacy Procedures

In earlier Informix products, the term stored procedure was used for both SPL
procedures and SPL functions. However, the database server distinguishes
between procedures and functions, even when they are written in SPL. When
you use CREATE FUNCTION to write an SPL routine, you create an SPL
function.

SQL Statements 1-123

CREATE FUNCTION

SPL

1-124

SPL Functions

SPL functions are routines written in Stored Procedure Language (SPL) that
return one or more values.

Use one CREATE FUNCTION statement, with SQL and SPL statements
embedded between CREATE FUNCTION and END FUNCTION, to write and
register an SPL function. Unlike external functions, you do not need to write
the function and register it in separate steps.

SPL functions are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL function is
stored in the sysprocbody system catalog table. Other information about the
function is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see Chapter 1, “System Catalog,” in the Informix Guide to SQL:
Reference.

You must use the END FUNCTION keywords with an SPL function.

Place a semicolon after the Return clause or the Modifier clause, whichever
comes last. Place another semicolon at the end of the entire statement, after
the END FUNCTION, DOCUMENT, or WITH LISTING IN clause.

Examples

The following example creates a SPL function:

CREATE FUNCTION update_by_pct (pct INT, pid CHAR(10))
RETURNING INT;

DEFINE n INT;

UPDATE inventory SET price = price + price * (pct/100)
WHERE part_id = pid;

LET n = price;

RETURN price;

END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",
"Enter an integer percentage from 1 - 100",
"and a part id number"”
WITH LISTING IN '/tmp/warn_file';

Informix Guide to SQL: Syntax

EXT

CREATE FUNCTION

For more information on writing SPL functions, see Chapter 14, “Creating
and Using SPL Routines,” in the Informix Guide to SQL: Tutorial. ¢

External Functions

External functions are functions you write in an external language that
INFORMIX-Universal Server supports. For this release, INFORMIX-Universal
Server supports external functions written in C. To create external functions,
follow these steps:

1. Write the function in an external language, such as C, that INFORMIX-
Universal Server supports.

2. Compile the function and store the compiled code in a shared library.

3. Register the function in the database server with the CREATE
FUNCTION statement.

When INFORMIX-Universal Server executes an external function, the
database server invokes the external object code.

The database server does not store the body of an external function directly
in the database, as it does for SPL functions. Instead, the database server
stores only a pathname to the compiled version of the function. You specify
this pathname in the External Routine Reference clause.

The database server does store information about an external function in
several system catalog tables, including sysprocbody and sysprocauth. For
more information on these system catalog tables, see Chapter 1, “System
Catalog,” in the Informix Guide to SQL: Reference.

With external functions, the END FUNCTION keywords are optional.

SQL Statements 1-125

CREATE FUNCTION

1-126

Example

The following example registers an external C function named equal() in the
database. This function takes two arguments of the type basetypel and
returns a single value of type BOOLEAN. The external routine reference name
specifies the path to the C shared library where the function object code is
actually stored. This library contains a function basetypel_equal(), which is
invoked during execution of the equal() function.

CREATE FUNCTION equal (argl opaquetypel, arg2 opaquetypel)
RETURNING BOOLEAN;

EXTERNAL NAME
"/usr/lib/opaquetypel/1ib/1ibbtypel.so(opaquetypel_equal)"
LANGUAGE C

END FUNCTION;

DBA Option

The level of privilege necessary to execute a routine depends on whether the
routine is created with the DBA keyword.

If you create a function with the DBA option, it is known as a DBA-privileged
function. You need the DBA privilege to create or execute a DBA-privileged
function.

If you do not use the DBA option, the function is known as an owner-
privileged function. If the function is owner privileged, and if the database is
ANSI compliant, anyone can execute the function.

If you create an owner-privileged routine in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
routine from being granted to PUBLIC. See the Informix Guide to SQL.: Reference
for further information on the NODEFDAC environment variable.

Function Name

Because INFORMIX-Universal Server offers routine overloading, you can define
more than one function with the same name, but different parameter lists.
You might want to overload functions if you are defining a type hierarchy or
a system of distinct types or casts. When you overload functions, you can
create a function for each new data type that you define.

Informix Guide to SQL: Syntax

CREATE FUNCTION

The process of overloading routines and the routine resolution rules are
described briefly in “Routine Resolution” on page 1-130.

The syntax of the Function Name segment is described in “Function Name”
on page 1-959.

Parameter List

To define the parameters for an SPL function, specify a parameter name and
a data type for each parameter. For more information about defining param-
eters, see “Routine Parameter List” on page 1-1028. ¢

To define the parameters for an external routine, you can specify a name and
you must specify a data type for each parameter. For more information on the
syntax of the parameter list, see “Routine Parameter List” on page 1-1028. ¢

With both SPL functions and external functions, you can specify an OUT
parameter, so that the function can be used with a Statement Local Variable
in SQL statements. The OUT parameter is described in more detail in “Routine
Parameter List” on page 1-1028.

Return Clause

INFORMIX-Universal Server considers any routine that is created with a
Return clause to be a function. Informix recommends that you use the
CREATE FUNCTION statement, not CREATE PROCEDURE, to create functions.
For external routines, this rule is strictly enforced.

The syntax of the Return clause is described in “Return Clause” on
page 1-1020.

Specific Name

You can specify a specific name for an SPL procedure or an external
procedure. A specific name is a name that is unique in the database. A specific
name is useful because more than one procedure can have the same name
due to routine overloading.

The syntax of the specific name is described in “Specific Name” on
page 1-1034.

SQL Statements 1-127

CREATE FUNCTION

SPL

EXT

I

PL

EXT

Function Modifier

When you write an SPL function, you can specify the modifier NOT VARIANT
with a WITH clause. Both modifiers apply to Boolean functions. The function
modifiers are described in “Routine Modifier” on page 1-1022.¢

In the CREATE FUNCTION statement, you can specify any of a list of function
modifiers with a WITH clause. For more information on the function
modifiers, see “Routine Modifier” on page 1-1022. ¢

Statement Block

In an SPL function, you must specify an SPL statement block instead of an
External Routine Reference clause. The syntax of the statement block is
described in “Statement Block™” on page 1-1037. ¢

External Routine Reference

When you register an external function, you must specify an External
Routine Reference clause. The External Routine Reference clause specifies the
pathname to the procedure object code, which is stored in a shared library.
The External Routine Reference clause also specifies the name of the
language in which the procedure is written. For more information on the
External Routine Reference clause, see “External Routine Reference” on
page 1-956. ¢

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the routine. The string is stored in the sysprocbody system
catalog table and is intended for the user of the routine.

To find the description of the SPL procedure update_by pct, shown in “SPL
Functions” on page 1-124, enter a query such as the following:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid
--join between the two catalog tables

AND p.procname = 'raise_prices'
- look for procedure named raise_prices
AND b.datakey = 'D'-- want user document

ORDER BY b.seqgno;

1-128 Informix Guide to SQL: Syntax

EXT

CREATE FUNCTION

The preceding query returns the following text:

USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

An SPL routine, external routine, or application program can query the
system catalog tables to fetch the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE FUNCTION
statement, whether or not you use END FUNCTION. ¢

WITH LISTING IN Clause

The WITH LISTING IN option specifies a filename where compile-time
warnings are sent. This listing file is created on the database server when you
compile an SPL or external routine.

If you specify a filename but not a directory in the WITH LISTING IN clause,
INFORMIX-Universal Server uses the home directory on the database server
as the default directory:. If you do not have a home directory on the server, the
file is created in the root directory.

If you do not use the WITH LISTING IN option, the compiler does not generate
a list of warnings.

Privileges Necessary for Using CREATE FUNCTION

You must have the Resource privilege on a database to create a function
within that database.

The owner of a privilege grants the Execution privilege for that function to
other users. If a function has a commutator function, any user who executes
the function must have Execute privilege on both the function and its
commutator. If a function has a negator function, any user who executes the
function must have Execute privilege on both the function and its negator.

SQL Statements 1-129

CREATE FUNCTION

E/C

1-130

Routine Resolution

In Universal Server, you can have more than one instance of a routine with
the same name but different parameter lists, as in the following situations:

= You create a routine with the same name as a built-in function (such
as equal()) to process a new user-defined data type.

= You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

= You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit functions from their source types.

Routine resolution is the process of determining which instance of a function
to execute, given the name of a routine and a list of arguments. For more
information on routine resolution, refer to the Extending
INFORMIX-Universal Server: User-Defined Routines manual.

PREPARE Statement

You can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a function for which the text is known at
compile time, you must put the text in a file and specify this file with the
CREATE FUNCTION FROM statement. For more information, see the CREATE
FUNCTION FROM statement on page 1-131. ¢

References

See the CREATE PROCEDURE, CREATE FUNCTION FROM, DROP FUNCTION,
DROP ROUTINE, GRANT, EXECUTE FUNCTION, PREPARE, UPDATE
STATISTICS, and REVOKE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating and using
SPL routines in Chapter 14.

In the Extending INFORMIX-Universal Server: User-Defined Routines manual,
see the discussion of how to create and use external functions.

Informix Guide to SQL: Syntax

CREATE FUNCTION FROM

CREATE FUNCTION FROM

Use the CREATE FUNCTION FROM statement to create a new function. The
actual text of the CREATE FUNCTION statement resides in a separate file.

Syntax

CREATE FUNCTION FROM !

filename' |
. variable J

hame

Element Purpose Restrictions Syntax

filename The pathname and filename of The specified file must exist. The pathname and
the file that contains the full text filename must
of a CREATE FUNCTION conform to the
statement. The default conventions of your
pathname is the current operating system.
directory.

variable name The name of a program variable The file that is specified inthe ~ The name must
that holds the value of filename program variable must exist. conform to

language-specific
rules for variable

names.
I

SQL Statements 1-131

CREATE FUNCTION FROM

Usage

An INFORMIX-ESQL/C program cannot directly create a stored function or an
external function. That is, it cannot contain the CREATE FUNCTION
statement. However, you can create these functions within an ESQL/C
program with the following steps:

= Create a source file with the CREATE FUNCTION statement.

= Use the CREATE FUNCTION FROM statement to send the contents of
this source file to the database server for execution.

For example, suppose that the following CREATE FUNCTION statement is in
a separate file, called del_ord.sql:

CREATE FUNCTION delete_order(p_order_num int)
RETURNING int, int,;
DEFINE item_count int;
SELECT count(*) INTO item_count FROM items
WHERE order_num = p_order_num;
DELETE FROM orders
WHERE order_num = p_order_num;
RETURN p_order_num, item_count;
END FUNCTION;

In the ESQL/C program, you can create the delete_order() stored function
with the following CREATE FUNCTION FROM statement;

EXEC SQL create function from 'del_ord.sql"';

The filename that you provide is relative. If you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE FUNCTION FROM
actually contains a CREATE FUNCTION statement. However, to improve readability
of the code, Informix recommends that you match these two statements. If you are not
sure whether the routine is a function or a procedure, use the CREATE ROUTINE
FROM statement in the ESQL/C program.

1-132 Informix Guide to SQL: Syntax

CREATE FUNCTION FROM

References

See the CREATE FUNCTION, CREATE PROCEDURE, CREATE PROCEDURE
FROM, and CREATE ROUTINE FROM statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating and using
stored functions in Chapter 14.

SQL Statements 1-133

CREATE INDEX

CREATE INDEX

Use the CREATE INDEX statement to create a new index for one or more
columns in a table, a functional value on one or more columns, and,
optionally, to cluster the physical table in the order of the index.

When more than one columns or functions are listed, the concatenation of the
set of columns is treated as a single composite column for indexing. The
indexes can be fragmented into separate dbspaces. You can create a unique
or duplicate index, and you can set the object mode of either type of index.

Syntax
CREATE INDEX — Dérf‘iﬂiet}(on
\ / p. 1-137
UNIQUE CLUSTER
DISTINCT

L FILLFACTOR percent

~
Y Object Modes
for Unique
IN dbspace Indexes
p. 1-158
FRAGMENT
BY .
EXPRESSION Object Modes
Clause _ for Duplicate
p. 1-155 Indexes
p. 1-162

1-134 Informix Guide to SQL: Syntax

CREATE INDEX

Element Purpose Restrictions Syntax

dbspace The name of the dbspace in The dbspace must exist at the Identifier, p. 1-962
which you want to place the time you execute the statement.
index

percent The percentage of each index Value must be in the range 1to Literal Number,

page that is filled by index data 100. Fillfactor does not apply to p. 1-997
when the index is created. The an R-tree secondary access
default value is 90. method.

Usage

A secondary access method (sometimes referred to as an index access method) is
a set of server functions that build, access, and manipulate an index structure
such as a B-tree, R-tree, or an index structure that a DataBlade module
provides. Typically, a secondary access method speeds up the retrieval of
data.

Use CREATE INDEX to create the following types of indexes:

s Column index
= Functional index

You can create a functional index on the resulting values of a function
on one or more columns. For more information, see “Function Speci-
fication” on page 1-141.

When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, the database server cannot
execute the CREATE INDEX statement and returns an error.

For the different secondary access methods that Universal Server provides,
see “USING Clause” on page 1-148.

SQL Statements 1-135

CREATE INDEX

UNIQUE and DISTINCT Options

The following example creates a unique index:
CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)

A unique index prevents duplicates in the customer_num column. A column
with a unique index can have, at most, one null value. The DISTINCT
keyword is a synonym for the keyword UNIQUE, so the following statement
would accomplish the same task:

CREATE DISTINCT INDEX c_num_ix ON customer (customer_num)

The index in either example is maintained in ascending order, which is the
default order.

If you do not specify the UNIQUE or DISTINCT keywords in a CREATE INDEX
statement, a duplicate index is created. A duplicate index allows duplicate
values in the indexed column.

You can also prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. See the
CREATE TABLE or ALTER TABLE statements for more information on creating
unique constraints.

How Unique and Referential Constraints Affect Indexes

The database server creates internal B-tree indexes for unique and referential
constraints. If a unique or referential constraint is added after the table is
created, the user-created indexes are used, if appropriate. An appropriate
index is one that indexes the same columns that are used in the referential or
unique constraint. If an appropriate index is not available, a nonfragmented
index is created in the database dbspace.

CLUSTER Option

Use the CLUSTER option to reorder the physical table in the order designated
by the index. The CREATE CLUSTER INDEX statement fails if a CLUSTER index
already exists.

CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode)

1-136 Informix Guide to SQL: Syntax

7'y

CREATE INDEX

This statement creates an index on the customer table that orders the table
physically by zip code.

If the CLUSTER option is specified in addition to fragments on an index, the
data is clustered only within the context of the fragment and not globally
across the entire table.

Warning: Some secondary access methods (such as R-tree) do not support clustering.
Before you specify CLUSTER for your index, be sure that it uses an access method that
supports clustering.

Index Definition

Use the Index Definition portion of the CREATE INDEX statement to give a
name to the index, to specify the table on which the index is created, the value
or values to use for the index key, and, optionally, the secondary access
method.

Index
Definition

Index | ON table name (g Index Key)

Name Specification) 7 -
p. 1-980 p. 1-139
Synonym
Name
p. 1-1042

[

1)
‘L secondary ()
USING access (Index)

method Parameter
p. 1-149

SQL Statements 1-137

CREATE INDEX

Element Purpose Restrictions Syntax
table name The name of the table on which The table must exist. The table Table Name,
the index is created can be a regular database table p. 1-1044

or a temporary table.
This table cannot be an external

table.
secondary The name of the secondary The access method can be aB- Identifier,
access method access method used with the tree, R-tree, or an access method p. 1-962
index you are creating. that has been defined by a

DataBlade module. The access
method must be a valid access
method in the sysams system
catalog table. The default
secondary access method is B-
tree.

If the access method is B-tree,
you can create only one index for
each unique combination of
ascending and descending
columnar or functional keys
with operator classes. This
restriction does not apply to

other secondary access methods.
. ___|

1-138 Informix Guide to SQL: Syntax

CREATE INDEX

Index Key Specification

Use the Index Key Specification clause of the CREATE INDEX statement to
specify the key value for the index, an operator class, and whether the index
will be sorted in ascending or descending order.

Index Key
Specification
column name -
ASC
Function
Specification operator class DESC
p. 1-141
Element Purpose Restrictions Syntax

index

of the

column name The name of the
column or columns
that you want to

operator class The operator class
associated with this
column or function

You must observe restrictions on the location Identifier, p. 1-962
of the columns, the maximum number of
columns, the total width of the columns,

existing constraints on the columns, and the
number of indexes allowed on the same
columns. See “Restrictions on the Column
Name Variable in CREATE INDEX” on
page 1-140.

If you specify a secondary access method in Identifier, p. 1-962
the USING clause that does not have a default
operator class, you must specify an operator

index class here.
If you use an alternative access method, and if
the access method has a default operator class,
you can omit the operator class here.
If you do not specify an operator class and the
secondary access method does not have a
default operator class, the database server
returns an error.

SQL Statements 1-139

CREATE INDEX

1-140

The index key value can be one of the following values:

One or more columns that contain built-in data types
One or more columns that contain user-defined data types

One or more values that a user-defined function returns (referred to
as a functional index)

A combination of columns and functions

Restrictions on the Column Name Variable in CREATE INDEX

Observe the following restrictions when you specify the column name
variable:

All the columns you specify must exist and must belong to the same
table—the table being indexed.

You cannot create an index on a column that belongs to an external
table.

The column you specify cannot be a column whose data type is a
collection.

The maximum number of arguments (columns) you can specify is 16.
See “Composite Indexes” on page 1-150.

You cannot add an ascending index to a column or column list that
already has a unique constraint on it. See “ASC and DESC
Keywords” on page 1-142.

The number of indexes you can create on the same column or same
sequence of columns is restricted. See “Number of Indexes Allowed”
on page 1-151.

Informix Guide to SQL: Syntax

CREATE INDEX

Function Specification

This clause specifies the user-defined function whose return value is the key
for a functional index.

Function
Specification

—»—— function name — (L column)) |

name

S —

column name

The name of the
column or columns on
which the function acts

Element Purpose Restrictions Syntax

function name The name of the This must be a non-variant function. Function
function used asakey Tne return type of the function cannot be BYTE or Name,
to this index TEXT. p. 1-959

You cannot create an index on built-in algebraic,
exponential, log, or hex functions.

See “Restrictions on the Column Name Variable Identifier,
in CREATE INDEX” on page 1-140. p. 1-962

You can create an index on an external function or an SPL function. You can
also create functional indexes within an SPL routine.

A functional index can be a B-tree index or a user-defined index type
provided by a DataBlade module.

Functional indexes are indexed on the value returned by the specified
function rather than on the value of a column.

For example, the following statement creates a functional index on table
zones using the value returned by the function Area() as the key:

CREATE INDEX zone_func_ind ON zones (Area(length,width));

SQL Statements 1-141

CREATE INDEX

Operator Class

An operator class is the set of operators that Universal Server associates with
a secondary access method for query optimization and building the index.

Specify an operator class when you create an index if you have one of the
following situations:

= There is no default operator class for the secondary access method.
For example, some of the DataBlade modules do not provide a
default operator class.

= You want to use an operator class that is different from the default
operator class that the secondary access method provides.

For more information, see “Default Operator Classes” on page 1-176. The
following CREATE INDEX statement creates a B-tree index on the cust_tab
table that uses the abs_btree_ops operator class for the cust_num key:

CREATE INDEX c_numl_ix ON cust_tab (cust_num abs_btree_ops);

ASC and DESC Keywords

Use the ASC option to specify an index that is maintained in ascending order.
The ASC option is the default ordering scheme. Use the DESC option to
specify an index that is maintained in descending order. When a column or
list of columns is defined as unique in a CREATE TABLE or ALTER TABLE
statement, the database server implements that UNIQUE CONSTRAINT by
creating a unique ascending index. Thus, you cannot use the CREATE INDEX
statement to add an ascending index to a column or column list that is
already defined as unique.

The ASC and DESC options can be used with B-trees only.

1-142 Informix Guide to SQL: Syntax

CREATE INDEX

You can create a descending index on such columns, and you can include
such columns in composite ascending indexes in different combinations. For
example, the following sequence of statements is allowed:

CREATE TABLE customer (

customer_num SERTAL(101) UNIQUE,
fname CHAR(15),
Tname CHARC(15),
company CHAR(20),
addressl CHARC(20),
address? CHAR(20),
city CHARC(15),
state CHARC(2),
zipcode CHAR(5),
phone CHAR(18)

)

CREATE INDEX cathtmp ON customer (customer_num DESC)
CREATE INDEX c_temp2 ON customer (customer_num, zipcode)

Bidirectional Traversal of Indexes

When you create an index on a column but do not specify the ASC or DESC
keywords, the database server stores the key values in ascending order by
default. If you specify the ASC keyword, the database server stores the key
values in ascending order. If you specify the DESC keyword, the database
server stores the key values in descending order.

Ascending order means that the key values are stored in order from the
smallest key to the largest key. For example, if you create an ascending index
on the Iname column of the customer table, last names are stored in the index
in the following order: Albertson, Beatty, Currie.

Descending order means that the key values are stored in order from the
largest key to the smallest key. For example, if you create a descending index
on the Iname column of the customer table, last names are stored in the index
in the following order: Currie, Beatty, Albertson.

However, the bidirectional traversal capability of the database server lets you
create just one index on a column and use that index for queries that specify
sorting of results in either ascending or descending order of the sort column.

SQL Statements 1-143

CREATE INDEX

Example of Bidirectional Traversal of an Index

An example can help to illustrate the bidirectional traversal of indexes by the
database server. Suppose that you want to enter the following two queries:

SELECT Tname, fname FROM customer ORDER BY Tname ASC;
SELECT Tname, fname FROM customer ORDER BY Tname DESC;

When you specify the ORDER BY clause in SELECT statements such as these,
you can improve the performance of the queries by creating an index on the
ORDER BY column. Because of the bidirectional traversal capability of the

database server, you only need to create a single index on the Iname column.

For example, you can create an ascending index on the Iname column with
the following statement:

CREATE INDEX Tname_bothways ON customer (Iname ASC)

The database server will use the ascending index Iname_bothways to sort
the results of the first query in ascending order and to sort the results of the
second query in descending order.

In the first query, you want to sort the results in ascending order. So the
database server traverses the pages of the Iname_bothways index from left
to right and retrieves key values from the smallest key to the largest key. The
query result is as follows.

Iname fname
Albertson Frank
Beatty Lana
Currie Philip
Vector Raymond
Wallack Jason
Watson George

Traversing the index from left to right means that the database server starts
at the leftmost leaf node of the index and continues to the rightmost leaf node
of the index.

1-144 Informix Guide to SQL: Syntax

CREATE INDEX

In the second query, you want to sort the results in descending order. So the
database server traverses the pages of the Iname_bothways index from right
to left and retrieves key values from the largest key to the smallest key. The
query result is as follows.

Iname fname
Watson George
Wallack Jason
Vector Raymond
Currie Philip
Beatty Lana
Albertson Frank

Traversing the index from right to left means that the database server starts
at the rightmost leaf node of the index and continues to the leftmost leaf node
of the index. For an explanation of leaf nodes in indexes, see the
INFORMIX-Universal Server Administrator’s Guide.

Choosing an Ascending or Descending Index

In the preceding example, you created an ascending index on the Iname
column of the customer table by specifying the ASC keyword in the CREATE
INDEX statement. Then the database server used this index to sort the results
of the first query in ascending order of Iname values and to sort the results of
the second query in descending order of Iname values. However, you could
have achieved exactly the same results if you had created the index as a
descending index.

For example, the following statement creates a descending index that the
database server can use to process both queries:

CREATE INDEX Tname_bothways2 ON customer (Iname DESC)

The resulting Iname_bothways2 index stores the key values of the Iname
column in descending order, from the largest key to the smallest key. When
the database server processes the first query, it traverses the index from right
to left to perform an ascending sort of the results. When the database server
processes the second query, it traverses the index from left to right to perform
a descending sort of the results.

SQL Statements 1-145

CREATE INDEX

So it does not matter whether you create a single-column index as an
ascending or descending index. Whichever storage order you choose for an
index, the database server can traverse that index in ascending or descending
order when it processes queries.

Use of the ASC and DESC Keywords in Composite Indexes

If you want to place an index on a single column of a table, you do not need
to specify the ASC or DESC keywords because the database server can
traverse the index in either ascending or descending order. The database
server will create the index in ascending order by default, but the database
server can traverse this index in either ascending or descending order when
it uses the index in a query.

However, if you create a composite index on a table, the ASC and DESC
keywords might be required. For example, if you want to enter a SELECT
statement whose ORDER BY clause sorts on multiple columns and sorts each
column in a different order, and you want to use an index for this query, you
need to create a composite index that corresponds to the ORDER BY columns.

For example, suppose that you want to enter the following query:

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code ASC, unit_price DESC

This query sorts first in ascending order by the value of the manu_code
column and then in descending order by the value of the unit_price column.
To use an index for this query, you need to issue a CREATE INDEX statement
that corresponds to the requirements of the ORDER BY clause. For example,
you can enter either of following statements to create the index:

CREATE INDEX stock_idxl ON stock
(manu_code ASC, unit_price DESC);

CREATE INDEX stock_idx2 ON stock
(manu_code DESC, unit_price ASC);

1-146 Informix Guide to SQL: Syntax

CREATE INDEX

Now, when you execute the query, the database server uses the index that
you created (either stock_idx1 or stock_idx2) to sort the query results in
ascending order by the value of the manu_code column and then in
descending order by the value of the unit_price column. If you created the
stock_idx1 index, the database server traverses the index from left to right
when it executes the query. If you created the stock_idx2 index, the database
server traverses the index from right to left when it executes the query.

Regardless of which index you created, the query result is as follows.

stock_num manu_code description unit_price
8 ANZ volleyball $840.00
205 ANZ 3 golf balls $312.00
110 ANZ helmet $244.00
304 ANZ watch $170.00
301 ANZ running shoes $95.00
310 ANZ kick board $84.00
201 ANZ golf shoes $75.00
313 ANZ swim cap $60.00
6 ANZ tennis ball $48.00
9 ANZ volleyball net $20.00
5 ANZ tennis racquet $19.80
309 HRO ear drops $40.00
302 HRO ice pack $4.50
113 SHM 18-spd, assmbld $685.90
1 SMT baseball gloves $450.00
6 SMT tennis ball $36.00
5 SMT tennis racquet $25.00

SQL Statements 1-147

CREATE INDEX

The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for
the two columns in the ORDER BY clause. For example, suppose that you
want to enter the following queries:

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code ASC, unit_price ASC;

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these

gueries, you need to enter one of the following CREATE INDEX statements.
You can use either one of the created indexes (stock_idx3 or stock_idx4) to
improve the performance of the preceding queries.

CREATE INDEX stock_idx3 ON stock
(manu_code ASC, unit_price ASC);

CREATE INDEX stock_idx4 ON stock
(manu_code DESC, unit_price DESC);

USING Clause

Use the USING clause to specify the secondary access method to use for the
new index. A secondary access method is a set of routines that perform all of the
operations needed to make an index available to a server, such as create,
drop, insert, delete, update, and scan.

Universal Server provides the following secondary access methods:

= The generic B-tree index is the built-in secondary access method.

A B-tree index is good for a query that retrieves a range of data
values. The database server implements this secondary access
method and registers it as btree in the system catalog tables of a
database.

= The R-tree secondary access method is a registered secondary access
method.

AnR-tree index is good for searches on multi-dimensional data (such
as box, circle, and so forth). The database server registers this
secondary access method as rtree in the system catalog tables of a
database.

1-148 Informix Guide to SQL: Syntax

CREATE INDEX

Important: To use an R-tree index, you must install a spatial DataBlade module such
as the 2D DataBlade module, Geodetic DataBlade, or any other 3rd party DataBlade
modules that implement the R-tree index. These DataBlade modules implement the
R-tree secondary access method.

DataBlade modules might provide other types of secondary access methods.
For more information on these other secondary access methods, refer to the
DataBlade user guides.

By default, the CREATE INDEX statement creates a generic B-tree index. If you
want to create an index with an secondary access method other than B-tree,
you must specify that name of the secondary access method in the USING
clause.

The following example assumes that the database implements the R-tree
index. It creates an R-tree index on the location column that contains a
opaque data type, point.
CREATE INDEX Toc_ix ON TABLE emp (location)
USING rtree;

SELECT name FROM emp
WHERE location N_equator_equals point('500, 0');

The sample query has a filter on the location column.

Index Parameter

Some DataBlade modules provide indexes that require specific parameters
when you create them.

Index
Parameter

> parameter - parameter >
value

name

SQL Statements 1-149

CREATE INDEX

Element Purpose Restrictions Syntax

parameter name Name of the secondary access The parameter name must be Quoted String,
method parameter used with one of the strings allowed for p. 1-1010
this index this secondary access method.
For more information, refer to
the DataBlade module user

guide.
parameter Value of the specified parameter The parameter value must be Quoted String,
value one of the quoted strings or p. 1-1010 or
literal numbers allowed for this Literal Number,
secondary access method. p. 1-997

Example of an Index with Parameters

The following CREATE INDEX statement creates an index that uses the
secondary access method fulltext, which takes two parameters:
WORD_SUPPORT and PHRASE_SUPPORT. It indexes a table t, which has two
columns: i, an integer column, and data, a TEXT column.

CREATE INDEX tx ON t(data)
USING fulltext (WORD SUPPORT=‘PATTERN’,
PHRASE_SUPPORT="MAXIMUM") ;

Composite Indexes

A composite index can have up to 16 key parts. An index key part is either a
table column or, if the index is a functional index, the result of a function on
one or more table columns. A composite index can have any of the following
as an index key:

= One or more columns

= One or more values that a user-defined function returns (referred to
as a functional index)

= A combination of columns and user-defined functions

1-150 Informix Guide to SQL: Syntax

CREATE INDEX

The following example creates a composite index using the stock_num and
manu_code columns of the stock table:

CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code)

The index prevents any duplicates of a given combination of stock_num and
manu_code. The index is in ascending order by default.

The total width of all key parts in a single CREATE INDEX statement cannot
exceed 390 bytes. Place key parts in the composite index in the order from
most frequently used to least frequently used.

Number of Indexes Allowed

Restrictions exist on the number of indexes that you can create on the same
column or the same sequence of columns.

Restrictions on the Number of Indexes on a Single Column

You can create only one ascending index and one descending index on a
single column. For example, if you wanted to create all possible indexes on
the stock_num column of the stock table, you could create the following
indexes:

s The stock_num_asc index on the stock_num column in ascending
order

s Thestock_num_descindex on the stock_num column in descending
order

Because of the bidirectional traversal capability of the database server, you
do not need to create both indexes in practice. You only need to create one of
the indexes. Both of these indexes would achieve exactly the same results for
an ascending or descending sort on the stock_num column. For further infor-
mation on the bidirectional traversal capability of the database server, see
“Bidirectional Traversal of Indexes” on page 1-143.

SQL Statements 1-151

CREATE INDEX

Restrictions on the Number of Indexes on a Sequence of Columns

You can create multiple indexes on a sequence of columns, provided that
each index has a unique combination of ascending and descending columns.
For example, to create all possible indexes on the stock_num and manu_code
columns of the stock table, you could create the following indexes:

The ix1 index on both columns in ascending order
The ix2 index on both columns in descending order

The ix3 index on stock_num in ascending order and on manu_code
in descending order

The ix4 index on stock_num in descending order and on manu_code
in ascending order

Because of the bidirectional-traversal capability of the database server, you
do not need to create these four indexes in practice. You only need to create
two indexes:

The ix1 and ix2 indexes achieve exactly the same results for sorts in
which the user specifies the same sort direction (ascending or
descending) for both columns. Therefore, you only need to create
one index of this pair.

The ix3 and ix4 indexes achieve exactly the same results for sorts in
which the user specifies different sort directions for the two columns
(ascending on the first column and descending on the second column
or vice versa). Therefore, you only need to create one index of this
pair.

For further information on the bidirectional-traversal capability of the
database server, see “Bidirectional Traversal of Indexes” on page 1-143.

1-152 Informix Guide to SQL: Syntax

CREATE INDEX

FILLFACTOR Clause

Use the FILLFACTOR clause to provide for expansion of a B-tree index at a
later date or to create compacted indexes. You provide a percent value
ranging from 1 to 100, inclusive. The default percent value is 90.

When the B-tree index is created, Universal Server initially fills only that
percentage of the nodes specified with the FILLFACTOR value. If you provide
a low percentage value, such as 50, you allow room for growth in your B-tree
index. The nodes of the B-tree index initially fill to a certain percentage and
contain space for inserts. The amount of available space depends on the
number of keys in each page as well as the percentage value. For example,
with a 50-percent FILLFACTOR value, the page would be half full and could
accommodate doubling in growth. A low percentage value can result in
faster inserts and can be used for indexes that you expect to grow.

If you provide a high percentage value, such as 99, your indexes are com-
pacted, and any new index inserts result in splitting nodes. The maximum
density is achieved with 100 percent. With a 100-percent FILLFACTOR value,
the index has no room available for growth; any additions to the index result
in splitting the nodes. A 99-percent FILLFACTOR value allows room for at
least one insertion per node. A high percentage value can result in faster
selects and can be used for indexes that you do not expect to grow or for
mostly read-only indexes.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in
the ONCONFIG file.

For more information about the ONCONFIG file and the parameters you can
use with ONCONFIG, see the INFORMIX-Universal Server Administrator’s
Guide.

SQL Statements 1-153

CREATE INDEX

Indexes on Fragmented and Nonfragmented Tables

When you fragment a table and, at a later time, create an index for that table,
the index uses the same fragmentation strategy as the table unless you
specify otherwise with the FRAGMENT BY EXPRESSION clause or the IN
dbspace clause. Any changes to the table fragmentation result in a corre-
sponding change to the index fragmentation.

In Universal Server, all indexes are detached. When indexes are created with
a fragmentation strategy or a dbspace is specified in the IN dbspace clause, the
indexes are stored in separate dbspaces from the table. If there is no fragmen-
tation scheme and no dbspace is specified in the IN dbspace clause, the index
is created in the same dbspace as the table.

For information on the IN dbspace clause, see “IN dbspace Clause”. For infor-
mation on the FRAGMENT BY EXPRESSION clause, see page 1-155.

IN dbspace Clause

Use the IN dbspace clause to specify the dbspace where you want your index
to reside. With this clause, you create a detached index, even though the
index is not fragmented. The dbspace that you specify must already exist. If
you do not specify the IN dbspace clause, the index is created in the dbspace
where the table was created. In addition, if you do not specify the IN dbspace
clause, but the underlying table is fragmented, the index is created as a
detached index, subject to all the restrictions on fragmented indexes. See
page 1-155 for more information about fragmented indexes.

The IN dbspace clause allows you to isolate an index. For example, if the
customer table is created in the custdata dbspace, but you want to create an
index in a separate dbspace called custind, use the following statements:

CREATE TABLE customer

iN custdata EXTENT SIZE 16

CREATE INDEX idx_cust ON customer (customer_num)
IN custind

1-154 Informix Guide to SQL: Syntax

FRAGMENT BY EXPRESSION Clause

CREATE INDEX

FRAGMENT BY
EXPRESSION
Clause

EXPRESSION

£ frag-expression)

p— FRAGMENTBY __ frag-expression
IN dbspace

IN dbspace

-
REMAINDER IN
remainder

dbspace

Element Purpose

Restrictions

Syntax

or arbitrary rule

dbspace The dbspace that will contain an
index fragment that
frag-expression defines

frag-expression An expression that defines a
fragment where an index key is
to be stored using a range, hash,

You must specify at least two
dbspaces. You can specify a
maximum of 2,048 dbspaces.
The dbspaces must exist at the
time you execute the statement.

If you specify a value for
remainder dbspace, you must
specify at least one fragment
expression. If you do not specify
avalue for remainder dbspace, you
must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. The columns
contained in a fragment
expression must be the same as
the indexed columns, or a subset
of the indexed columns. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in a
fragment expression.

Identifier, p. 1-962

Expression, p. 1-876,
and Condition,
p. 1-831

(1of 2)

SQL Statements 1-155

CREATE INDEX

tions defined in any fragment
expression

of the following rules:

= Range rule

example shows:

= Hashrule

1-156 Informix Guide to SQL: Syntax

Element Purpose Restrictions Syntax
remainder The dbspace that contains index If you specify two or more Identifier, p. 1-962
dbspace keys that do not meet the condi- fragment expressions, remainder

dbspace is optional. If you specify
only one fragment expression,
remainder dbspace is required.
The dbspace specified in
remainder dbspace must exist at
the time you execute the
statement.

2 of 2)

You use the FRAGMENT BY EXPRESSION clause to define the expression-
based distribution scheme.

In an expression-based distribution scheme, each fragment expression in a rule
specifies a dbspace. Each fragment expression within the rule isolates data
and aids the database server in searching for index keys. You can specify one

A range rule specifies fragment expressions that use a range to
specify which index keys are placed in a fragment, as the following

FRAGMENT BY EXPRESSION

cl < 100 IN dbspl,

cl >= 100 and cl < 200 IN dbsp2,
cl >= 200 IN dbsp3;

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

FRAGMENT BY EXPRESSION

MOD(id_num, 3) = 0 IN dbspl,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3;

CREATE INDEX

= Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

" FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num
zip_num = 91120 OR zip_num
REMAINDER IN dbsp5;

Warning: When you specify a date value in a fragment expression, make sure to spec-
ify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the dis-
tribution scheme and can produce unpredictable results. See the “Informix Guide to
SQL: Reference” for more information on the DBCENTURY environment variable.

95443 IN dbsp2,
92310 IN dbsp4,

Creating Index Fragments

When you fragment a table, all indexes for the table become fragmented the
same as the table, unless you specify a different fragmentation strategy.

Fragmentation of Unique Indexes

You can fragment unique indexes only with a table that uses an expression-
based distribution scheme. The columns referenced in the fragment
expression must be part of the indexed columns. If your CREATE INDEX
statement fails to meet either of these restrictions, the CREATE INDEX fails,
and work is rolled back.

Fragmentation of System Indexes

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if they exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created. To fragment a system index, create
the fragmented index on the constraint columns, and then add the constraint
using the ALTER TABLE statement.

SQL Statements 1-157

CREATE INDEX

Fragmentation of Indexes on Temporary Tables

You can create explicit temporary tables with the TEMP TABLE clause of the
CREATE TABLE statement or with the INTO TEMP clause of the SELECT
statement. If you specified more than one dbspace in the DBSPACETEMP
environment variable, but you did not specify an explicit fragmentation
strategy, the database server fragments the temporary table round-robin
across the dbspaces that DBSPACETEMP specifies.

If you then try to create a unique index on the temporary table, but you do
not specify a fragmentation strategy for the index, the index is not
fragmented in the same way as the table. You can fragment a unique index
only if the underlying table uses an expression-based distribution scheme,
but the temporary table is fragmented according to a round-robin distri-
bution scheme.

Instead of fragmenting the unique index on the temporary table, the database
server creates the index in the first dbspace that the DBSPACETEMP
environment variable specifies. To avoid this result, use the FRAGMENT BY
EXPRESSION clause to specify a fragmentation strategy for the index.

For more information on the DBSPACETEMP environment variable, see the
Informix Guide to SQL: Reference.

Object Modes for Unique Indexes

Object Modes for
Unique Indexes

— B DISABLED >
N— ENABLED
\— FILTERING
WITHOUT
ERROR
WITH
ERROR

1-158 Informix Guide to SQL: Syntax

CREATE INDEX

You can set unique indexes in the following modes: disabled, enabled, and
filtering. The following list explains these modes.

Object Mode

Effect

disabled

A unique index created in disabled mode is not updated after
insert, delete, and update operations that modify the base table.
Because the contents of the disabled index are not up to date, the
optimizer does not use the index during the execution of queries.

enabled

A unique index created in enabled mode is updated after insert,
delete, and update operations that modify the base table. Because
the contents of the enabled index are up to date, the optimizer uses
the index during the execution of queries. If an insert or update
operation causes a duplicate key value to be added to a unique
enabled index, the statement fails.

filtering

A unique index created in filtering mode is updated after insert,
delete, and update operations that modify the base table. Because
the contents of the filtering mode index are up to date, the optimizer
uses the index during the execution of queries. If an insert or update
operation causes a duplicate key value to be added to a unique
index in filtering mode, the statement continues processing, but the
bad row is written to the violations table associated with the base
table. Diagnostic information about the unique-index violation is
written to the diagnostics table associated with the base table.

If you specify filtering mode, you can also specify one of the following error

options.

Error Option

Effect

WITHOUT
ERROR

When a unique-index violation occurs during an insert or update
operation, no integrity-violation error is returned to the user. You
can specify this option only with the filtering-object mode.

WITH ERROR

When a unique-index violation occurs during an insert or update
operation, an integrity-violation error is returned to the user. You
can specify this option only with the filtering-object mode.

SQL Statements 1-159

CREATE INDEX

1-160

Specifying Object Modes for Unique Indexes

You must observe the following rules when you specify object modes for
unique indexes in CREATE INDEX statements:

You can set a unique index to the enabled, disabled, or filtering
modes.

If you do not specify the object mode of a unique index explicitly, the
default mode is enabled.

If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering-mode unique index, the default error option is WITHOUT
ERROR.

When you add a new unique index to an existing base table and
specify the disabled object mode for the index, your CREATE INDEX
statement succeeds even if duplicate values in the indexed column
would cause a unique-index violation.

When you add a new unique index to an existing base table and
specify the enabled or filtering-object mode for the index, your
CREATE INDEX statement succeeds provided that no duplicate
values exist in the indexed column that would cause a unique-index
violation. However, if any duplicate values exist in the indexed
column, your CREATE INDEX statement fails and returns an error.

When you add a new unique index to an existing base table in the
enabled or filtering mode, and duplicate values exist in the indexed
column, erroneous rows in the base table are not filtered to the viola-
tions table. Thus, you cannot use a violations table to detect the
erroneous rows in the base table.

Informix Guide to SQL: Syntax

CREATE INDEX

Adding a Unique Index When Duplicate Values Exist in the Column

If you attempt to add a unique index in the enabled mode but receive an error
message because duplicate values are in the indexed column, take the
following steps to add the index successfully:

1.

Add the index in the disabled mode. Issue the CREATE INDEX
statement again, but this time specify the DISABLED keyword.

Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

Issue a SET statement to switch the object mode of the index to the
enabled mode. When you issue this statement, existing rows in the
target table that violate the unique-index requirement are duplicated
in the violations table. However, you receive an integrity-violation
error message, and the index remains disabled.

Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.

Take corrective action on the rows in the target table that violate the
unique-index requirement.

After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled index to the enabled
mode. This time the index is enabled, and no integrity violation error
message is returned because all rows in the target table now satisfy
the new unique-index requirement.

SQL Statements 1-161

CREATE INDEX

Object Modes for Duplicate Indexes

Object Modes for
Duplicate Indexes

—

L DISABLED - .
ENABLED

If you create a duplicate index, you can set the object mode of the index to the
disabled or enabled mode. The following table explains these modes.

Object Mode Effect

disabled A duplicate index is created in disabled mode. The disabled index
is not updated after insert, delete, and update operations that
modify the base table. Because the contents of the disabled index
are not up to date, the optimizer does not use the index during the
execution of queries.

enabled A duplicate index is created in enabled mode. The enabled index is
updated after insert, delete, and update operations that modify the
base table. Because the contents of the enabled index are up to date,
the optimizer uses the index during the execution of queries. If an
insert or update operation causes a duplicate key value to be added
to a duplicate enabled index, the statement does not fail.

Specifying Object Modes for Duplicate Indexes

You must observe the following rules when you specify object modes for
duplicate indexes in CREATE INDEX statements:

= You can set a duplicate index to the enabled or disabled mode, but
you cannot set a duplicate index to the filtering mode.

» If you do not specify the object mode of a duplicate index explicitly,
the default mode is enabled.

1-162 Informix Guide to SQL: Syntax

CREATE INDEX

How the Database Server Treats Disabled Indexes

Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation operations.

When an index is disabled, the database server stops updating it and stops
using it during queries, but the catalog information about the disabled index
is retained. So you cannot create a new index on a column or set of columns
if a disabled index on that column or set of columns already exists.

Similarly, you cannot create an active (not disabled) unique, foreign-key, or
primary-key constraint on a column or set of columns if the indexes needed
by the active constraint exist and are disabled.

References

See the ALTER INDEX, CREATE OPCLASS, DROP INDEX, and CREATE TABLE
statements in this manual.

For a more detailed description of the different types of indexes, refer to
Chapter 3 of the INFORMIX-Universal Server Performance Guide. For infor-
mation about when to use the different types of indexes and other
performance issues with indexes, refer to Chapter 4 of the
INFORMIX-Universal Server Performance Guide.

For information about operator classes, refer to the CREATE OPCLASS
statement and the Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE INDEX statement, refer
to the Guide to GLS Functionality.

For information about the indexes provided by DataBlade modules, refer to
your DataBlade module user’s guide.

SQL Statements 1-163

CREATE OPAQUE TYPE

Syntax

CREATE OPAQUE TYPE

Use the CREATE OPAQUE TYPE statement to create an opaque data type.

wn
-
U513+
=

CREATE OPAQUE TYPE— type name — (INTERNALLENGTH=

length

~)

VARIABLE

@b
, Opaque-Type

Modifier
p. 1-166

Element Purpose

Restrictions Syntax

The name of the new opaque
data type

type name

length

The number of bytes needed by
the database server to store a
value of a fixed-length opaque
data type

Identifier, p. 1-962
Data Type, p .1-855

The name you specify must
follow the conventions of SQL
identifiers. Inan ANSI-compliant
database, the combination
owner.type must be unique
within the database. In a
database that is not ANSI
compliant, the type name must be
unique within the database.

The number must match the
positive integer reported when
the C language sizeof() directive
is applied to the type structure.

Literal Number,
p. 1-997

1-164 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

Usage

The CREATE OPAQUE TYPE statement registers a new opaque data type in the
database. Universal Server stores information on extended data types,
including opaque types, in the sysxtdtypes system catalog table.

Naming an Opaque Data Type

The actual name of an opaque data type is an SQL identifier. When you create
an opaque data type, the type name must be unique within a database. The
type name cannot be the same as any distinct-type names or named row-type
names.

When you create an opaque data type in an ANSI-compliant database,
owner.type_name must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the opaque-type owner is stored in uppercase letters. ¢

Privileges on an Opaque Data Type

To create a new opaque type within a database, you must have the Resource
privilege on the database. The CREATE OPAQUE TYPE statement creates a
new opaque type with Usage privilege granted to the owner of the opaque
type and the DBA. To use the opaque data type in an SQL statement, you must
have Usage privilege. The owner can grant Usage privilege to other users
with the USAGE ON TYPE clause of the GRANT statement. For more infor-
mation, see the GRANT statement on page 1-458.

INTERNALLENGTH Modifier

The CREATE OPAQUE TYPE statement must indicate the name of the opaque
type and its internal length. The INTERNALLENGTH modifier specifies the
size of an opaque data type. The way you specify the internal length defines
whether the opaque data type is fixed length or varying length.

SQL Statements 1-165

CREATE OPAQUE TYPE

Fixed-Length Opaque Data Types

A fixed-length opaque type has an internal structure that has a fixed size. To
create a fixed-length opaque data type, specify the size of the internal
structure, in bytes, for the INTERNALLENGTH modifier. The following
statement creates a fixed-length opaque type called fixlen_typ. The database
server allocates 8 bytes for this type.

CREATE OPAQUE TYPE fixlen_typ(INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Data Types

A varying-length opaque data type has an internal structure whose size
might vary from one instance of the opaque type to another. For example, the
internal structure of an opaque type might hold the actual value of a string
up to a certain size but beyond this size it might use an LO-pointer to a CLOB
to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword for
the INTERNALLENGTH modifier. The following statement creates a variable-
length opaque type called varlen_typ:

CREATE OPAQUE TYPE varlen_typ(INTERNALLENGTH=VARIABLE,
MAXLEN=1024)

Opaque-Type Modifier

Opagque-Type
Modifier

—

MAXLEN=maximum length

CANNOTHASH

PASSEDBYVALUE

ALIGNMENT=alignment

1-166 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

Element Purpose Restrictions Syntax
maximum For varying-length opaque The length must be a positive Literal Number,
length types, the maximum length in integer less than or equal to 32K. p.1-997
bytes, to allocate for instances of Do not specify for fixed-length
the type. Values that exceed this types. If maximum length is not
length return errors. specified for a variable-length
type, the system default is 2
Kilobytes.
alignment The byte boundary on which the The alignment mustbe 1, 2,4, or Literal Number,
database server aligns the 8, depending upon the C p.1-997
opaque type when passingittoa definition of the opaque type
user-defined routine and the hardware and compiler

used to build the object file for
the type. If alignment is not
specified, the system default is 4
bytes.

Use modifiers to specify the following optional information:

MAXLEN specifies the maximum length for varying-length opaque
data types.

CANNOTHASH specifies that the database server cannot use a hash
function on the opaque type.

You must provide an appropriate hash function for the database
server to evaluate GROUP BY clauses on the type.

PASSEDBYVALUE specifies that an opaque type of four bytes or fewer
is passed by value.

By default, opaque types are passed to user-defined routines by
reference.

ALIGNMENT specifies the byte boundary on which the database
server aligns the opaque type.

SQL Statements 1-167

CREATE OPAQUE TYPE

Defining an Opaque Data Type

To define the opaque data type to the database server, you must provide the
following information in the C language:

= Adatastructure that serves as the internal storage of the opaque data
type
The internal storage details of the data type are hidden, or opaque.
Once you define a new opaque type, the database server can manip-
ulate it without knowledge of the C structure in which it is stored.

= Support functions that allow the database server to interact with this
internal structure

The support functions tell the database server how to interact with
the internal structure of the type. These support functions must be
written in the C programming language.

= Optional additional routines that can be called by other support
functions or by end users to operate on the opaque data type

Possible additional functions include operator functions and casts
that operate on the opaque data type. You can also write SQL
functions for an opaque data type; SQL functions can appear within
an SQL statement.

The following table summarizes the support functions for an opaque data

type.
Function Purpose When Invoked
input Converts the opaque data type from its external ~ When a client application sends a
LVARCHAR representation to its internal character representation of the
representation. opaque type in an INSERT, UPDATE,
or LOAD statement.
output Converts the opaque data type from its internal ~ When the database server sends a
representation to its external LVARCHAR character representation of the
representation. opaque type as aresult of aSELECT or
FETCH statement.

(10f 3)

1-168 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE

importbinary

exportbinary

assign()

destroy()

internal representation of an opaque type to the
external (character) representation for a bulk copy.

Performs any tasks need to convert from the
internal representation of an opaque type on the
client computer to the internal representation on
the server computer for a bulk copy.

Performs any tasks need to convert from the
internal representation of an opaque type on the
server computer to the internal representation on
the client computer for a bulk copy.

Does any processing required before storing the
opaque type to disk. This function must be named
assign().

Does any processing necessary before removing a
row that contains the opaque type. This function
must be named destroy().

Function Purpose When Invoked

receive Converts the opaque data type from its internal ~ When a client application sends an
representation on the client computer to its internal representation of the opaque
internal representation on the server computer. type in an INSERT, UPDATE, or LOAD
Provides platform-independent results regardless statement.
of differences between client and server computer
types.

send Converts the opaque data type from its internal ~ When the database server sends an
representation on the server computer to its internal representation of the opaque
internal representation on the client computer. type as a result of a SELECT or FETCH
Provides platform-independent results regardless statement.
of differences between client and database server
computer types.

import Performs any tasks need to convert from the When DB-Access (LOAD) or the High
external (character) representation of an opaque Performance Loader initiates a bulk
type to the internal representation for a bulk copy. copy from a text file to a database.

export Performs any tasks need to convert from the When DB-Access (UNLOAD) or the

High Performance Loader initiates a
bulk copy from a database to a text
file.

When DB-Access (LOAD) or the High
Performance Loader initiates a bulk
copy from a binary file to a database.

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a binary
file.

When the database server executes
an INSERT, UPDATE, and LOAD
statement, before it stores the opaque
type to disk.

When the database server executes
the DELETE and DROP TABLE state-
ments, before it removes the opaque
type from disk.

(2 of 3)

SQL Statements 1-169

CREATE OPAQUE TYPE

Function Purpose When Invoked
lohandles() Returns a list of the LO-pointer structures Whenever the database server must
(pointers to smart large objects) in an opaque data search opaque types for references to
type. smart large objects: when the
oncheck utility runs, when an
archive is performed.
compare() Compares two values of the opaque type and When the database server encounters

returns an integer value to indicate whether the an ORDER BY, UNIQUE, DISTINCT, or
first value is less than, equal to, or greater than the UNION clause in a SELECT statement,
second value. or when it executes the CREATE

INDEX statement to create a B-tree
index.

(30f 3)

Once you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data
types to or from the new opaque type. After you create and register these
support functions, use the CREATE CAST statement to associate each function
with a particular cast. The cast must be registered in the same database as the
support function.

When you have written the necessary source code to define the opaque data
type, you then use the CREATE OPAQUE TYPE statement to register the
opaque type in the database.

References

See the CREATE CAST, CREATE DISTINCT TYPE, CREATE FUNCTION, CREATE
ROW TYPE, CREATE TABLE, and DROP TYPE statements in this manual.

For a summary of an opaque data type, see Chapter 2 of the Informix Guide to
SQL: Reference. For information on how to define an opaque data type, see the
Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE OPAQUE TYPE
statement, refer to the Guide to GLS Functionality.

1-170 Informix Guide to SQL: Syntax

CREATE OPCLASS

CREATE OPCLASS

Use the CREATE OPCLASS statement to create an operator class for a secondary
access method.

Syntax

(02}
S|zfg|.
mO

sec_ access
CREATE opclass FOR method

OPCLASS hame nethod ———— STRATEGIES 4)
! i)
Strate! (
(? o)——suPPORT——(support- 1)_|

Specification /
p. 1-174 function name

Element Purpose Restrictions Syntax
opclass Name of the operator class being The operator class name mustbe Identifier, p. 1-962
name created unique within the database.

In an ANSI-compliant database,
the combination
owner.opclassname must be
unique within the database.

sec_access Name of the secondary access The secondary access method Identifier, p. 1-962
method method with which the specified must already exist and must be
name operator class is being associated registered in the sysams system

catalog table.

The database server provides the
B-tree and R-tree secondary
access method.

support- Name of a support function The support functions must be Identifier, p. 1-962
function required by the specified listed in the order expected by
name secondary access method the specified access method.

B

SQL Statements 1-171

CREATE OPCLASS

Usage

An operator class is the set of operators that Universal Server associates with
the sec_ access method name secondary access method for query optimization
and building the index. A secondary access method (sometimes referred to
as an index access method) is a set of server functions that build, access, and
manipulate an index structure such as a B-tree, R-tree, or an index structure
that a DataBlade module provides.

You define a new operator class when you want:

= anindex to use a different order for the data than the sequence
provided by the default operator class.

= asetof operators that is different from any existing operator classes
that are associated with a particular secondary access method.

You must have the Resource privilege or be the DBA to create an operator
class. The actual name of an operator class is an SQL identifier. When you
create an operator class, opclass name must be unique within a database.

When you create an operator class in an ANSI-compliant database,
owner.opclass_name must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the operator-class owner is stored in uppercase letters. ¢

The following CREATE OPCLASS statement creates a new operator class
called abs_btree_ops for the btree secondary access method:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_1t, abs_1te, abs_eq, abs_gte,
abs_gt)
SUPPORT (abs_cmp)

For more information on the btree secondary access method, see “Default
Operator Classes” on page 1-176.

1-172 Informix Guide to SQL: Syntax

CREATE OPCLASS

An operator class has two kinds of operator-class functions:

= Strategy functions

Specify strategy functions of an operator class in the STRATEGY
clause of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS statement, the abs_btree_ops operator class has five
strategy functions.

= Support functions

Specify support functions of an operator class in the SUPPORT clause
of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS statement, the abs_btree_ops operator class has one
support function.

STRATEGY Clause

Strategy functions are functions that end-users can invoke within an SQL
statement to operate on a data type. The query optimizer uses the strategy
functions to determine if a particular index can be used to process a query. If
an index exists on a column or user-defined function in a query, and the
gualifying operator in the query matches one of the strategy functions in the
Strategy Specification list, the optimizer considers using the index for the
guery. For more information on query plans, see the INFORMIX-Universal
Server Performance Guide.

When you create a new operator class, you specify the strategy functions for
the secondary access method in the STRATEGY clause. The Strategy Specifi-
cation lists the name of each strategy function. List these functions in the
order that the secondary access method expects. For the specific order of
strategy operators for the default operator classes for a B-tree index and an
R-tree index, refer to the Extending INFORMIX-Universal Server: Data Types
manual.

SQL Statements 1-173

CREATE OPCLASS

‘ Strategy Specification

Strategy Specification |

> strategy-function
name

U G J

Loutputdataj

type

Element Purpose Restrictions Syntax
input data Data type of the input argument This is the data type for which ~ Data Type, p. 1-855
type for the strategy function you want to use a specific

secondary access method.

A strategy function takes two
input arguments and one
optional output argument.

output data Data type of the optional output This is an optional output Data Type, p. 1-855
type argument for the strategy argument for side effect indexes.

function
strategy- The name of an strategy function The operators must be listed in Identifier,1-962
function name to associate with the specified the order expected by the

operator class specified secondary access

method. For more information,
refer to the user’s guide of the
DataBlade module that provides
the secondary access method.

The strategy_function name function is an external function. The CREATE
OPCLASS statement does not verify that a user-defined function of
strategy_function name exists. However, for the secondary access method to
use the strategy_function name function, this function must be:

= compiled in a shared library.
= registered in the database with the CREATE FUNCTION statement.

1-174 Informix Guide to SQL: Syntax

CREATE OPCLASS

You can optionally the signature of an strategy function in addition to its
name. A strategy function can only take two input parameters and an
optional output parameter. To specify the function signature, you specify:

= aninput data type for each of the two input parameter of the strategy
function, in the order that the strategy function uses them.

= optionally, one output data type for an output parameter of the
strategy function.

You can specify user-defined data types as well as built-in types. If you do not
specify the function signature, the database server assumes that each strategy
function takes two arguments of the same data type and returns a boolean
value.

Side-Effect Indexes

Side-effect data is additional data that a strategy function returns when
Universal Server executes a query containing the strategy function. For
example, an image DataBlade module might use a fuzzy index to search
image data. The index ranks the images according to how closely they match
the search criteria. The database server returns the rank value as the side
effect data, along with the qualifying images.

SUPPORT Clause

Support functions are functions that the secondary access method uses inter-
nally to build and search the index. You specify the support functions for the
secondary access method in the SUPPORT clause of the CREATE OPCLASS
statement. You must list the names of the support functions in the order that
the secondary access method expects. For the specific order of support
operators for the default operator classes for a B-tree index and an R-tree
index, refer to “Default Operator Classes” on page 1-176.

The support_function name function is an external function. The CREATE
OPCLASS statement does not verify that a user-defined function of
support_function name exists. However, for the secondary access method to
use the support_function name function, this function must be:

= compiled in a shared library.

m registered in the database with the CREATE FUNCTION statement.

SQL Statements 1-175

CREATE OPCLASS

1-176

Default Operator Classes

Each secondary access method has a default operator class that is associated
with it. By default, the CREATE INDEX statement creates associates the default
operator class with an index. For example, the following CREATE INDEX
statement creates a B-tree index on the zipcode column and automatically
associates the default B-tree operator class with this column:

CREATE INDEX zip_ix ON customer(zipcode)

For each of the secondary access methods that Universal Server provides, it
provides a default operator class, as follows:

= The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this
operator class and registers it as btree_ops in the system catalog
tables of a database.

» The default R-tree operator class is a registered operator class.

The database server registers this operator class as rtree_ops in the
system catalog tables of a database. The database server does not
implement the operator-class functions for the default R-tree
operator class.

Important: To use an R-tree indeX, you must install a spatial DataBlade module such
as the Spatial DataBlade module, Geodetic DataBlade, or any other third-party
DataBlade module that implements the R-tree index. These DataBlade modules
implement the R-tree operator-class functions.

For information on the operator-class functions of these operator classes,
refer to the chapter on operator classes in the Extending INFORMIX-Universal
Server: Data Types manual.

DataBlade modules can provide other types of secondary access methods. If
a DataBlade module provides a secondary access method, it might also
provide a default operator class. For more information, refer to the DataBlade
user guides.

Informix Guide to SQL: Syntax

CREATE OPCLASS

References

See the CREATE FUNCTION and DROP OPCLASS statements in this manual.
For more information on how to specify a secondary access method or an
operator class for an index, see the CREATE INDEX statement in this manual.

For information on how to create and extend an operator class, see the
Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE OPCLASS statement,
refer to the Guide to GLS Functionality.

SQL Statements 1-177

CREATE PROCEDURE

CREATE PROCEDURE

Use the CREATE PROCEDURE statement to register an external procedure or
to write and register an SPL procedure.

Syntax
SQLE
CREATE Procedure
PROCEDURE Name
p. 1-1004 é-
DBA
k Function d Return
Narme barametor Clause
. 1-1020
p. 1-959 List, p. 1-1028 P
1 f j |
SPECIFIC| Specific ()
Name WITH (Procedure)
p. 1-1034 Modifier
p. 1-1023
J
END
1 Starement PROCEDURE ~
p. 1-1037 J
i External
Routine
Reference END
p. 1-956 PROCEDURE
1 g ' jf\WITH LISTING IN— ' pathname ' /
DOCUMENT Quoted
String
p. 1-1010

1-178 Informix Guide to SQL: Syntax

CREATE PROCEDURE

Element Purpose Restrictions Syntax

pathname The pathname to a file in which The specified pathname must The pathname and
compile-time warnings are exist on the computer where the filename must
stored database resides. conform to the

conventions of your
operating system.

Usage

A procedure is a user-defined routine that can accept arguments but does not
return a value. INFORMIX-Universal Server supports procedures written in
the following languages:

» Stored Procedure Language (SPL procedures)

= One of the external languages (such as C) that INFORMIX-Universal
Server supports (External procedures)

The entire length of a CREATE PROCEDURE statement must be less than 64
kilobytes. This length is the literal length of the statement, including blank
space and tabs.

Routines, Functions, and Procedures

In INFORMIX-Universal Server, routine is a generic term that includes both
procedures and functions. A procedure is a routine that can accept arguments
but does not return any values. A function is routine that can accept
arguments and returns one or more values. Universal Server treats any
routine that includes a Return clause as a function.

SQL Statements 1-179

CREATE PROCEDURE

SPL

SPL

1-180

Legacy Procedures

In earlier Informix products, the term stored procedure was used for both SPL
procedures and SPL functions. As a result, you may have created functions
with CREATE PROCEDURE in the past. For backward compatibility with
earlier products, you can continue to create SPL functions with CREATE
PROCEDURE. However, with Universal Server, Informix recommends that
you use CREATE PROCEDURE only with procedures and CREATE FUNCTION
only with functions.

For more information on CREATE FUNCTION, see page 1-122. ¢

SPL Procedures

SPL procedures are routines written in Stored Procedure Language (SPL) that
do not return a value.

Use one CREATE PROCEDURE statement, with SQL and SPL statements
embedded between CREATE PROCEDURE and END PROCEDURE, to write
and register an SPL procedure. Unlike external procedures, you do not need
to write the procedure and register it in separate steps.

SPL procedures are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL procedure is
stored in the sysprocbody system catalog table. Other information about the
procedure is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see Chapter 1, “System Catalog,” in the Informix Guide to SQL:
Reference.

You must use the END PROCEDURE keywords with an SPL procedure.

If you use a Return clause or a Specific Name clause, place a semicolon after
the clause immediately before the SPL statement block. If you do not use a
Return clause or a Specific Name clause, do not place a semicolon after the
CREATE PROCEDURE statement. Always place a semicolon at the end of the
entire statement, after the END PROCEDURE, DOCUMENT, or WITH LISTING
IN clause.

Informix Guide to SQL: Syntax

EXT

CREATE PROCEDURE

Example

The following example creates a SPL procedure:
CREATE PROCEDURE raise_prices (per_cent INT)

UPDATE stock SET unit_price =
unit_price + (unit_price * (per_cent/100));

END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices(xxx)"
"xxx = percentage from 1 - 100 "
WITH LISTING IN '/tmp/warn_file';

For more information on writing SPL procedures, see Chapter 14, “Creating
and Using SPL Routines,” in the Informix Guide to SQL: Tutorial. ¢

External Procedures

External procedures are procedures you write in an external language that the
Universal Server supports. To create external procedures, follow these steps:

1. Write the procedure in an external language, such as C, that
Universal Server supports.

2. Compile the procedure and store the compiled code in a shared
library.

3. Register the procedure in the database server with the CREATE
PROCEDURE statement.

When Universal Server executes an external procedure, the database server
invokes the external object code.

Universal Server does not store the body of an external procedure directly in
the database, as it does for SPL procedures. Instead, the database server stores
only a pathname to the compiled version of the procedure. You specify this
pathname in the External Routine Reference clause.

The database server does store information about an external procedure in
several system catalog tables, including sysprocbody and sysprocauth. For
more information on these system catalog tables, see Chapter 1, “System
Catalog,” in the Informix Guide to SQL: Reference.

With external procedures, the END PROCEDURE keywords are optional.

SQL Statements 1-181

CREATE PROCEDURE

1-182

Example

The following example registers an external C procedure named
check_owner() in the database. This procedure takes one argument of the
type lvarchar. The external routine reference specifies the path to the C shared
library where the procedure object code is stored. This library contains a
function unix_owner(), which is invoked during execution of the
check_owner() procedure.

CREATE PROCEDURE check_owner (owner lvarchar)
EXTERNAL NAME "/usr/Tlib/ext_Tlib/genlib.so(unix_owner)"
LANGUAGE C

END PROCEDURE;

Using the DBA Keyword

The level of privilege necessary to execute a routine depends on whether the
routine is created with the DBA keyword. The DBA keyword limits execution
of the procedure to those users who have the DBA privilege.

You need the DBA privilege to create a procedure using the DBA keyword.
You need the DBA privilege to execute a procedure that is created with the
DBA keyword.

If you do not use the DBA option, the procedure is known as an owner-privi-
leged procedure. If the procedure is owner privileged, and if the database is
ANSI compliant, anyone can execute the procedure.

If you create an owner-privileged routine in a database that is not
ANSI-compliant, the NODEFDAC environment variable prevents privileges
on that routine from being granted to PUBLIC. See the Informix Guide to SQL:
Reference for further information on the NODEFDAC environment variable.

Procedure Name

Because Universal Server offers routine overloading, you can define more than
one procedure with the same name but different parameter lists. You may
want to overload procedures if you are defining a type hierarchy or a system
of distinct types or casts. When you overload procedures, you can create a
procedure for the new data types you define.

Informix Guide to SQL: Syntax

CREATE PROCEDURE

The process of overloading routines and the routine resolution rules are
described briefly in “Routine Resolution” on page 1-186.

The syntax of the Procedure Name segment is described in “Procedure
Name” on page 1-1004.

Parameter List

To define the parameters for an SPL procedure, specify a parameter name and
a data type for each parameter. For more information about defining param-
eters, see “Routine Parameter List” on page 1-1028. ¢

To define the parameters for an external routine, you can specify a name, and
you must specify a data type for each parameter. For more information on the
syntax of the parameter list, see “Routine Parameter List” on page 1-1028. ¢

Return Clause

The database server considers any routine that is created with a Return clause
to be a function. Informix recommends that you use the CREATE FUNCTION
statement, not CREATE PROCEDURE, to create functions. For external
routines, this rule is strictly enforced.

The syntax of the Return clause is described in “Return Clause” on
page 1-1020.

In SPL, you can use CREATE PROCEDURE to write and register a routine that
returns one or more values (that is, a function). However, this feature is
offered only for backward compatibility with earlier Informix products.
Informix recommends that you do not use CREATE PROCEDURE to create
functions. ¢

You cannot specify a Return clause for an external procedure. An external
procedure does not return a value. ¢

SQL Statements 1-183

CREATE PROCEDURE

SPL

EXT

SPL

EXT

1-184

Specific Name

You can specify a specific name for an SPL procedure or an external
procedure. A specific name is a name that is unique in the database. A specific
name is useful, because due to routine overloading, more than one procedure
can have the same name.

The syntax of the Specific Name is described in “Specific Name” on
page 1-1034.

Procedure Modifier

When you write an SPL procedure, you cannot specify a procedure modifier
in the CREATE PROCEDURE statement. ¢

In the CREATE PROCEDURE statement, you can specify any of a list of
procedure modifiers with a WITH clause. For more information on the
procedure modifiers, see “Routine Modifier” on page 1-1022. 4

Statement Block

In an SPL routine, you must specify an SPL statement block instead of an
external routine reference. The syntax of the statement block is described in
“Statement Block” on page 1-1037. ¢

External Routine Reference

When you register an external procedure, you must specify an External
Routine Reference clause. The External Routine Reference clause specifies the
pathname to the procedure object code, which is stored in a shared library.
The External Routine Reference Clause also specifies the name of the
language in which the procedure is written. For more information on the
External Routine Reference clause, see “External Routine Reference” on
page 1-956. ¢

Informix Guide to SQL: Syntax

EXT

CREATE PROCEDURE

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the routine. The string is stored in the sysprocbody system
catalog table and is intended for the user of the routine.

To find the description of the SPL procedure raise_prices, shown in “SPL
Procedures” on page 1-180, enter a query such as the following:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid
--join between the two catalog tables

AND p.procname = 'raise_prices'
- look for procedure named raise_prices
AND b.datakey = 'D'-- want user document

ORDER BY b.seqgno;

The preceding query returns the following text:

USAGE: EXECUTE PROCEDURE raise_prices(xxx)
xxx = percentage from 1 - 100

An SPL routine, external routine, or application program can query the
system catalog tables to fetch the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE PROCEDURE
statement, whether or not you use END PROCEDURE. 4

WITH LISTING IN Clause

The WITH LISTING IN option specifies a filename where compile-time
warnings are sent. This listing file is created on the database server when you
compile an SPL or external routine.

If you specify a filename but not a directory in the WITH LISTING IN clause,
Universal Server uses the home directory on the database server as the
default directory. If you do not have a home directory on the server, the file
is created in the root directory.

If you do not use the WITH LISTING IN option, the compiler does not generate
a list of warnings.

SQL Statements 1-185

CREATE PROCEDURE

E/C

1-186

Privileges Necessary for Using CREATE PROCEDURE

You must have the Resource privilege on a database to create a procedure
within that database. The owner of a procedure grants the Execution
privilege to on that procedure to other users.

Routine Resolution

In Universal Server, you can have more than one instance of a routine with
the same name but different parameter lists, as in the following situations:

= You create a routine with the same name as a built-in function (such
as equal()) to process a new user-defined data type.

= You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

= You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit functions from their source types.

Routine resolution is the process of determining which instance of a function
to execute, given the name of a routine and a list of arguments. For more
information on routine resolution, refer to the Extending
INFORMIX-Universal Server: User-Defined Routines manual.

PREPARE Statement

You can use a CREATE PROCEDURE statement only within a PREPARE
statement. If you want to create a procedure for which the text is known at
compile time, you must put the text in a file and specify this file with the
CREATE PROCEDURE FROM statement. For more information, see the
CREATE PROCEDURE FROM statement on page 1-188. ¢

Informix Guide to SQL: Syntax

CREATE PROCEDURE

References

See the CREATE FUNCTION, CREATE PROCEDURE FROM, DROP FUNCTION,
DROP PROCEDURE, DROP ROUTINE, EXECUTE FUNCTION, EXECUTE
PROCEDURE, GRANT, PREPARE, UPDATE STATISTICS, and REVOKE state-
ments in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of how to create and
execute SPL routines on page 14-6.

In the Extending INFORMIX-Universal Server: User-Defined Routines manual,
see the discussion of how to create and use external procedures

SQL Statements 1-187

CREATE PROCEDURE FROM

CREATE PROCEDURE FROM

Use the CREATE PROCEDURE FROM statement to create a procedure. The
actual text of the CREATE PROCEDURE statement resides in a separate file.

Syntax

CREATE PROCEDURE FROM Iﬁlename |
\ variable J

hame

Element Purpose Restrictions Syntax

filename The pathname and filename of ~ The specified file must exist. The pathname and
the file that contains the full text filename must
of a CREATE PROCEDURE conform to the
statement. The default conventions of your
pathname is the current operating system.
directory.

variable name The name of a program variable The file that is specified inthe ~ The name must
that holds the value of filename program variable must exist. conform to

language-specific
rules for variable

names.

1-188 Informix Guide to SQL: Syntax

CREATE PROCEDURE FROM

Usage

An INFORMIX-ESQL/C program cannot directly create a stored procedure or
external procedure. That is, it cannot contain the CREATE PROCEDURE
statement. However, you can create these functions within an ESQL/C
program with the following steps:

1. Create a source file with the CREATE PROCEDURE statement.

2. Usethe CREATE PROCEDURE FROM statement to send the contents of
this source file to the database server for execution.

For example, suppose that the following CREATE PROCEDURE statement isin
a separate file, called raise_pr.sql:

CREATE PROCEDURE raise_prices(per_cent int)
UPDATE stock -- increase by percentage;
SET unit_price = unit_price +
(unit_price * (per_cent / 100));
END PROCEDURE;

In the ESQL/C program, you can create the raise_prices() stored procedure
with the following CREATE PROCEDURE FROM statement:

EXEC SQL create procedure from 'raise_pr.sql';

The filename that you provide is relative; if you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE PROCEDURE FROM
actually contains a CREATE PROCEDURE statement. However, to improve readabil-
ity of the code, Informix recommends that you match these two statements. If you are
not sure whether the routine is a function or a procedure, use the CREATE ROUTINE
FROM statement in the ESQL/C program.

References

See the CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE ROUTINE FROM statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of how to create and
use SPL procedures in Chapter 14.

SQL Statements 1-189

CREATE ROLE

Syntax

CREATE ROLE

Use the CREATE ROLE statement to create a new role.

CREATE ROLE

role name |

Element

Purpose

Restrictions Syntax

role name

1-190

Name assigned to a role created

by the DBA

Usage

Informix Guide to SQL: Syntax

Maximum number of characters ldentifier, p. 1-962
is 8.

A role name cannot be a user
name known to the database
server or the operating system of
the database server. A role name
cannot be in the username
column of the sysusers system
catalog table or in the grantor or
grantee columns of the
systabauth, syscolauth,
sysprocauth, sysfragauth, and
sysroleauth system catalog
tables.

The database administrator (DBA) uses the CREATE ROLE statement to create
a new role. A role can be considered as a classification, with privileges on
database objects granted to the role. The DBA can assign the privileges of a
related work task, such as engineer, to a role and then grant that role to users,
instead of granting the same set of privileges to every user.

CREATE ROLE

After arole is created, the DBA can use the GRANT statement to grant the role
to users or to other roles. When a role is granted to a user, the user must use
the SET ROLE statement to enable the role. Only then can the user use the
privileges of the role.

The CREATE ROLE statement, when used with the GRANT and SET ROLE
statements, allows a DBA to create one set of privileges for a role and then
grant the role to many users, instead of granting the same set of privileges to
many users.

A role exists until it is dropped either by the DBA or by a user to whom the
role was granted with the WITH GRANT OPTION. Use the DROP ROLE
statement to drop a role.

To create the role engineer, enter the following statement:

CREATE ROLE engineer

References

See the DROP ROLE, GRANT, REVOKE, and SET ROLE statements in this
manual.

SQL Statements 1-191

CREATE ROUTINE FROM

CREATE ROUTINE FROM

Use the CREATE ROUTINE FROM statement to create a routine. The actual text
of the CREATE FUNCTION or CREATE PROCEDURE statement resides in a
separate file.

Syntax

CREATE ROUTINE FROM

1 'filename' f |
variable

hame

Element Purpose Restrictions Syntax

filename The pathname and filename of ~ The specified file must exist. The pathname and
the file that contains the full text filename must
of a CREATE PROCEDURE or conform to the
CREATE FUNCTION statement. conventions of your
The default pathname is the operating system.

current directory.

variable name ~ The name of a program variable The file that is specified inthe =~ The name must
that holds the value of filename program variable must exist. conform to
language-specific
rules for variable

names.

1-192 Informix Guide to SQL: Syntax

CREATE ROUTINE FROM

Usage

An INFORMIX-ESQL/C program cannot directly define a routine. That is, it
cannot contain the CREATE FUNCTION or CREATE PROCEDURE statement.
However, you can create these functions within an ESQL/C program with the
following steps:

1. Create a source file with the CREATE FUNCTION or CREATE
PROCEDURE statement.

2. Use the CREATE ROUTINE FROM statement to send the contents of
this source file to the database server for execution.

The filename that you provide is relative. If you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

If you know at compile time whether the routine in the file is a function or a
procedure, use the CREATE ROUTINE FROM statement in the ESQL/C
program. However, if you do know whether the routine is a function or
procedure, Informix recommends that you use the matching statement to
create the file:
= The CREATE FUNCTION FROM to create stored or external functions
m The CREATE PROCEDURE FROM to create stored or external
procedures

Use of the matching statements improves the readability of the code.

References

See the CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE PROCEDURE FROM statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of creating and using
stored procedures in Chapter 14.

SQL Statements 1-193

CREATE ROW TYPE

CREATE ROW TYPE
Use the CREATE ROW TYPE statement to create a named row type.
Syntax

| DB_|

.

CREATE L Extended _l |

ROW TYPE — oW bype (Field Definition) |

name p. 1-199

supertype

, / UNDER — name
1(L Extended _l))

Field Definition
p. 1-199

1-194 Informix Guide to SQL: Syntax

CREATE ROW TYPE

Element

Purpose

Restrictions

Syntax

row type name

supertype name

The name of the named row type
that you create. If you create a
named row type under an
existing supertype, this is the
name of the subtype.

The name of the supertype in an
inheritance hierarchy

The name you specify for the
named row type must follow the
conventions for SQL identifiers.
In an ANSI-compliant database,
the combination owner. type must
be unique within the database.
In a database that is not ANSI
compliant, the type nhame must
be unique within the database.
You must have the Resource
privilege to create a named row
type.

The supertype must already
exist and must be a named row
type. The same restrictions
apply for the supertype name as
for the type name. In addition,
you must have the Under
privilege on this supertype to
create a subtype under it, and
the Resource privilege.

Identifier, p. 1-962
Data type, p. 1-855

Identifier, p. 1-962
Data type, p. 1-855

Usage

to SQL: Tutorial.

The CREATE ROW TYPE statement creates a named row type. You can assign
anamed row type to a table or view to create a typed table or typed view. You
can also assign a named row type to a column. Although you can assign a
row type to a table to define the structure of the table, row types are not the
same as table rows. Table rows consist of one or more columns; row types
consist of one or more fields, which are defined using the Extended Field
Definition syntax. For a full discussion of named row types and typed tables,
see Chapter 10, “Understanding Complex Data Types,” in the Informix Guide

SQL Statements 1-195

CREATE ROW TYPE

1-196

You can use a named row type anywhere you can use any other type. Named
row types are strongly typed. Any two named row types are not considered
equivalent even if they are structurally equivalent. Row types without names
are called unnamed row types. Any two unnamed row types are considered
equivalent if they are structurally equivalent. For more information on
named row types and unnamed row types, see the section “Complex Data
Type” on page 1-868 of this manual and Chapter 10, “Understanding
Complex Data Types” in the Informix Guide to SQL: Tutorial.

Privileges on Named Row Types

The following table indicates which privileges you must have to create a row
type.

Task Privileges Required

Create a named row type The Resource privilege on the
database

Create a named row type as a subtype The Under privilege on the supertype,

under a supertype as well as the Resource privilege

To find out what privileges you have on a particular data type, check the
sysxtdtypes system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

See the reference pages for GRANT, beginning on page 1-458, for information
about the RESOURCE, UNDER, and ALL privileges.

Privileges on a typed table (a table that is assigned a named row type) are the
same as privileges on any table. Refer to the CREATE TABLE statement on
page 1-208 and the “Table-Level Privileges” section of the GRANT statement
on page 1-458.

To find out what privileges you have on a particular table, check the
systabauth system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

Informix Guide to SQL: Syntax

CREATE ROW TYPE

Privileges on Named Row Type Columns

Privileges on named row type columns are the same as privileges on any
column. For more information, see the “Table-Level Privileges” section of the
GRANT statement on page 1-458.

To find out what privileges you have on a particular column, check the
syscolauth system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

Inheritance and Named Row Types

A named row type can belong to an inheritance hierarchy, as either a subtype
or a supertype. You use the UNDER clause in the CREATE ROW TYPE
statement to create a named row type as a subtype. The supertype must also
be a named row type.

When you create a named row type as a subtype, the subtype inherits the
following properties:

= All fields of the supertype
= All functions that are defined on the supertype

In addition, you can add new fields to the subtype that you create and define
functions on the subtype. The new fields and functions are specific to the
subtype alone.

You cannot substitute a row type in an inheritance hierarchy for its supertype
or its subtype. For example, suppose you define a type hierarchy in which
person_t is the supertype and employee_t is the subtype. If a column is of
type person_t, the column can only contain person_t data. It cannot contain
employee_t data. Likewise, if a column is of type employee _t, the column
can only contain employee_t data. It cannot contain person_t data.

Creating a Subtype

In most cases, you add new fields when you create a named row type as a
subtype of a another named row type (supertype). To create the fields of a
named row type, you use the field definition clause that is shown on

page 1-200.

SQL Statements 1-197

CREATE ROW TYPE

1-198

When you create a subtype, you must use the UNDER keyword to associate
the supertype with the named row type that you want to create. The
following statement creates the employee_t type under the person_t type:

CREATE ROW TYPE employee_t
(salary NUMERIC(10,2), bonus NUMERIC(10,2))
UNDER person_t;

The employee _t type inherits all the fields of person_t and has two
additional fields: salary and bonus. However, the person_t type is not
altered.

Tip: A subtype inherits all the fields and functions that are defined on the supertype
as well as any additional fields and routines that you define on the subtype.

Type Hierarchies

When you create a subtype, you create a type hierarchy. In a type hierarchy,
each subtype that you create inherits its properties from a single supertype.
If you create a named row type customer_t under person_t, customer_t
inherits all the fields and functions of person_t. If you create another named
row type, salesrep_t under customer _t, salesrep_t inherits all the fields and
functions of customer_t. More specifically, salesrep_t inherits all the fields
and functions that customer_t inherited from person_t as well as all the fields
and functions defined specifically for customer_t. For a full discussion of
type inheritance, refer to Chapter 10 of the Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype

Before you create a named row type as a subtype in an inheritance hierarchy,
do the following:
= \erify that you are authorized to create new data types.

You must have the Resource privilege on the database. You can find
this information in the sysusers system catalog table.

= \erify that the supertype exists.

You can find this information in the sysxtdtypes system catalog
table.

Informix Guide to SQL: Syntax

CREATE ROW TYPE

= \erify that you are authorized to create subtypes to that supertype.
You must have the Under privilege on the supertype.You can find
this information in the sysusers system catalog table.

= \erify that the name that you assign to the named row type is unique
within the schema.

To verify whether the name you want to assign to a new data type is
unique within the schema, check the sysxtdtypes system catalog
table. The name you want to use must not be the name of an existing
data type.

= If you are defining fields for the row type, check that no duplicate
field names exist in both new and inherited fields.

Important: \When you create a subtype, do not redefine fields that the subtype
inherited for its supertype. If you attempt to redefine these fields, the database server

returns an error.

Constraints on Named Row Types

You cannot apply constraints to named row types directly. Specify the
constraints for the tables that use named row types when you create or alter
the table.

Extended Field Definition

Use the extended field definition to define new fields in a named row type.

Extended Field
Definition

— | Field Definition
p. 1-200 \ _/ >
NOT NULL

Each field has its own field definition, as described in the “Field Definition”
section.

SQL Statements 1-199

CREATE ROW TYPE

Important: The NOT NULL constraints that you specify on the fields of a named row
type also apply to corresponding columns of a table when the named row type is used
to create a typed table.

Field Definition

To define a field, you must specify a name and a data type for each field.

Field
Definition

—p»——field name data type >

Element Purpose Restrictions Syntax

field name Name of a field in the row Name must be unique withinthe Identifier, p. 1-962
row type and its supertype.

data type Data type of the field If anamed row type isused to Data type, p. 1-855

define a column, the fields of the
row type cannot be the SERIAL,
SERIALS, BYTE, or TEXT data
type. If a named row type is
assigned to a table, the fields of
the row type cannot be the
SERIAL or SERIALS data type.

References

See the DROP ROW TYPE, CREATE TABLE, CREATE CAST, GRANT, and
REVOKE statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of named row types
in Chapter 10, “Understanding Complex Data Types.” In the Informix Guide
to SQL: Reference, see Chapter 2, “Data Types.”

1-200 Informix Guide to SQL: Syntax

CREATE SCHEMA

CREATE SCHEMA

Use the CREATE SCHEMA statement to issue a block of CREATE and GRANT
statements as a unit. This statement allows you to specify an owner of your
choice for all objects that the CREATE SCHEMA statement creates.

Syntax

SQLE
CREATE SCHEMA __ user (CREATE TABLE Statement
AUTHORIZATION name N\ p. 1-208 7L{

N CREATE VIEW Statement | /
p. 1-286

N GRANT Statement | /]
p. 1-458

CREATE OPTICAL CLUSTER
_m] Statement, see

INFORMIX-OnLine/Optical
User Manual

N CREATE INDEX Statement | /]

p
N CREATE SYNONYM Statement |/
p. 1-204
N CREATE TRIGGER Statement | /
p. 1-255
\ CREATE ROW TYPE Statement |/
p. 1-194
CREATE OPAQUE TYPE y,
| Statement
p. 1-164
CREATE DISTINCT TYPE ¥
| Statement
p. 1-118

\ CREATE CAST Statement | /
p. 1-109

SQL Statements 1-201

CREATE SCHEMA

Element Purpose Restrictions Syntax

user name The name of the user who will If the user who issues the Identifier, p. 1-962
own the objects that the CREATE CREATE SCHEMA statement has
SCHEMA statement creates the Resource privilege, user name

must be the name of this user. If
the user who issues the CREATE
SCHEMA statement has the DBA
privilege, user name can be the
name of this user or another

user.

Usage

You cannot issue the CREATE SCHEMA statement until you create the affected
database.

Users with the Resource privilege can create a schema for themselves. In this
case, user name must be the name of the person with the Resource privilege
who is running the CREATE SCHEMA statement. Anyone with the DBA
privilege can also create a schema for someone else. In this case, user name can
identify a user other than the person who is running the CREATE SCHEMA
statement.

You can put CREATE and GRANT statements in any logical order within the
statement, as the following example shows. Statements are considered part
of the CREATE SCHEMA statement until a semicolon or an end-of-file symbol
is reached.

CREATE SCHEMA AUTHORIZATION sarah
CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS
SELECT * FROM mytable WHERE mytime > '12/31/1993"
CREATE INDEX idxtime ON mytable (mytime);

1-202 Informix Guide to SQL: Syntax

CREATE SCHEMA

Creating Objects Within CREATE SCHEMA

All objects that a CREATE SCHEMA statement creates are owned by user name,
even if you do not explicitly name each object. If you are the DBA, you can
create objects for another user. If you are not the DBA, and you try to create
an object for an owner other than yourself, you receive an error message.

Granting Privileges Within CREATE SCHEMA

You can only grant privileges with the CREATE SCHEMA statement; you
cannot revoke or drop privileges.

Creating Objects or Granting Privileges Outside CREATE
SCHEMA

If you create an object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

References

See the CREATE INDEX, CREATE SYNONYM, CREATE TABLE, CREATE VIEW,
and GRANT statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of creating the
database in Chapter 9.

SQL Statements 1-203

CREATE SYNONYM

CREATE SYNONYM

Use the CREATE SYNONYM statement to provide an alternative name, called
a synonym, for a table or view.

Syntax

B crREATE SYNONYM — — FOR
Name p. 1-1044
PUBLIC p. 1-1042
View Name

PRIVATE

Synonym Table Name

p. 1-1047

Usage

Users have the same privileges for a synonym that they have for the table to
which the synonym applies.

The synonym name must be unique; that is, the synonym name cannot be the
same as another database object, such as a table, view, or temporary table.

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. This property distinguishes a synonym from an alias
that you can use in the FROM clause of a SELECT statement. The alias persists
for the existence of the SELECT statement. If a synonym refers to a table or
view in the same database, the synonym is automatically dropped if you
drop the referenced table or view.

You cannot create a synonym for a synonym in the same database.

The owner of the synonym (owner.synonym) qualifies the name of a synonym.
The identifier owner.synonym must be unique among all the synonymes, tables,
temporary tables, and views in the database. You must specify owner when
you refer to a synonym that another user owns. The following example
shows this convention:

CREATE SYNONYM emp FOR accting.employee

1-204 Informix Guide to SQL: Syntax

ANS

CREATE SYNONYM

You can create a synonym for any table or view in any database on your
database server. Use the owner. convention if the table is part of an
ANSI-compliant database. The following example shows a synonym for a
table outside the current database. It assumes that you are working on the
same database server that contains the payables database.

CREATE SYNONYM mysum FOR payables:jean.summary

You can create a synonym for any table or view that exists on any networked
database server as well as on the database server that contains your current
database. The database server that holds the table must be on-line when you
create the synonym. In a network, INFORMIX-Universal Server verifies that
the object of the synonym exists when you create the synonym.

The following example shows how to create a synonym for an object that is
not in the current database:

CREATE SYNONYM mysum FOR payables@phoenix:jean.summary

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. Note that if the summary
table is dropped from the payables database, the mysum synonym is left

intact. Subsequent attempts to use mysum return the error Table not found.

PUBLIC and PRIVATE Synonyms

If you use the PUBLIC keyword (or no keyword at all), anyone who has access
to the database can use your synonym. If a synonym is public, a user does not
need to know the name of the owner of the synonym. Any synonym in a
database that is not ANSI compliant and was created before Version 5.0 of the
database server is a public synonym.

Synonyms are always private. If you use the PUBLIC or PRIVATE keywords,
you receive a syntax error. ¢

If you use the PRIVATE keyword, the synonym can be used only by the owner
of the synonym or if the owner’s name is specified explicitly with the
synonym. More than one private synonym with the same name can exist in
the same database. However, a different user must own each synonym with
that name.

SQL Statements 1-205

CREATE SYNONYM

1-206

You can own only one synonym with a given name; you cannot create both
private and public synonyms with the same name. For example, the
following code generates an error:

CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

Synonyms with the Same Name

If you own a private synonym, and a public synonym exists with the same
name, when you use the synonym by its unqualified name, the private
synonym is used.

If you use DROP SYNONYM with a synonym, and multiple synonyms exist
with the same name, the private synonym is dropped. If you issue the DROP
SYNONYM statement again, the public synonym is dropped.

Chaining Synonyms

If you create a synonym for a table that is not in the current database, and this
table is dropped, the synonym stays in place. You can create a new synonym
for the dropped table, with the name of the dropped table as the synonym
name, which points to another external or remote table. In this way, you can
move a table to a new location and chain synonyms together so that the
original synonyms remain valid. (You can chain as many as 16 synonyms in
this manner.)

The following steps chain two synonyms together for the customer table,
which will ultimately reside on the zoo database server (the CREATE TABLE
statements are not complete):

1. Inthe stores7 database on the database server that is called training,
issue the following statement:

CREATE TABLE customer (lname CHAR(15)...)
2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores7@training:customer

Informix Guide to SQL: Syntax

CREATE SYNONYM

3. Onthe database server called zoo, issue the following statement:
CREATE TABLE customer (Tname CHAR(15)...)

4. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE SYNONYM customer FOR stores/@zoo:customer

The synonym cust on the accntg database server now points to the customer
table on the zoo database server.

The following steps show an example of chaining two synonyms together
and changing the table to which a synonym points:

1. Onthe database server called training, issue the following
statement:

CREATE TABLE customer (Iname CHAR(15)...)
2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores7@training:customer

3. Onthe database server called training, issue the following
statement:

DROP TABLE customer
CREATE TABLE customer (lastname CHAR(20)...)

The synonym cust on the accntg database server now points to a new version
of the customer table on the training database server.

References
See the DROP SYNONYM statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of synonyms in
Chapter 5.

SQL Statements 1-207

CREATE TABLE

CREATE TABLE

Use the CREATE TABLE statement to create a new table in the current
database, place data-integrity constraints on its columns or on a combination
of its columns, designate the size of its initial and subsequent extents, and
specify how to lock each table. You can also use this statement to fragment
tables into separate dbspaces.

You can use CREATE TABLE to create untyped tables (traditional relational-
database tables), typed tables (object-relational tables), typed tables with
inheritance, or temporary tables.

Syntax

E/C
SQLE
Untyped Table

CREATE TABLE — table name Clause
\ i p. 1-210 4 '

Typed Table Clause
p. 1-210 SR

Typed Table with
Inheritance Clause
| DB | — b 1-210 I

Untyped Table
~— TEMP TABLE — table name ——— Clause I
p. 1-210

Element Purpose Restrictions Syntax

table name The name assigned to the table. Name must be unique withina Identifier, p. 1-962
Every table must have a name. database. It must not be used for
any other tables or for any views
or synonyms within the current
database.

—

1-208 Informix Guide to SQL: Syntax

CREATE TABLE

Some of the syntax diagrams in this chapter include branches that are valid
only for certain types of tables. The diagrams use the following icons to
indicate which types of tables can use the limited branches:

unT Actions in this branch can appear in (permanent) untyped
tables.

Typ Actions in this branch can appear in typed tables.

Tmp Actions in this branch can appear in temporary (untyped)
tables.

Syntax Clauses for Typed and Untyped Tables

The following syntax diagrams show the syntax for both typed and untyped
tables. Typed tables and inheritance are new features introduced by
INFORMIX-Universal Server. Earlier releases of Informix products support
only untyped tables, both permanent and temporary.

SQL Statements 1-209

CREATE TABLE

Untyped Table Clause
(both permanent and
temporary tables)

((Cotumn)) Options
. 1-252
> Definition P >
Clause -
. 1-219
P Table-Level
Constraints
p. 1-228
Typed Table
Clause
o row Options
name ,
Table-Level
Constraints
p. 1-228
Typed Table with Inheritance
Clause
OF row N
—»—1ype— e — () —{ Options | — UNDER —————————p»
name p. 1-252
—_—

Table-Level
Constraints
p. 1-228

1-210 Informix Guide to SQL: Syntax

CREATE TABLE

Purpose Restrictions Syntax
row type name The name of row type used as This type must already existand Data type, p.1-855
this table’s type must be a named row type. Identifier, p. 1-962

Informix Guide to
SQL: Reference:
Chapter 3,
“Environment
Variables”

supertable name The name of the parent table of This parent table must already
which this table is a child. exist as a typed table.

A type hierarchy must already
exist in which the named row
type of this table is a subtype of
the named row type of the
supertable.

Usage

When you create a table, the table and columns within that table must have
unique names and every table column must have a data type associated with
it. However, although temporary table names must be different from existing
table, view, or synonym names in the current database, they need not be
different from temporary table names used by other users.

In an ANSI-compliant database, the combination owner.tablename must be
unique within the database. ¢

In DB-Access, using the CREATE TABLE statement outside the CREATE
SCHEMA statement generates warnings if you set DBANSIWARN. ¢

The CREATE TABLE statement generates warnings if you use the -ansi flag or
set DBANSIWARN environment variable. ¢

For information about DBANSIWARN environment variable, refer to the
Informix Guide to SQL: Reference.

SQL Statements 1-211

CREATE TABLE

Typed and Untyped Tables

Untyped tables are the only kinds of tables that are available in Informix
products prior to INFORMIX-Universal Server. Typed tables use named row
types. For a detailed discussion of row types and typed and untyped tables,
refer to Chapter 10 of the Informix Guide to SQL: Tutorial.

Important: Informix recommends that you use the BLOB or CLOB data types instead
of the TEXT or BYTE data types when you create a typed table that contains columns
for large objects. For backward compatibility, you can create a named row type that
contains TEXT or BYTE fields and use that type to recreate an existing (untyped)
table as a typed table. However, although you can use a row type that contains BYTE
or TEXT fields to create a typed table, you cannot use such a row type as a column.
You can use a row type that contains CLOB or BLOB fields in both typed tables and
columns.

Typed Tables

A typed table is a table that has a named row type assigned to it. The columns
of a typed table correspond to the fields of the named row type.

For example, suppose you create a named row type, student_t as follows:

CREATE ROW TYPE student_t
(name VARCHAR(30),
average REAL,
birthdate DATETIME YEAR TO DAY)

If a table is assigned the type student t, the table is a typed table whose
columns are of the same name and data type (and in the same order) as the
fields of the type student t.

The following CREATE TABLE statement creates a typed table named
students whose type is student_t:

CREATE TABLE students OF TYPE student_t
The students table has the following columns:

name VARCHAR(30)
average REAL
birthdate DATETIME

1-212 Informix Guide to SQL: Syntax

CREATE TABLE

When you create a typed table, the columns of the table are not named in the
CREATE TABLE statement. Instead, the columns are specified when you create
the row type. You cannot add additional columns to a typed table.

Important: Typed tables do not take the default values or null/not null specification
of the row type whose type they adopt.

For more information about row types, refer to the CREATE ROW TYPE
statement on page 1-194.

Typed Tables with Inheritance

A typed table can inherit properties from a typed supertable and add new
columns and properties. The table that inherits is a subtable. The subtable
must use a row type that is derived from the row type of the supertable.

Continuing the example shown in “Typed Tables” on page 1-212, the
following statements created a typed table, grad_students, that inherits all of
the columns of the students table and in addition has columns for adviser
and field_of_study:

CREATE ROW TYPE grad_student_t
(adviser CHAR(25),
field_of_study CHAR(40))
UNDER student_t;

CREATE TABLE grad_students OF TYPE grad_student_t
UNDER students;

When you create a typed table as a subtable, the subtable inherits the
following properties:

= All columns in the immediate supertable
= All constraint definitions defined on its supertable

= Fragmentation. If a subtable does not define fragments, and if its
supertable has fragments defined, then the subtable inherits the
fragments of the supertable.

= All indexes defined by its supertable

» Referential integrity

SQL Statements 1-213

CREATE TABLE

= The access method
= The WITH options
= The storage option
= All triggers defined on the supertable

Tip: Any heritable attributes that are added to a supertable after subtables have been
created will automatically be inherited by existing subtables. It is not necessary to
add all heritable attributes to a supertable before creating its subtables.

Inheritance occurs in one direction only—from supertable to subtable.
Properties of subtables are not inherited by supertables.

Constraints, indices, and triggers are recorded in the system catalog for the
supertable, but not for subtables that inherit them. Fragmentation infor-
mation is recorded for both supertables and subtables.

No two tables in a table hierarchy can have the same type. For example, the
final line of the following code sample is illegal because the tables tab2 and
tab3 cannot have the same row type (rowtype2):

create row type rowtypel (...);

create row type rowtype2 (...) under rowtypel;

create table tabl of type rowtypel;

create table tab2 of type rowtype2 under tabl;
IT7egal --> <create table tab3 of type rowtype2 under tabl;

For more information about inheritance, refer to Chapter 10 of the Informix
Guide to SQL: Tutorial.

Untyped Tables

Tables that have not been assigned a named row type are untyped tables.
Untyped tables, both permanent and temporary, are traditional relational-
database tables. For simplicity, this discussion refers to permanent untyped
tables as untyped tables and temporary untyped tables as temporary tables.

The following CREATE TABLE statement creates an untyped table:

CREATE TABLE students
(name VARCHAR(30),
average REAL,
birthdate DATETIME YEAR TO DAY)

1-214 Informix Guide to SQL: Syntax

CREATE TABLE

Temporary Tables

Temporary tables are always untyped tables. The following CREATE TABLE
statement creates a temporary table:

CREATE TEMP TABLE transient
(coll integer,
col? char(20))

After a temporary table is created, you can build indexes on the table.
However, you are the only user who can see the temporary table.

Temporary tables that you create with the CREATE TEMP TABLE statement are
explicit temporary tables. You can also create explicit temporary tables with
the SELECT ... INTO TEMP statement. Temporary tables that the database
server creates as a part of processing are called implicit temporary tables.
Implicit temporary tables are discussed in the INFORMIX-Universal Server
Administrator’s Guide.

When an application creates an explicit temporary table, the table exists until
one of the following situations occur:

= The application terminates.

= The application closes the database where the table was created. In
this case, the table is dropped only if the database does transaction
logging, and the temporary table was not created with the WITH NO
LOG option.

= The application closes the database where the table was created and
opens a database in a different database server.

When any of these events occur, the temporary table is deleted.

You cannot use the INFO statement and the Info Menu Option with
temporary tables. ¢

Temporary table names must be different from existing table, view, or
synonym names in the current database. However, they need not be different
from other temporary table names used by other users.

SQL Statements 1-215

CREATE TABLE

You can specify where temporary tables are created with the CREATE TEMP
TABLE statement, environment variables, and ONCONFIG parameters. If you
do not specify a storage location, the temporary tables are created in the same
dbspace as the database. The database server stores temporary tables in the
following order:

1.

The IN dbspace clause

You can specify the dbspace where you want the temporary table
stored with the IN dbspace clause of the CREATE TABLE statement.

The dbspaces you specify when you fragment temporary tables

Use the FRAGMENT BY clause of the CREATE TABLE statement to
fragment regular and temporary tables.

The DBSPACETEMP environment variable

The DBSPACETEMP environment variable lists dbspaces where
temporary tables can be stored. This list can include standard
dbspaces, temporary dbspaces, or both. If the environment variable
is set, the database server assigns each temporary table to a dbspace
in round-robin sequence.

The ONCONFIG parameter DBSPACETEMP

You can specify a location for temporary tables with the ONCONFIG
parameter DBSPACETEMP.

Tip: Use the PUT clause to specify a separate storage area for smart large objects.

For additional information about the DBSPACETEMP environment variable,

see Chapter 3 in the Informix Guide to SQL: Reference. For additional infor-

mation about the ONCONFIG parameter DBSPACETEMP, see the
INFORMIX-Universal Server Administrator’s Guide.

1-216 Informix Guide to SQL: Syntax

Differences Among Tables

CREATE TABLE

Tables created with the CREATE TABLE statement are similar in most ways,
but have a few notable differences. The following table summarizes the major

differences among tables.

Table

Description

Characteristics

Untyped table

Temporary Table

Typed table

Table with
Inheritance

A permanent database table
See “Untyped Tables” on

page 1-214.

A table that exists only until the
application either terminates or,

under certain conditions, closes
the database.

See “Temporary Tables” on
page 1-215.
A permanent database table

See “Typed Tables” on page 1-212.

A permanent database table that is
a subtable in an inheritance
hierarchy.

See “Typed Tables with
Inheritance” on page 1-213.

Privileges on Tables

Allows column-level constraints as well as table-
level constraints.

Allows column-level constraints as well as table-
level constraints.

Can use the DBSPACETEMP environment variable
or the DBSPACETEMP configuration parameter to
specify storage location.

Allows only table-level constraints.

Does not allow SERIAL, and SERIALS data types.
Does not allow the WITH ROWIDS clause.

Both subtable and supertable must be typed, and

their types must be named row types. The type of
the subtable must be a subtype directly under the
type of the supertable.

Allows only table-level constraints.

Does not allow SERIAL, and SERIALS data types.
Does not allow the WITH ROWIDS clause.

The privileges on a table describe both who can access the information in the
table and who can create new tables. For information about the privileges
required for creating a table, refer to the GRANT statement on page 1-458. For
additional information about privileges, refer to Chapter 11, “Granting and
Limiting Access to Your Database,” in the Informix Guide to SQL: Tutorial.

SQL Statements 1-217

CREATE TABLE

ANSI

In an ANSI-compliant database, no default table-level privileges exist. You
must grant these privileges explicitly. ¢

When set to yes, the environment variable NODEFDAC prevents default
privileges on a new table in a database that is not ANSI compliant from being
granted to PUBLIC. For information about preventing privileges from being
granted to PUBLIC, see the NODEFDAC environment variable in the Informix
Guide to SQL: Reference.

System Catalog Information

When you create a table, the database server adds basic information about
the table to the systables system catalog table and column information to
syscolumns table. The sysblobs table contains information about the
location of dbspaces and simple large objects. The syschunks table in the
sysmaster database contains information about the location of smart large
objects.

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and sysxt-
dtypeauth tables contain information about the privileges required for
various CREATE TABLE options. The systables, sysxtdtypes, and sysinherits
system catalog tables provide information about table types.

For information about the system catalog tables, refer to the Informix Guide to
SQL.: Reference. For information about sysmaster database, refer to the
INFORMIX-Universal Server Administrator’s Guide.

1-218 Informix Guide to SQL: Syntax

CREATE TABLE

Column Definition Clause

Column
Definition
Clause
—p———Column_Ipata Type >
S 1 BN S\ S
DEFAULT Column-Level
Clause Constraint
p. 1-220 Definition
p. 1-227

Element Purpose Restrictions Syntax
columnname The name of a column in the Name must be unique withina Identifier, p. 1-962
permanent table table, but you can use the same

names in different tables in the
same database.

Use the column definition portion of the CREATE TABLE statement to list the
name, data type, default values, and constraints of a single column of an
untyped table (permanent or temporary) as well as to specify constraints on
the column.

The Untyped Table clause on page 1-210 refers to the Column Definition
Clause.

SQL Statements 1-219

CREATE TABLE

DEFAULT Clause
DEFAULT
Clause
—pp————— DEFAULT ~ literal e .
\- NULL ——]
N USER Y
p. 1-890
N—[CURRENT /
p. 1-892 \ /
DATETIME
Field Qualifier
p. 1-874
N\ TODAY Y
p. 1-891
N SITENAME Y
p. 1-890
[DBSERVERNAME }——“
p. 1-890
Element Purpose Restrictions Syntax
literal A literal term that defines alpha- Term must be appropriate type Expression, p. 1-876

betic or numeric constant for the column. See “Literal

characters to be used as the Terms as Default Values” on

default value for the column page 1-221.

1-220

The default value is inserted in the column when an explicit value is not
specified. If a default is not specified, and the column allows nulls, the default
is NULL.

The column definition clause on page 1-219 refers to DEFAULT clause.

Important: If you use a named row type as one of the columns in an untyped table,
the table does not adopt any constraints of the named row.

Informix Guide to SQL: Syntax

CREATE TABLE

Literal Terms as Default Values

You can designate literal terms as default values. A literal term is a string of
character or numeric constant characters that you define. To use a literal term
as a default value, you must adhere to the following rules.

Use a Literal With Columns of Data Type

INTEGER INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
SMALLFLOAT, INT8

DECIMAL DECIMAL, MONEY, FLOAT, SMALLFLOAT

CHARACTER CHAR, VARCHAR, NCHAR, NVARCHAR,
CHARACTER VARYING, DATE

INTERVAL INTERVAL

DATETIME DATETIME

CHARACTER Opaque data types

Characters must be enclosed in quotation marks. Date literals must be of the
format specified with the DBDATE environment variable. If DBDATE is not
set, the format mm/dd/yyyy is assumed.

Opague data types support only string literals for default values. The default
value must be specified at the column level and not at the table level.

For information on using a literal INTERVAL, refer to the Literal INTERVAL
segment on page 1-994. For more information on using a literal DATETIME,
refer to the Literal DATETIME segment on page 1-991.

NULL as the Default Value

If you do not indicate a default value for a column, the default is NULL unless
you place a not null constraint on the column. In this case, no default value
exists for the column.

If you designate NULL as the default value for a column, you cannot specify
a not null constraint as part of the column definition.

If the column is TEXT or BYTE data type, you can designate only NULL as the
default value.

SQL Statements 1-221

CREATE TABLE

Data Type Requirements for Certain Columns

The following table indicates the data type requirements for columns that
specify the CURRENT, DBSERVERNAME, SITENAME, TODAY, or USER
functions as the default value.

Function Name Data Type Requirement
CURRENT DATETIME column with matching qualifier
DBSERVERNAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER

VARYING column at least 18 characters long

SITENAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

TODAY DATE column

USER CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 8 characters long

Limitations on Default Values
You cannot designate default values for serial columns.

You cannot designate a server-defined function (that is, CURRENT, USER,
TODAY, SITENAME or DBSERVERNAME) as the default value for opaque or
distinct data types.

You cannot designate NULL as a default value for a column that is part of a
primary key.

Examples of Default Values in Column Definitions

The following example creates a table called accounts. In accounts, the
acc_num, acc_type, and acc_descr columns have literal default values. The
acc_id column defaults to the user’s login name.

CREATE TABLE accounts (
acc_num INTEGER DEFAULT 0001,
acc_type CHAR(1) DEFAULT "A",
acc_descr CHAR(20) DEFAULT 'New Account',
acc_id CHAR(8) DEFAULT USER)

1-222 Informix Guide to SQL: Syntax

CREATE TABLE

The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow nulls.

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHARC(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20))

If you place a not null constraint on a column (and no default value is
specified), you must enter a value into this column when you insert a row or
update that column in a row. If you do not enter a value, the database server
returns an error.

Constraints

Putting a constraint on a column is similar to putting an index on a column
(using the CREATE INDEX statement). However, if you use constraints instead
of indexes, you can also implement data-integrity constraints and turn
effective checking off and on. For information on data-integrity constraints,
refer to the Informix Guide to SQL: Tutorial. For information on effective
checking, see the SET statement on page 1-644.

Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

Limits on Constraint Definitions

You can include 16 columns in a list of columns for a table-level constraint.
The total length of all columns in the constraint list cannot exceed 390 bytes.

You cannot place a constraint on a violations or diagnostics table. For further
information on violations and diagnostics tables, see the START VIOLATIONS
TABLE statement on page 1-744.

Restrictions for Unique Constraints

Use the UNIQUE keyword to require that a single column or set of columns
accepts only unique data. You cannot insert duplicate values in a column that
has a unique constraint.

SQL Statements 1-223

CREATE TABLE

When you define a unique constraint (UNIQUE or DISTINCT keywords), a
column cannot appear in the constraint list more than once. You cannot place
a unique constraint on a column on which you have already placed a
primary-key constraint. You cannot place a unique constraint on a BYTE or
TEXT column.

Opague types support a unique constraint only where there is a secondary
access method that supports the uniqueness for that type. The built-in
(default) secondary access method is a generic B-tree, which supports the
equal() function. Therefore, if the definition of the opaque type includes the
equal() function, a column of that opaque type can have a unique constraint.

Restrictions for Primary-Key Constraints

You can define a primary-key constraint (PRIMARY KEY keywords) on only
one column or one set of columns in a table.You cannot define a column or

set of columns as a primary key if you have already defined another column
or set of columns as the primary key.

You cannot define a primary-key constraint on a BYTE or TEXT column.

Opague types support a primary key constraint only where there is a
secondary access method that supports the uniqueness for that type. The
built-in secondary access method is a generic B-tree, which supports the
equal() function. Therefore, if the definition of the opaque type includes the
equal() function, a column of that opaque type can have a primary key
constraint

Restrictions for Referential Constraints

When you specify a referential constraint, the data type of the referencing
column (the column you specify after the FOREIGN KEY keywords) must
match the data type of the referenced column (the column you specify in the
REFERENCES clause). The only exception is that the referencing column must
be INTEGER if the referenced column is SERIAL, or INTS if the column is
SERIALS.

You must have the REFERENCES privilege to create a referential constraint.

1-224 Informix Guide to SQL: Syntax

CREATE TABLE

Adding or Dropping Constraints

After you have used the CREATE TABLE statement to place constraints on a
column or set of columns in an untyped or temporary table, you can use the
ALTER TABLE statement to modify the constraints. You cannot use ALTER
TABLE with a typed table.

Enforcing Primary-Key, Unique, and Referential Constraints

When a primary-key, unique, and referential constraint is placed on a
column, the database server performs the following functions:

= Creates a unique, ascending index for a unique or primary-key
constraint

= Creates a nonunique, ascending index for the columns specified in
the referential constraint

However, if a constraint already was created on the same column or set of
columns, another index is not built for the constraint. Instead, the existing
index is shared by the constraints. If the existing index is non-unique, it is
upgraded to a unique index if a unique or primary-key constraint is placed on
that column.

Because these constraints are enforced through indexes, you cannot create an
index (using the CREATE INDEX statement) for a column that is of the same
type as the constraint placed on that column. For example, if a unique
constraint exists on a column, you can create neither an ascending unique
index for that column nor a duplicate ascending index.

Constraint Names

Whenever you place a data restriction on a column or specify a table-level
constraint, the database server creates a constraint. If you wish, you can
specify a name for the constraint. The name of the constraint must be unique
within the database.

The database server adds a row to the sysconstraints system catalog table for
each constraint. If you do not specify a constraint name, the database server
generates a constraint name using the following template:

<constraint_type><{tabid>_<constraintid>

SQL Statements 1-225

CREATE TABLE

ANSI

In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, c for check constraints, and n for not
null constraints. For example, the constraint name for a unique constraint
might look like this: ul11l_14. If the name conflicts with an existing identifier,
the database server returns an error, and you must then supply a constraint
name.

When you create a constraint of any type, the owner.constraint_name (the
combination of the owner name and constraint name) must be unique within
the database. ¢

In addition, the database server adds a row to the sysindices system catalog
table for each new primary-key, unique, or referential constraint that does not
share an index with an existing constraint. The index name in sysindices is

created with the following format:

[spacel<tabid>_<constraintid>

In this format, tabid and constraintid are values from the tabid and constrid
columns of the systables and sysconstraints system catalog tables, respec-
tively. For example, the index name might be something like this: " 121 13"
(quotes used to show the space).

Using Simple Large Object Types in Constraints

You cannot place a unique, primary-key, or referential constraint on BYTE or
TEXT columns. However, you can check for null or non-null values if you
place a check constraint on a BYTE or TEXT column.

Restrictions on Temporary Table Constraints

The only difference between columns in permanent tables and columns in
temporary tables is in the constraint options, as follows:

= You cannot place referential constraints on columns in a temporary
table. Temporary columns cannot be referenced or referencing
columns.

= You cannot assign a name to a constraint on a temporary-table
column.

= You cannot set the constraint mode on a temporary-table column.
(See “Constraint Mode Definition” on page 1-238 for information on
this option.)

1-226 Informix Guide to SQL: Syntax

CREATE TABLE

Column-Level Constraint Definition

In untyped and temporary tables, you can define constraints at either the
column level or table level. At the column level, you can indicate that the
column has a specific default value or that data entered into the column must
be checked to meet a specific data requirement. Constraints at the column
level cannot refer to multiple columns. In other words, the constraint created
at the column level can apply only to a single column.

Column-Level
Constraint
Definition

. C
\ NOT I)

)

7
NULL
;UNIQUE—/ (1
- DISTINCT —/
w N____PRIMARY___/ Constraint
KEY Mode
Definition
_| cHECK [J p. 1-238
Constraint Clause
Mode |- p. 1-230
Definition
p. 1-238
Column-Level
L REFERENCES|—
Clause
p. 1-232

The following example creates a simple table with two constraints, a
primary-key constraint named num on the acc_num column and a unique
constraint named code on the acc_code column:

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30))

SQL Statements 1-227

CREATE TABLE

The column definition clause on page 1-219 refers to the column-level
constraint definition.

Table-Level Constraint Definition

You can define table-level constraints for both typed and untyped tables.
When you define a constraint at the table level, the constraint can refer to a
single column or to multiple columns. Constraints that refer to a single
column are treated the same way whether they are defined at the column
level or the table level.

Table-Level

Constraint Definition '
(g column 2)

WN'QUE name / / >
\— DISTINCT
N PRIMARY dﬂ
KEY
N CHECK)
Clause
p. 1-230 L
Constraint Mode |/
Definition
U p. 1208

L ’ Table-Level
g) REFERENCES
FOREIGN KEY — (~-column_2) _ L/

name

Clause
p. 1-232

Element Purpose Restrictions Syntax

column name The name of the column or You must observe general Identifier, p. 1-962
columns on which the constraint restrictions that apply regardless
is placed of the type of constraint you are

defining. You must also observe
specific restrictions that depend
on the type of constraint you are
defining. See “Constraints” on
page 1-223.

1-228 Informix Guide to SQL: Syntax

CREATE TABLE

Using the UNIQUE and DISTINCT Keywords

Use the UNIQUE keyword to require that a single column or set of columns
accepts only unique data. You cannot insert duplicate values in a column that
has a unique constraint.

When you define a unique constraint (UNIQUE or DISTINCT keywords), a
column cannot appear in the constraint list more than once. You cannot place
a unique constraint on a column on which you have already placed a
primary-key constraint. You cannot place a unique constraint on a BYTE or
TEXT column.

Each column named in a unique constraint must be a column in the table and
cannot appear in the constraint list more than once.

The following example creates a simple table that has a unique constraint on
one of its columns:

CREATE TABLE accounts
(acc_name CHAR(12),
acc_num SERTAL UNIQUE CONSTRAINT acc_num)

The following example creates a simple table, but includes the constraint as
a table-level constraint instead of a column-level constraint:

CREATE TABLE accounts
(acc_name CHAR(12),
acc_num SERTAL,
UNIQUE (acc_num) CONSTRAINT acc_num)

Using the PRIMARY KEY Keywords

A primary key is a column or set of columns that contains a non-null unique
value for each row in a table. A table can have only one primary key, and a
column that is defined as a primary key cannot also be defined as unique.

In the previous two examples, a unique constraint was placed on the column
acc_name. The following example creates this column as the primary key for
the accounts table:

CREATE TABLE accounts
(acc_name CHAR(12),
acc_num SERTAL,
PRIMARY KEY (acc_num))

SQL Statements 1-229

CREATE TABLE

Using the FOREIGN KEY Keywords

A foreign key joins and establishes dependencies between tables. A foreign
key references a unique or primary key in a table. For every entry in the
foreign-key columns, a matching entry must exist in the unique or primary-
key columns if all foreign-key columns contain non-null values. You cannot
make BYTE or TEXT columns foreign keys.

When you use FOREIGN KEY keywords, you must use the REFERENCES
clause, page 1-232, to complete the foreign key dependencies.

CHECK Clause
CHECK
Clause
—] Condition | —
—> CHECK (Sondior) >

1-230

Check constraints allow you to designate conditions that must be met before
data can be assigned to a column during an INSERT or UPDATE statement. If
a row evaluates to false for any check constraint defined on a table during an
insert or update, the database server returns an error.

Check constraints are defined using search conditions. The search condition
cannot contain subqueries; aggregates; host variables; rowids; the CURRENT,
USER, SITENAME, DBSERVERNAME, or TODAY functions; or stored procedure
calls.

Warning: When you specify a date value in a search condition, make sure to specify
4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on how the database server
interprets the search condition. When you specify a 2-digit year, the DBCENTURY
environment variable can affect how the database server interprets the search condi-
tion, so the check constraint might not work as you intended. See the *“Informix
Guide to SQL: Reference” for more information on the DBCENTURY environment
variable.

The Column-Level Constraint definition on page 1-227 and the Table-Level
Constraint definition on page 1-228 refer to the CHECK clause.

Informix Guide to SQL: Syntax

CREATE TABLE

Defining Check Constraints at the Column Level

If you define a check constraint at the column level, the only column that the
check constraint can check against is the column itself. In other words, the
check constraint cannot depend upon values in other columns of the table.
For example, as the following statement shows, the table my_accounts has
two columns with check constraints:

CREATE TABLE my_accounts (

chk_id SERTAL PRIMARY KEY,
acctl MONEY CHECK (acctl BETWEEN O AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN O AND 99999))

Both acctl and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you wanted to test that acctl had a larger
balance than acct2, you would not be able to create the check constraint at the
column level. To create a constraint that checks values in more than one
column, you must define the constraint at the table level.

Defining Check Constraints at the Table Level

When you defined a check constraint at the table level, each column in the
search condition must be a column in that table. You cannot create a check
constraint for columns across tables. The next example builds the same table
and columns as the previous example. However, the check constraint now
spans two columns in the table.

CREATE TABLE my_accounts (

chk_id SERIAL PRIMARY KEY,
acctl MONEY,
accte MONEY,

CHECK (acctl > acct2))

In this example, the acctl column must be greater than the acct? column, or
the insert or update fails.

SQL Statements 1-231

CREATE TABLE

REFERENCES Clause
Column-Level
REFERENCES Clause
__ table
—®— REFERENCES — 45 L J >
(_ column _) L
name
N ON DELETE
CASCADE
Table-Level
REFERENCES Clause
__ table
—Pp»— REFERENCES name

L=
= e |

-
ON DELETE j

CASCADE

Element Purpose Restrictions Syntax
column name Areferenced column orcolumns You must observe restrictions on Identifier, p. 1-962
in the referenced table the column type and the number
and length of columns. See
“Restrictions on the Column
Name Variable” on page 1-233.
table name The name of the referenced table The referenced table must reside Table Name,

in the same database as the refer- p. 1-1044
encing table.

on page 1-227.

1-232 Informix Guide to SQL: Syntax

The REFERENCES clause appears in the Column-Level Constraint definition

CREATE TABLE

Restrictions on the Column Name Variable

You must observe the following restrictions on the column name variable in
the REFERENCES clause:

» The referenced column must be a unique or primary-key column.

That is, the referenced column must already include a unique or
primary-key constraint.

= The data types of the referencing and referenced columns must be
identical. The only exception is that a referencing column must be
INTEGER if the referenced column is SERIAL or INT8 if the referenced
column is SERIALS.

= You cannot place a referential constraint on a BYTE or TEXT column.

= A column-level REFERENCES clause can include only a single
column name.

= The maximum number of columns in a table-level REFERENCES
clause is 16, and the total length of the columns cannot exceed
390 bytes.

Using the REFERENCES Clause

In a referential relationship, the referenced column is a column or set of
columns within a table that uniquely identifies each row in the table. The
referenced column or set of columns must have a unique or primary-key
constraint.

The referencing column is the column or set of columns that refers to the refer-
enced columns. Unlike a referenced column, the referencing column or set of
columns can contain null and duplicate values. However, every non-null
value in the referencing columns must match a value in the referenced
columns. When a referencing column meets this criteria, it is called a foreign
key.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary
key) and the child is the referencing column (foreign key). The referential
constraint establishes this parent-child relationship.

SQL Statements 1-233

CREATE TABLE

You can use the REFERENCES clause to establish a referential relationship
between two tables or within the same table. The referenced and referencing
tables must be in the same database.

For example, you can have an employee table where the emp_no column
uniquely identifies every employee through an employee number. The
mgr_no column in that table contains the employee number of the manager
who manages that employee. In this case, mgr_no is the foreign key (the
child) that references emp_no, the primary key (the parent).

Using Column-Level REFERENCES Constraints

You can reference only one column when you use the REFERENCES clause at
the column level (that is, when you use the REFERENCES clause with the
“Column-Level Constraint Definition” on page 1-227).

The following example creates two tables, accounts and sub_accounts. A
referential constraint is created between the foreign key, ref_num, in the
sub_accounts table and the primary key, acc_num, in the accounts table.

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20))

The ref_num is not explicitly called a foreign key in the column- definition
syntax. At the column level, the foreign-key designation is applied
automatically.

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default is the primary-key column or
columns. If the referenced table is the same as the referencing table, you must
specify the referenced column.

In the preceding example, you can simply reference the accounts table
without specifying a column. Because acc_num is the primary key of the
accounts table, it becomes the referenced column by default.

1-234 Informix Guide to SQL: Syntax

CREATE TABLE

Using Table-Level REFERENCES Constraints

You can specify multiple columns when you are using the REFERENCES
clause at the table level.

A referential constraint must have a one-to-one relationship between refer-
encing and referenced columns. In other words, if the primary key is a set of
columns, then the foreign key also must be a set of columns that corresponds
to the primary key. The following example creates two tables. The first table
has a multiple-column primary key, and the second table has a referential
constraint that references this key.

CREATE TABLE accounts (
acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts
(acc_num, acc_type))

In this example, the foreign key of the sub_accounts table, ref_num and
ref_type, references the primary key, acc_num and acc_type, in the accounts
table. If, during an insert, you tried to insert a row into the sub_accounts
table whose value for ref_num and ref_type did not exactly correspond to
the values for acc_num and acc_type in an existing row in the accounts table,
the database server would return an error. Likewise, if you attempt to update
sub_accounts with values for ref_num and ref_type that do not correspond
to an equivalent set of values in acc_num and acc_type (from the accounts
table), the database server returns an error.

If you are referencing a primary key in another table, you do not have to state
the primary-key columns in that table explicitly. Referenced tables that do not
specify the referenced columns default to the primary-key columns. You can
rewrite the references section of the previous example as follows:

FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

SQL Statements 1-235

CREATE TABLE

Because acc_num and acc_type is the primary key of the accounts table, and
no other columns are specified, the foreign key, ref_num and ref _type,
references those columns.

Locking Implications

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
done. If you are creating a table in a database with transactions, and you are
using transactions, the lock is released at the end of the transaction.

Using ON DELETE CASCADE

Cascading deletes allow you to specify whether you want rows deleted in the
child table when rows are deleted in the parent table. Unless you specify
cascading deletes, the default prevents you from deleting data in the parent
table if child tables are associated with the parent table. With the ON DELETE
CASCADE clause, when you delete a row in the parent table, any rows
associated with that row (foreign keys) in a child table are also deleted. The
principal advantage to the cascading deletes feature is that it allows you to
reduce the quantity of SQL statements you need to perform delete actions.

For example, the all_candy table contains the candy_num column as a
primary key. The hard_candy table refers to the candy_num column as a
foreign key. The following CREATE TABLE statement creates the hard_candy
table with the cascading-delete clause on the foreign key:

CREATE TABLE all_candy
(candy_num SERIAL PRIMARY KEY,
candy_makerCHAR(25));

CREATE TABLE hard_candy
(candy_num INT,
candy_flavor CHAR(20),
FOREIGN KEY (candy_num) REFERENCES all_candy
ON DELETE CASCADE)

With cascading deletes specified on the child table, in addition to deleting a
candy item from the all_candy table, the delete cascades to the hard_candy
table associated with the candy_num foreign key. If you indicate cascading
deletes, when you delete a row from a parent table, the database server
deletes the associated matching rows from the child table.

1-236 Informix Guide to SQL: Syntax

CREATE TABLE

You specify cascading deletes with the REFERENCES clause on a column-level
or table-level constraint. You need only the References privilege to indicate
cascading deletes. You do not need the Delete privilege to perform cascading
deletes; however, you do need the Delete privilege on tables referenced in the
DELETE statement.

Locking and Logging

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables. You must turn logging on when you
perform the deletes. If logging is turned off in a database, even temporarily,
deletes do not cascade. This restriction applies because if logging is turned
off, you cannot roll back any actions. For example, if a parent row is deleted,
and the system crashes before the child rows are deleted, the database will
have dangling child records, which violates referential integrity. However,
when logging is turned back on, subsequent deletes cascade.

What Happens to Multiple Children Tables

If you have a parent table with two child constraints, one child with
cascading deletes specified and one child without cascading deletes, and you
attempt to delete a row from the parent table that applies to both child tables,
the delete statement fails, and no rows are deleted from either the parent or
child tables.

Restriction on Cascading Deletes

Cascading deletes can be used for most deletes. The only exception is
correlated subqueries. In correlated subqueries, the subquery (or inner
SELECT) is correlated when the value it produces depends on a value
produced by the outer SELECT statement that contains it. If you have imple-
mented cascading deletes, you cannot write deletes that use a child table in
the correlated subquery. You receive an error when you attempt to delete
from a query that contains such a correlated subquery.

See the Informix Guide to SQL: Tutorial for a detailed discussion about
cascading deletes.

SQL Statements 1-237

CREATE TABLE

‘ Constraint Mode Definition

Constraint Mode
Definition

—p /, P
1 DISABLED
CONSTRAINT —| Constraint

Name ENABLED
P FILTERING /

WITHOUT _/|
ERROR

WITH J
ERROR

You can set the object mode of the constraint to the enabled, disabled, or
filtering mode. For a discussion of object modes, see “Terminology for Object
Modes” on page 1-645.

You can use the Constraint Mode Definition option for the following
purposes:
= To assign a name to a column-level or table-level constraint
= Tosetany type of column-level constraint or table-level constraint to
the disabled, enabled, or filtering object modes

The Column-Level Constraint Definition on page 1-227 and the Table-Level
Constraint Definition on page 1-228 refer to the Constraint Mode Definition.

1-238 Informix Guide to SQL: Syntax

CREATE TABLE

Description of Constraint Modes

You can set constraints in the following modes: disabled, enabled, and
filtering. The following list explains these modes and options.

Constraint

Mode Effect

disabled A constraint created in disabled mode is not enforced during insert,
delete, and update operations.

enabled A constraint created in enabled mode is enforced during insert,
delete, and update operations. If a target row causes a violation of
the constraint, the statement fails.

filtering A constraint created in filtering mode is enforced during insert,

delete, and update operations. If a target row causes a violation of
the constraint, the statement continues processing, but the bad row
is written to the violations table associated with the target table.
Diagnostic information about the constraint violation is written to
the diagnostics table associated with the target table.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these options.

Error Option

Effect

WITHOUT When a filtering-mode constraint is violated during an insert,

ERROR delete, or update operation, no integrity-violation error is returned
to the user.

WITH ERROR When a filtering-mode constraint is violated during an insert,

delete, or update operation, an integrity-violation error is returned
to the user.

SQL Statements 1-239

CREATE TABLE

Using Constraint Mode Definitions

You must observe the following rules concerning the use of constraint mode
definitions:

If you do not specify the object mode of a column-level constraint or
table-level constraint explicitly, the default mode is enabled.

If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering-mode constraint, the default error option is WITHOUT
ERROR.

Constraints defined on temporary tables are always in the enabled
mode. You cannot create a constraint on a temporary table in the
disabled or filtering mode, nor can you use the SET statement to
switch the object mode on a temporary table to the disabled or
filtering mode.

You cannot assign a name to a not null constraint on a temporary
table.

You cannot create a constraint on a table that is serving as a violations
or diagnostics table for another table.

Options

The CREATE TABLE options let you specify logging and rowid options,
optional storage locations, and user-defined access methods.

R

f L

Storage Option J 1 Access
(\:/Yagls-'e p. 1-242 Method
p. 1-241 p. 1-252

1-240 Informix Guide to SQL: Syntax

CREATE TABLE

‘ WITH Clause

| WITH Clause |

—p—— WITH (| > -

ROWIDS

LNO LOG

Using WITH ROWIDS

Nonfragmented tables contain a hidden column called the rowid column.
However, fragmented tables do not contain this column. If a table is
fragmented, you can use the WITH ROWIDS clause to add the rowid column
to the table. The database server assigns each row in the rowid column a
unique number that remains stable for the life of the row. The database server
uses an index to find the physical location of the row. After you add the
rowid column, each row contains an additional 4 bytes to store the rowid.

You cannot use the WITH ROWIDS clause with typed tables.

Important: Use the WITH ROWIDS clause only on fragmented tables. In non-
fragmented tables, the rowid column remains unchanged. Informix recommends,
however, that you utilize primary keys as an access method rather than exploiting the
rowid column.

Using WITH NO LOG

You must use the WITH NO LOG keywords on temporary tables created in
temporary dbspaces. Using the WITH NO LOG keywords prevents logging of
temporary tables in databases started with logging.

If you use the WITH NO LOG keywords in a CREATE TABLE statement, and the
database does not use logging, the WITH NO LOG option is ignored.

SQL Statements 1-241

CREATE TABLE

Once you turn off logging on a temporary table, you cannot turn it back on;
a temporary table is, therefore, always logged or never logged.

The following example shows how to prevent logging temporary tables in a
database that uses logging:

CREATE TEMP TABLE tab2 (fname CHAR(15), Tname CHAR(15))
WITH NO LOG

Storage Option

Storage Option

—-EKE

4 VAN g
EXTENT / \ /
IN dbspace P%Tl%ilése Option LOCK
: p. 1-250 (“;llgtlfsi
IN extspace p. 1-251
FRAGMENT
BY Clause
p. 1-244

Element Purpose Restrictions Syntax
dbspace The name of the dbspace in Specified dbspace must already Identifier, p. 1-962
which to store the table. The exist.

default for database tables is the
dbspace in which the current
database resides.

extspace The name of an external space in Specified extspace must already
which to store a virtual table exist.

The storage option allows you to specify where the table is stored and the
locking granularity for the table. If you use the Access Method Option on
page 1-252 to specify an access method, the spaces named must be supported
by that access method.

1-242 Informix Guide to SQL: Syntax

CREATE TABLE

You can specify a dbspace for the table that is different from the storage
location specified for the database, or fragment the table into several
dbspaces. You can also specify an shspace for each smart large object (CLOB
or BLOB) using the PUT clause.

Tip: 1f your table has columns that contain simple large objects (TEXT or BYTE), you
can specify a separate blobspace for each object. For information on storing simple
large objects, refer to “Large-Object Data Types” on page 864.

The following statement creates the foo table. The data for the table is
fragmented into the dbsl and dbs2 dbspaces. However, the PUT clause
assigns the smart large object data in the gamma and delta columns to the
sbl and sb2 shspaces, respectively. The TEXT data in the eps column is
assigned to the blbl blobspace.

create table foo

(alpha INTEGER,

beta VARCHAR(150),
gamma CLOB,

delta BLOB,

eps TEXT IN blbl)

FRAGMENT BY EXPRESSION

alpha <= 5 IN dbsl1,

alpha > 5 IN dbs2

PUT gamma IN (sbl), delta IN (sb2)

The Storage Option appears in the Options diagram on page 1-240.

IN dbspace Clause

The IN dbspace clause allows you to isolate a table. The dbspace that you
specify must already exist. If you do not specify the IN dbspace clause, the
default is the dbspace where the current database resides. Temporary tables
do not have a default dbspace. For further information about storing
temporary tables, see the “Temporary Tables” on page 1-215.

For example, if the stores7 database is in the stockdata dbspace, but you
want the customer data placed in a separate dbspace called custdata, use the
following statements:

CREATE DATABASE stores7 IN stockdata
CREATE TABLE customer
(

customer_num SERIALC(101),
fname CHAR(15),

SQL Statements 1-243

CREATE TABLE

Tname CHAR(15)
company CHAR(20),
addressl CHAR(20),
address?2 CHAR(20),
city CHARC(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)

)
IN custdata EXTENT SIZE 16

For more information about storing your tables in separate dbspaces, see the
INFORMIX-Universal Server Administrator’s Guide.

FRAGMENT BY Clause

The FRAGMENT BY clause allows you to create fragmented tables.
Fragmentation means that groups of rows within a table are stored together
in the same dbspace.

FRAGMENT BY

Clause
—®— FRAGMENT BY j ROUND ROBIN IN — dbspace — fdbspace
(:
EXPRESSION — frag-expression —, L frag-expression :
IN dbspace IN dbspace REMAINDER IN
, remainder
dbspace

Element Purpose Restrictions Syntax
dbspace The dbspace that containsatable You must specify at least two Identifier, p. 1-962
fragment dbspaces. You can specify a

maximum of 2,048 dbspaces.
The dbspaces must exist when
you execute the statement.

(10f2)

1-244 Informix Guide to SQL: Syntax

CREATE TABLE

Element

Purpose

Restrictions

Syntax

frag-expression

remainder
dbspace

An expression that defines a
fragment where a row is to be
stored using a range, hash, or
arbitrary rule

The dbspace that contains table
rows that do not meet the condi-
tions defined in any fragment
expression

If you specify a value for
remainder dbspace, you must
specify at least one fragment
expression. If you do not specify
avalue for remainder dbspace, you
must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or
aggregates are allowed in a
fragment expression.

If you specify two or more
fragment expressions, remainder
dbspace is optional. If you specify
only one fragment expression,
remainder dbspace is required.
The dbspace specified in
remainder dbspace must exist at
the time you execute the
statement.

Expression, p. 1-876,
and Condition,
p. 1-831

Identifier, p. 1-962

(2 of 2)

Use the FRAGMENT BY clause to define the distribution scheme, either round-
robin or expression-based.

In a round-robin distribution scheme, specify at least two dbspaces where
you want the fragments to be placed. As records are inserted into the table,
they are placed in the first available dbspace. The database server balances
the load between the specified dbspaces as you insert records and distributes
the rows in such a way that the fragments always maintain approximately
the same number of rows. In this distribution scheme, the database server
must scan all fragments when it searches for a row.

SQL Statements 1-245

CREATE TABLE

1-246

In an expression-based distribution scheme, each fragment expression in a rule
specifies a dbspace. Each fragment expression within the rule isolates data
and aids the database server in searching for rows. Specify one of the
following rules:

= Rangerule

A range rule specifies fragment expressions that use a range to
specify which rows are placed in a fragment, as the following
example shows:

FRAGMENT BY EXPRESSION

cl < 100 IN dbspl,

cl >= 100 and cl < 200 IN dbsp2,
cl >= 200 IN dbsp3

= Hashrule

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

.FRAGMENT BY EXPRESSION

MOD(id_num, 3) = 0 IN dbspl,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3

= Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num
zip_num = 91120 OR zip_num
REMAINDER IN dbspb

95443 IN dbsp2,
92310 IN dbsp4,

Warning: When you specify a date value in a fragment expression, make sure to
specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the
distribution scheme and can produce unpredictable results. See the “Informix Guide
to SQL: Reference” for more information on the DBCENTURY environment variable.

Informix Guide to SQL: Syntax

CREATE TABLE

PUT Clause

The PUT clause specifies storage information for smart large objects (CLOB
and BLOB columns).

PUT Clause

—>— K3 PUT ¢ ame — N (— spspace —) j)\

L——),

N EXTENT SIZE - kbytes——

N /
NO LOG J
\T HIGH INTEG 7—

MODERATE INTEG

ﬁ KEEP ACCESS TIME 7_/
NO KEEP ACCESS TIME

Element Purpose Restrictions Syntax
columnname The name of the smart-large- Column must be BLOB or CLOB Identifier, p. 1-962
object column to store in the data type.
specified sbspace
kbytes The number of kilobytes to Number must be an integer
allocate for the extent size value.
shspace An area of storage used for The shspace must exist.

smart large objects

SQL Statements 1-247

CREATE TABLE

A smart large object is contained in a single sbspace. The SB_SPACE_NAME
configuration parameter specifies the system default in which smart large
objects are created unless you specify another area.

Important: The PUT clause does not affect the storage of simple large-object data
types (BYTE and TEXT).

The PUT clause appears in the Storage Option on page 1-242.

EXTENT SIZE Option of the PUT Clause

The EXTENT SIZE option of the PUT clause specifies the number of kilobytes
in an smart large-object extent. The EXTENT SIZE should be a multiple of the
sbspace page size. If it is not, Universal Server rounds up the number to the
nearest multiple of the sbspace page size.

If the extent size is not specified, or if no extent of the specified size exists,
Universal Server uses the larger of:

= the size of the write request.
= the smallest extent size for the sbspace.
After eight extension operations for a single smart large object, Universal

Server automatically doubles the extent size for that smart large object, to
avoid having a large number of extents.

LOG and NO LOG Options of the PUT Clause

Use the LOG option of the PUT clause when you want the database server to
follow the logging procedure used with the current database log for the
corresponding smart large object.

Warning: Use of the LOG option can generate large amounts of log traffic and
increase the risk that the logical log fills up.

Instead of full logging, you might turn off logging when you load the smart
large object initially, and then turn logging back on once the smart large
object has been loaded.

1-248 Informix Guide to SQL: Syntax

CREATE TABLE

Use the NO LOG option to turn off logging. If you use NO LOG, you can
restore the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist
either, but that result is not guaranteed.

The NO LOG option is the default logging behavior for smart large objects.

HIGH INTEG and MODERATE INTEG Option

The HIGH INTEG option of the PUT clause provides user data pages that
contain a page header and a page trailer. The database server uses the header
and trailer to detect incomplete writes and data corruption. The HIGH INTEG
option is the default.

Important: After you have specified the HIGH INTEG option, you cannot use the
ALTER TABLE statement to change to MODERATE INTEG.

The MODERATE INTEG option provides a lower level of data integrity but is
faster. It does not produce page headers or trailers on user data pages, so it
preserves the user data alignment on pages. The MODERATE INTEG option is
useful for moving large volumes of data through the server when very high
data integrity is not required. Audio and video applications may benefit from
a MODERATE INTEG option.

KEEP ACCESS TIME and NO KEEP ACCESS TIME Options

The KEEP ACCESS TIME option of the PUT clause tells the database server to
record, in the smart large-object meta data, the system time at which the
corresponding smart large object was last read or written. This capability is
provided for compatibility with the Illustra interface.

When you specify the NO KEEP ACCESS TIME option, the database server
does not track the system time at which the corresponding smart large object
was last read or written. This option provides better performance than the
KEEP ACCESS TIME option.

The NO KEEP ACCESS TIME option is the default.

SQL Statements 1-249

CREATE TABLE

EXTENT Option

EXTENT Option

-
‘__ first __//, ‘__ next __///
EXTENT SIZE — gpytes NEXT SIZE — kpytes

'

Element Purpose Restrictions Syntax
first kbytes The length in kilobytes of the The minimum length is four Expression, p. 1-876
first extent for the table. The times the disk page size on your

default length is eight times the system. For example, if you have
disk page size on your system. a 2-kilobyte page system, the

For example, if you have a minimum length is eight
2-kilobyte page system, the kilobytes. The maximum length
default length is 16 kilobytes. is equal to the chunk size.
next kbytes The length in kilobytes for the ~ The minimum length is four Expression, p. 1-876
subsequent extents. The default times the disk page size on your
length is eight times the disk system. For example, if you have

page size on your system. For a 2-kilobyte page system, the
example, if you have a 2-kilobyte minimum length is
page system, the default length 8 kilobytes.The maximum

is 16 kilobytes. length is equal to the chunk size.
|

See the INFORMIX-Universal Server Performance Guide for a discussion about
calculating extent sizes.

The following example specifies a first extent of 20 kilobytes and allows the
rest of the extents to use the default size:

CREATE TABLE emp_info
(
f_name CHAR(20),
1_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)
EXTENT SIZE 20

1-250 Informix Guide to SQL: Syntax

CREATE TABLE

Revising Extent Sizes for Unloaded Tables

You can revise the CREATE TABLE statements in generated schema files to
revise the extent and next-extent sizes of unloaded tables. See the
INFORMIX-Universal Server Administrator’s Guide for information about
revising extent sizes.

The EXTENT option appears in the Storage Option on page 1-242.

LOCK MODE Clause

LOCK MODE

—pp—— LOCK MODE ﬁ PAGE / -
ROW

The default locking granularity is a page.

Row-level locking provides the highest level of concurrency. However, if you
are using many rows at one time, the lock-management overhead can
become significant. Also, you might exceed the maximum number of locks
available, depending on the configuration of your database-server system.

Page locking allows you to obtain and release one lock on a whole page of
rows. Page locking is especially useful when you know that the rows are
grouped into pages in the same order that you are using to process all the
rows. For example, if you are processing the contents of a table in the same
order as its cluster index, page locking is especially appropriate.

You can change the lock mode of an existing table with the ALTER TABLE
statement.

The Lock Mode clause appears in the Storage Option on page 1-242.

SQL Statements 1-251

CREATE TABLE

Access Method Option

A primary access method is a set of routines that perform all of the operations
needed to make a table available to a server, such as create, drop, insert,

delete, update, and scan. Universal Server provides a built-in primary access
method.

An virtual table is managed outside of the database server but can be
accessed by Universal Server users with SQL statements. Access to an virtual
table requires a user-defined primary access method.

DataBlade Modules can provide other primary access methods to access
virtual tables. When you access a virtual table, the database server calls the
routines associated with that access method rather than the built-in table
routines. For more information on these other primary access methods, refer
to the DataBlade user guides.

Access Method
Option

—p» USING —]

)
Access (
Method

Name
Clause g !)
p. 1-253 (configuration)

keyword L /
= ' configuration

value

1-252 Informix Guide to SQL: Syntax

CREATE TABLE

specified access method name.

configuration ~ Value of the specified configu- Value must be defined by the
value ration keyword. Configuration access method.

values are not required with all

keywords.

You can retrieve a list of configu-
ration values for an access
method from a table descriptor
(mi_am_table_desc) using the
MI_TAB_AMPARAM macro.

Element Purpose Restrictions Syntax

access method ~ Name of the access method to be Access method must already See “Access Method
name used with this table exist. Name Clause”
configuration One of the configuration Keyword must already exist. Keywords can be up
keyword keywords associated with the to 18 bytes in length.

Value must be in
quotation marks.

Values can be up to
236 bytes in length.

The Access Method Option appears in the Options clause on page 1-240.

Access Method Name Clause

Access Method
Name Clause

owner —— .

identifier ——

For example, if there was an access method called textfile, you could specify
that access method in the following Access Method clause:

create table mybook
(...)
using textfile (delimiter=":")

The Access Method Name clause appears in the Access Method Option on

page 1-252.

SQL Statements 1-253

CREATE TABLE

References

See the ALTER TABLE, CREATE INDEX, CREATE DATABASE, DROP TABLE, and
SET statements in this manual. Also see the Condition, Data Type, Identifier,
and Table Name segments.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause. Also see
the discussion of creating a database and tables in the same book.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
extent sizing.

1-254 Informix Guide to SQL: Syntax

CREATE TRIGGER

CREATE TRIGGER

Use the CREATE TRIGGER statement to create a trigger on a table in the
database. A trigger is a database object that automatically sets off a specified
set of SQL statements when a specified event occurs.

f_|

Trigger Object
Modes
p. 1-283

J

Syntax
Trigger
CREATE TRIGGER Name
SQLE p. 1-258
< Table Action
INSERT —ON— name Clause
p. 1-1044 p. 1-261
Insert Action
REFERENCING || Clause
Clause Referencing
p. 1-264 p. 1-267
Table Action
\— DELETE —ON— Name Clause
p. 1-1044 p. 1-261
Delete Action
REFERENCING || Clause
Clause Referencing
p. 1-265 p. 1-267
UPDATE Table Action
~ Clause [ON— Name Clause
p. 1-259 p. 1-1044 p. 1-261
Update Action
REFERENCING || Clause
Clause Referencing
p. 1-266 p. 1-267

—~

SQL Statements

1-255

CREATE TRIGGER

ESQL

Usage

You must be either the owner of the table or have DBA status to create a
trigger on a table.

You can use roles with triggers. Role-related statements (CREATE ROLE,
DROP ROLE, and SET ROLE) and SET SESSION AUTHORIZATION statements
can be triggered inside a trigger. Privileges that a user has acquired through
enabling a role or through a SET SESSION AUTHORIZATION statement are not
relinquished when a trigger is executed.

You can define a trigger with a stand-alone CREATE TRIGGER statement.

You can define a trigger as part of a schema by placing the CREATE TRIGGER
statement inside a CREATE SCHEMA statement. ¢

You can create a trigger only on a table in the current database. You cannot
create a trigger on a temporary table, a view, or a system catalog table.

You cannot create a trigger inside a stored procedure if the procedure is called
inside a data manipulation statement. For example, you cannot create a
trigger inside the stored procedure sp_items in the following INSERT
statement:

INSERT INTO items EXECUTE PROCEDURE sp_items

See “Data Manipulation Statements” on page 1-15 for a list of data
manipulation statements.

If you are embedding the CREATE TRIGGER statement in an ESQL/C
program, you cannot use a host variable in the trigger specification. ¢

You cannot use a stored procedure variable in a CREATE TRIGGER statement.

Trigger Event

The trigger event specifies the type of statement that activates a trigger. The
trigger event can be an INSERT, DELETE, or UPDATE statement. Each trigger
can have only one trigger event. The occurrence of the trigger event is the
triggering statement.

1-256 Informix Guide to SQL: Syntax

CREATE TRIGGER

For each table, you can define only one trigger that is activated by an INSERT
statement and only one trigger that is activated by a DELETE statement. For
each table, you can define multiple triggers that are activated by UPDATE
statements. See “UPDATE Clause” on page 1-259 for more information about
multiple triggers on the same table.

You cannot define a DELETE trigger event on a table with a referential
constraint that specifies ON DELETE CASCADE.

You are responsible for guaranteeing that the triggering statement returns the
same result with and without the triggered actions. See “Action Clause” on
page 1-261 and “Triggered Action List” on page 1-268 for more information
on the behavior of triggered actions.

If Universal Server is the database server, a triggering statement from an
external database server can activate the trigger. As shown in the following
example, an insert trigger on newtab, managed by dbserverl, is activated by
an INSERT statement from dbserver2. The trigger executes as if the insert
originated on dbserverl.

- Trigger on stores/@dbserverl:newtab

CREATE TRIGGER ins_tr INSERT ON newtab
REFERENCING new AS post_ins
FOR EACH ROW(CEXECUTE PROCEDURE nt_pct (post_ins.mc));

- Triggering statement from dbserver?2

INSERT INTO stores/@dbserverl:newtab

SELECT item_num, order_num, quantity, stock_num,
manu_code,

total_price FROM items;

Trigger Events with Cursors

If the triggering statement uses a cursor, the complete trigger is activated
each time the statement executes. For example, if you declare a cursor for a
triggering INSERT statement, each PUT statement executes the complete
trigger. Similarly, if a triggering UPDATE or DELETE statement contains the
clause WHERE CURRENT OF, each update or delete activates the complete
trigger. This behavior is different from what occurs when a triggering
statement does not use a cursor and updates multiple rows. In this case, the
set of triggered actions executes only once. For more information on the
execution of triggered actions, see “Action Clause” on page 1-261.

SQL Statements 1-257

CREATE TRIGGER

Privileges on the Trigger Event

You must have the appropriate Insert, Delete, or Update privilege on the
triggering table to execute the INSERT, DELETE, or UPDATE statement that is
the trigger event. The triggering statement might still fail, however, if you do
not have the privileges necessary to execute one of the SQL statements in the
action clause. When the triggered actions are executed, the database server
checks your privileges for each SQL statement in the trigger definition as if
the statement were being executed independently of the trigger. For infor-
mation on the privileges you need to execute a trigger, see “Privileges to
Execute Triggered Actions” on page 1-277.

Impact of Triggers

The INSERT, DELETE, and UPDATE statements that initiate triggers might
appear to execute slowly because they activate additional SQL statements,
and the user might not know that other actions are occurring.

The execution time for a triggering data manipulation statement depends on
the complexity of the triggered action and whether it initiates other triggers.
Obviously, the elapsed time for the triggering data manipulation statement
increases as the number of cascading triggers increases. For more infor-
mation on triggers that initiate other triggers, see “Cascading Triggers” on
page 1-278.

Trigger Name

Trigger
Name

Identifier

» \ / p. 1-962 >
owner.

Element Purpose Restrictions Syntax
owner The user name of the owner of The specified name must be a Identifier, p. 1-962
the trigger valid user name.

1-258 Informix Guide to SQL: Syntax

CREATE TRIGGER

When you create a trigger, the name of the trigger must be unique within a
database.

When you create a trigger, the owner.name combination (the combination of
the owner name and trigger name) must be unique within a database. ¢

For information about the relationship between the trigger owner’s privi-
leges and the privileges of other users, see “Privileges to Execute Triggered
Actions” on page 1-277.

UPDATE Clause

UPDATE
Clause

—pp»———— UPDATE -
i)
L OF L column name _L/

Element Purpose Restrictions Syntax

column name The name of a column or The specified columns must Identifier, p. 1-962
columnsthat activate the trigger. belong to the table on which you
The default is all the columnsin create the trigger. If you define
the table on which you create the more than one update trigger on
trigger. atable, the column lists of the
triggering statements must be
mutually exclusive.

If the trigger event is an UPDATE statement, the trigger executes when any
column in the triggering column list is updated.

If the triggering UPDATE statement updates more than one of the triggering
columns in a trigger, the trigger executes only once.

SQL Statements 1-259

CREATE TRIGGER

Defining Multiple Update Triggers

If you define more than one update trigger event on a table, the column lists
of the triggers must be mutually exclusive. The following example shows
that trig3 is illegal on the items table because its column list includes
stock_num, which is a triggering column in trigl. Multiple update triggers
on a table cannot include the same columns.

CREATE TRIGGER trigl UPDATE OF item_num, stock_num ON items
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW(CEXECUTE PROCEDURE procl());

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORECEXECUTE PROCEDURE proc2());

-- ITlegal trigger: stock_num occurs in trigl
CREATE TRIGGER trig3 UPDATE OF order_num, stock_num ON items
BEFORE(CEXECUTE PROCEDURE proc3());

When an UPDATE Statement Activates Multiple Triggers

When an UPDATE statement updates multiple columns that have different
triggers, the column numbers of the triggering columns determine the order
of trigger execution. Execution begins with the smallest triggering column
number and proceeds in order to the largest triggering column number. The
following example shows that table taba has four columns (a, b, ¢, d):

CREATE TABLE taba (a int, b int, c int, d int)

Define trigl as an update on columns a and ¢, and define trig2 as an update
on columns b and d, as the following example shows:

CREATE TRIGGER trigl UPDATE OF a, ¢ ON taba
AFTER (UPDATE tabb SET y =y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The triggering statement is shown in the following example:
UPDATE taba SET (b, ¢) = (b + 1, ¢ + 1)

Then trigl for columns a and ¢ executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).

1-260 Informix Guide to SQL: Syntax

CREATE TRIGGER

Action Clause

Action
Clause
Triggered
B — BEFORE — action List 7 >
p. 1-268 \FOR EAcH | Triggered _/\ Triggered /
ROW | Action List AFTER A Action List
p. 1-268 p. 1-268
FOR EACH Triggered
N— ROW —]Action List]
p. 1-268 \ Triggered _/
AFTER — Action List
p. 1-268
\ Triggered J
AFTER Action List
p. 1-268

The action clause defines the characteristics of triggered actions and specifies
the time when these actions occur. You must define at least one triggered
action, using the keywords BEFORE, FOR EACH ROW, or AFTER to indicate
when the action occurs relative to the triggering statement. You can specify
triggered actions for all three options on a single trigger, but you must order
them in the following sequence: BEFORE, FOR EACH ROW, and AFTER. You
cannot follow a FOR EACH ROW triggered action list with a BEFORE triggered
action list. If the first triggered action list is FOR EACH ROW, an AFTER action
list is the only option that can follow it. See “Action Clause Referencing” on
page 1-267 for more information on the action clause when a REFERENCING
clause is present.

BEFORE Actions

The BEFORE triggered action or actions execute once before the triggering
statement executes. If the triggering statement does not process any rows, the
BEFORE triggered actions still execute because the database server does not
yet know whether any row is affected.

SQL Statements 1-261

CREATE TRIGGER

FOR EACH ROW Actions

The FOR EACH ROW triggered action or actions execute once for each row
that the triggering statement affects. The triggered SQL statement executes
after the triggering statement processes each row.

If the triggering statement does not insert, delete, or update any rows, the
FOR EACH ROW triggered actions do not execute.

AFTER Actions

An AFTER triggered action or actions execute once after the action of the
triggering statement is complete. If the triggering statement does not process
any rows, the AFTER triggered actions still execute.

Actions of Multiple Triggers

When an UPDATE statement activates multiple triggers, the triggered actions
merge. Assume that taba has columns a, b, ¢, and d, as the following example
shows:

CREATE TABLE taba (a int, b int, c int, d int)

Next, assume that you define trigl on columns a and ¢, and trig2 on columns
b and d. If both triggers have triggered actions that are executed BEFORE, FOR
EACH ROW, and AFTER, the triggered actions are executed in the following
sequence:

BEFORE action list for trigger (a,)

BEFORE action list for trigger (b, d)

FOR EACH ROW action list for trigger (a, c)

FOR EACH ROW action list for trigger (b, d)

AFTER action list for trigger (a, c)

AFTER action list for trigger (b, d)

© g s~ w b e

The database server treats the triggers as a single trigger, and the triggered
action is the merged-action list. All the rules governing a triggered action
apply to the merged list as one list, and no distinction is made between the
two original triggers.

1-262 Informix Guide to SQL: Syntax

CREATE TRIGGER

Guaranteeing Row-Order Independence

In a FOR EACH ROW triggered-action list, the result might depend on the
order of the rows being processed. You can ensure that the result is
independent of row order by following these suggestions:

= Avoid selecting the triggering table in the FOR EACH ROW section. If
the triggering statement affects multiple rows in the triggering table,
the result of the SELECT statement in the FOR EACH ROW section
varies as each row is processed. This condition also applies to any
cascading triggers. See “Cascading Triggers” on page 1-278.

= Inthe FOR EACH ROW section, avoid updating a table with values
derived from the current row of the triggering table. If the triggered
actions modify any row in the table more than once, the final result
for that row depends on the order in which rows from the triggering
table are processed.

= Avoid modifying a table in the FOR EACH ROW section that is
selected by another triggered statement in the same FOR EACH ROW
section, including any cascading triggered actions. If you modify a
table in this section and refer to it later, the changes to the table might
not be complete when you refer to it. Consequently, the result might
differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations
because doing so would restrict the set of tables from which a triggered
action can select. Furthermore, the result of most triggered actions is
independent of row order. Consequently, you are responsible for ensuring
that the results of the triggered actions are independent of row order.

SQL Statements 1-263

CREATE TRIGGER

INSERT REFERENCING Clause

REFERENCING

INSERT

Clause

—pp»——— REFERENCING NEW \ / correlation name —p»
AS

1-264

Element Purpose Restrictions Syntax
correlation A name that you assign toanew The correlation name must be Identifier, p. 1-962
name column value so that you can unique within the CREATE

refer to it within the triggered TRIGGER statement.
action. The new column value in

the triggering table is the value

of the column after execution of

the triggering statement.

Once you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing” on page 1-267.

To use the correlation name, precede the column name with the correlation
name, followed by a period. For example, if the new correlation name is post,
refer to the new value for the column fname as post.fname.

If the trigger event is an INSERT statement, using the old correlation name as
a qualifier causes an error because no value exists before the row is inserted.
For the rules that govern the use of correlation names, see “Using Correlation
Names in Triggered Actions” on page 1-271.

You can use the INSERT REFERENCING clause only if you define a FOR EACH
ROW triggered action.

Informix Guide to SQL: Syntax

CREATE TRIGGER

The following example illustrates the use of the INSERT REFERENCING
clause. This example inserts a row into backup_tablel for every row that is
inserted into tablel. The values that are inserted into coll and col2 of
backup_tablel are an exact copy of the values that were just inserted into
tablel.

CREATE TABLE tablel (coll INT, col2 INT);
CREATE TABLE backup_tablel (coll INT, col2 INT);
CREATE TRIGGER before_trig
INSERT ON tablel
REFERENCING NEW as new
FOR EACH ROW
(
INSERT INTO backup_tablel (coll, col2)
VALUES (new.coll, new.col2)
)

As the preceding example shows, the advantage of the INSERT
REFERENCING clause is that it allows you to refer to the data values that the
trigger event in your triggered action produces.

DELETE REFERENCING Clause

DELETE
REFERENCING
Clause

correlation name g

—»——— REFERENCING OLD \ /
AS

Element Purpose Restrictions Syntax
correlation A name that you assigntoanold The correlation name must be Identifier, p. 1-962
name column value so that you can unique within the CREATE

refer to it within the triggered TRIGGER statement.
action. The old column value in

the triggering table is the value

of the column before execution

of the triggering statement.

Once you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing” on page 1-267.

SQL Statements 1-265

CREATE TRIGGER

Use the correlation name to refer to an old column value by preceding the
column name with the correlation name and a period (.). For example, if the
old correlation name is pre, refer to the old value for the column fname as
pre.fname.

If the trigger event is a DELETE statement, using the new correlation name as
a qualifier causes an error because the column has no value after the row is
deleted. See “Using Correlation Names in Triggered Actions” on page 1-271
for the rules governing the use of correlation names.

You can use the DELETE REFERENCING clause only if you define a FOR EACH
ROW triggered action.

UPDATE REFERENCING Clause

UPDATE
REFERENCING
Clause

correlation
—pp»—REFERENCING OoLD ﬁ— name
AS
NEW correlation
:A :

name
S

1-266

can refer to it within the
triggered action. The old column
value in the triggering table is
the value of the column before
execution of the triggering
statement. The new column
value in the triggering table is
the value of the column after the

statement executes.

Informix Guide to SQL: Syntax

Element Purpose Restrictions Syntax
correlation A name that you assigntoanold You can specify a correlation Identifier, p. 1-962
name or new column value so that you name for an old column value

only (OLD option), for a new
column value only (NEW
option), or for both the old and
new column values. Each corre-
lation name you specify must be
unique within the CREATE
TRIGGER statement.

CREATE TRIGGER

After you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing”.

Use the correlation name to refer to an old or new column value by preceding
the column name with the correlation name and a period (.). For example, if
the new correlation name is post, you refer to the new value for the column
fname as post.fname.

If the trigger event is an UPDATE statement, you can define both old and new
correlation names to refer to column values before and after the triggering
update. See “Using Correlation Names in Triggered Actions” on page 1-271
for the rules that govern the use of correlation names.

You can use the UPDATE REFERENCING clause only if you define aFOR EACH
ROW triggered action.

Action Clause Referencing

Action
Clause
Referencing

FOR EACH __| Triggered

—»> \ / ROW Action List \ / >
i . 1-268 i
BEFORE - Triggered p AFTER - Triggered

Action List Action List
p. 1-268 p. 1-268

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause,
a DELETE REFERENCING clause, or an UPDATE REFERENCING clause, you
must include a FOR EACH ROW triggered-action list in the action clause. You
can also include BEFORE and AFTER triggered-action lists, but they are
optional. See “Action Clause” on page 1-261 for information on the BEFORE,
FOR EACH ROW, and AFTER triggered-action lists.

SQL Statements 1-267

CREATE TRIGGER

Triggered Action List

Triggered
Action List

L j p. 1-492
WHEN _(_ Condition _)

),

p. 1-831

\J DELETE
Statement
p. 1-324

UPDATE
N Statement L]
p. 1-775

EXECUTE
\J PROCEDURE [/
p. 1-404

1-268 Informix Guide

The triggered action consists of an optional WHEN condition and the action
statements. Objects that are referenced in the triggered action, that is, tables,
columns, and stored procedures, must exist when the CREATE TRIGGER
statement is executed. This rule applies only to objects that are referenced
directly in the trigger definition.

Warning: When you specify a date expression in the WHEN condition or in an
action statement, make sure to specify 4 digits instead of 2 digits for the year. When
you specify a 4-digit year, the DBCENTURY environment variable has no effect on
how the database server interprets the date expression. When you specify a 2-digit
year, the DBCENTURY environment variable can affect how the database server
interprets the date expression, so the triggered action might produce unpredictable
results. See the “Informix Guide to SQL: Reference” for more information on the
DBCENTURY environment variable.

to SQL: Syntax

CREATE TRIGGER

WHEN Condition

The WHEN condition lets you make the triggered action dependent on the
outcome of a test. When you include a WHEN condition in a triggered action,
if the triggered action evaluates to true, the actions in the triggered action list
execute in the order in which they appear. If the WHEN condition evaluates
to false or unknown, the actions in the triggered action list are not executed. If
the triggered action is in a FOR EACH ROW section, its search condition is
evaluated for each row.

For example, the triggered action in the following trigger executes only if the
condition in the WHEN clause is true:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)
(INSERT INTO warn_tab VALUES(pre.stock_num,
pre.order_num, pre.unit_price, post.unit_price,
CURRENT))

A routine that executes inside the WHEN condition carries the same restric-
tions as a routine that is called in a data manipulation statement. See the
Extending INFORMIX-Universal Server: User-Defined Routines manual for
more information about a routine that is called within a data manipulation
statement.

Action Statements

The triggered-action statements can be INSERT, DELETE, UPDATE, or
EXECUTE PROCEDURE statements. If a triggered-action list contains multiple
statements, these statements execute in the order in which they appear in the
list.

SQL Statements 1-269

CREATE TRIGGER

1-270 Informix Guide

Achieving a Consistent Result

To guarantee that the triggering statement returns the same result with and
without the triggered actions, make sure that the triggered actions in the
BEFORE and FOR EACH ROW sections do not modify any table referenced in
the following clauses:

= WHERE clause

= SET clause in the UPDATE statement

s SELECT clause

= EXECUTE PROCEDURE clause in a multiple-row INSERT statement

Using Keywords

If you use the INSERT, DELETE, UPDATE, or EXECUTE keywords as an
identifier in any of the following clauses inside a triggered action list, you
must qualify them by the owner name, the table name, or both:

= FROM clause of a SELECT statement

= INTO clause of the EXECUTE PROCEDURE statement
= GROUPBY clause

= SET clause of the UPDATE statement

You get a syntax error if these keywords are not qualified when you use these
clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table
name—for example, table.update. If both the table name and the column
name are keywords, they must be qualified by the owner name—for
example, owner.insert.update. If the owner name, table name, and column
name are all keywords, the owner name must be in quotes—for example,
‘delete’.insert.update. The only exception is when these keywords are the
first table or column name in the list, and you do not have to qualify them.
For example, delete in the following statement does not need to be qualified
because it is the first column listed in the INTO clause:

CREATE TRIGGER tl UPDATE OF b ON tabl

FOR EACH ROW (EXECUTE PROCEDURE p2()
INTO delete, d)

to SQL: Syntax

CREATE TRIGGER

The following statements show examples in which you must qualify the
column name or the table name:

FROM clause of a SELECT statement

CREATE TRIGGER t1 INSERT ON tabl
BEFORE (INSERT INTO tab2 SELECT * FROM tab3,
'ownerl'.update)

INTO clause of an EXECUTE PROCEDURE statement

CREATE TRIGGER t3 UPDATE OF b ON tabl
FOR EACH ROW (EXECUTE PROCEDURE p2() INTO
d, tabl.delete)

GROUP BY clause of a SELECT statement

CREATE TRIGGER t4 DELETE ON tabl
BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update)

SET clause of an UPDATE statement

CREATE TRIGGER t2 UPDATE OF a ON tabl
BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5)

Using Correlation Names in Triggered Actions

The following rules apply when you use correlation names in triggered
actions:

= You can use the correlation names for the old and new column values
only in statements in the FOR EACH ROW triggered-action list. You
can use the old and new correlation names to qualify any column in
the triggering table in either the WHEN condition or the triggered
SQL statements.

= The old and new correlation names refer to all rows affected by the
triggering statement.

SQL Statements 1-271

CREATE TRIGGER

= You cannot use the correlation name to qualify a column name in the
GROUP BY, the SET, or the COUNT DISTINCT clause.

= The scope of the correlation names is the entire trigger definition.
This scope is statically determined, meaning that it is limited to the
trigger definition; it does not encompass cascading triggers or
columns that are qualified by a table name in a routine that is a
triggered action.

When to Use Correlation Names

In an SQL statement in a FOR EACH ROW triggered action, you must qualify
all references to columns in the triggering table with either the old or new
correlation name, unless the statement is valid independent of the triggered
action.

In other words, if a column name inside a FOR EACH ROW triggered action
list is not qualified by a correlation name, even if it is qualified by the
triggering table name, it is interpreted as if the statement is independent of
the triggered action. No special effort is made to search the definition of the
triggering table for the nonqualified column name.

For example, assume that the following DELETE statement is a triggered
action inside the FOR EACH ROW section of a trigger:

DELETE FROM tabl WHERE col_c = col_c2

For the statement to be valid, both col_c and col_c2 must be columns from
tabl. If col_c2 is intended to be a correlation reference to a column in the
triggering table, it must be qualified by either the old or the new correlation
name. If col_c2is notacolumnintabl and is not qualified by either the old
or new correlation name, you get an error.

1-272 Informix Guide to SQL: Syntax

CREATE TRIGGER

When a column is not qualified by a correlation name, and the statement is
valid independent of the triggered action, the column name refers to the
current value in the database. In the triggered action for trigger t1 in the
following example, mgr in the WHERE clause of the correlated subquery is an
unqualified column from the triggering table. In this case, mgr refers to the
current column value in empsal because the INSERT statement is valid
independent of the triggered action.

CREATE DATABASE dbl;

CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT);

CREATE TABLE biggap (empno INT, salary INT, mgr INT);

CREATE TRIGGER t1 UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <
(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table
refers to the current column value, but only when the triggered statement is
valid independent of the triggered action.

Qualified Versus Unqualified Value

The following table summarizes the value retrieved when you use the
column name qualified by the old correlation name and the column name
qualified by the new correlation name.

Trigger Event old.col new.col
INSERT no value (error) inserted value
UPDATE original value current value (N)

(column updated)

UPDATE original value current value (U)
(column not updated)

DELETE original value no value (error)

SQL Statements 1-273

CREATE TRIGGER

Refer to the following key when you read the table.

Term Meaning

original value is the value before the triggering statement.

current value is the value after the triggering statement.

(N) cannot be changed by triggered action.

V) can be updated by triggered statements; value may be

different from original value because of preceding triggered
actions.

Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Action on the Triggering Table

You cannot reference the triggering table in any triggered SQL statement,
with the following exceptions:

The trigger event is UPDATE and the triggered SQL statement is also
UPDATE, and the columns in both statements, including any
nontriggering columns in the triggering UPDATE, are mutually
exclusive.

For example, assume that the following UPDATE statement, which
updates columns a and b of tab1, is the triggering statement:
UPDATE tabl SET (a, b) = (a + 1, b + 1)

Now consider the triggered actions in the following example. The
first UPDATE statement is a valid triggered action, but the second one
is not because it updates column b again.

UPDATE tabl SET ¢ c+1; -- 0K
UPDATE tabl SET b b + 1;-- ILLEGAL

1-274 Informix Guide to SQL: Syntax

CREATE TRIGGER

s The triggered SQL statement is a SELECT statement. The SELECT
statement can be a triggered statement in the following instances:

o The SELECT statement appears in a subquery in the WHEN clause
or a triggered-action statement.

0 The triggered action is a stored procedure, and the SELECT
statement appears inside the stored procedure.

This rule, which states that a triggered SQL statement cannot reference the
triggering table, with the two noted exceptions, applies recursively to all
cascading triggers, which are considered part of the initial trigger. This
situation means that a cascading trigger cannot update any columns in the
triggering table that were updated by the original triggering statement,
including any nontriggering columns affected by that statement. For
example, assume the following UPDATE statement is the triggering
statement:

UPDATE tabl SET (a, b) = (a + 1, b + 1)

Then in the cascading triggers shown in the following example, trig2 fails at
runtime because it references column b, which is updated by the triggering
UPDATE statement. See “Cascading Triggers” on page 1-278 for more
information about cascading triggers.

CREATE TRIGGER trigl UPDATE OF a ON tabl-- Valid
AFTER (UPDATE tab2 set e = e + 1);

CREATE TRIGGER trig2 UPDATE of e ON tab2-- Invalid
AFTER (UPDATE tabl set b =Db + 1);

SQL Statements 1-275

CREATE TRIGGER

Rules for Procedures

The following rules apply to a procedure that is used as a triggered action;

The routine cannot be a cursory procedure (that is, a procedure that
returns more than one row) in a place where only one row is
expected.

When an EXECUTE PROCEDURE statement is the triggered action,
you can specify the INTO clause only for an UPDATE trigger when the
triggered action occurs in the FOR EACH ROW section. In this case,
the INTO clause can contain only column names from the triggering
table. The following statement illustrates the appropriate use of the
INTO clause:

CREATE TRIGGER upd_totpr UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd NEW AS post_upd

FOR EACH ROW(EXECUTE PROCEDURE
calc_totpr(pre_upd.quantity,

post_upd.quantity, pre_upd.total_price)

INTO total_price)
When the INTO clause appears in the EXECUTE PROCEDURE
statement, the database server updates the columns named there
with the values returned from the routine. The database server
performs the update immediately upon returning from the routine.
See “EXECUTE PROCEDURE” on page 1-404 for more information
about the statement.

You cannot use the old or new correlation name inside the routine. If
you need to use the corresponding values in the procedure, you must
pass them as parameters. The routine should be independent of
triggers, and the old or new correlation name do not have any
meaning outside the trigger.

You cannot use the following statements inside the routine: ALTER
FRAGMENT, ALTER INDEX, ALTER OPTICAL, ALTER TABLE, BEGIN
WORK, COMMIT WORK, CREATE TRIGGER, DELETE, DROP INDEX,
DROP OPTICAL, DROP SYNONYM, DROP TABLE, DROP TRIGGER,
DROP VIEW, INSERT, RENAME COLUMN, RENAME TABLE,
ROLLBACK WORK, SET CONSTRAINTS, and UPDATE.

When you use a procedure as a triggered action, the objects that it references
are not checked until the procedure is executed.

1-276 Informix Guide to SQL: Syntax

CREATE TRIGGER

Privileges to Execute Triggered Actions

If you are not the trigger owner, but the trigger owner’s privileges include the
WITH GRANT OPTION privilege, you inherit the owner’s privileges as well as
the WITH GRANT OPTION privilege for each triggered SQL statement. You
have these privileges in addition to your privileges.

If the triggered action is an SPL or external routine, you must have the
Execute privilege on the routine or the owner of the trigger must have the
Execute privilege and the WITH GRANT OPTION privilege.

While executing the routine, you do not carry the privileges of the trigger
owner; instead you receive the privileges granted with the routine, as
follows:

1. Privileges for a DBA routine

When the routine is registered with the CREATE DBA keywords and
you are granted the Execute privilege on the routine, the database
server automatically grants you temporary DBA privileges while the
routine executes. These DBA privileges are available only when you
are executing the routine.

2. Privileges for a routine without DBA restrictions

If the routine owner has the WITH GRANT OPTION right for the
necessary privileges on the underlying objects, you inherit these
privilege when you are granted the Execute privilege. In this case, all
the nonqualified objects that the Routine references are qualified by
the name of the Routine owner.

If the Routine owner does not have the WITH GRANT OPTION right,
you have your original privileges on the underlying objects when the
Routine executes.

For more information on privileges on routines, see Chapter 14 in the
Informix Guide to SQL: Tutorial.

SQL Statements 1-277

CREATE TRIGGER

Creating a Triggered Action That Anyone Can Use

To create a trigger that is executable by anyone who has the privileges to
execute the triggering statement, you can ask the DBA to create a
DBA-privileged procedure and grant you the Execute privilege with the
WITH GRANT OPTION right. You then use the DBA-privileged procedure as
the triggered action. Anyone can execute the triggered action because the
DBA-privileged procedure carries the WITH GRANT OPTION right. When you
activate the procedure, the database server applies privilege-checking rules
for a DBA. For more information about privileges on stored procedures, see
Chapter 14 of the Informix Guide to SQL: Tutorial.

Cascading Triggers

The database server allows triggers to cascade, meaning that the triggered
actions of one trigger can activate another trigger. The maximum number of
triggers in a cascading sequence is 61; the initial trigger plus a maximum of
60 cascading triggers. When the number of cascading triggers in a series
exceeds the maximum, the database server returns error number -748, as the
following example shows:

Exceeded Timit on maximum number of cascaded triggers.

The following example illustrates a series of cascading triggers that enforce
referential integrity on the manufact, stock, and items tables in the stores7
database. When a manufacturer is deleted from the manufact table, the first
trigger, del_manu, deletes all the items from that manufacturer from the
stock table. Each delete in the stock table activates a second trigger,
del_items, that deletes all the items from that manufacturer from the items
table. Finally, each delete in the items table triggers the stored procedure
log_order, which creates a record of any orders in the orders table that can no
longer be filled.

CREATE TRIGGER del_manu
DELETE ON manufact
REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM stock
WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_stock
DELETE ON stock

REFERENCING OLD AS pre_del

FOR EACH ROW(DELETE FROM items

1-278 Informix Guide to SQL: Syntax

CREATE TRIGGER

WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_items

DELETE ON items

REFERENCING OLD AS pre_del

FOR EACH ROW(EXECUTE PROCEDURE log_order(pre_del.order_num));

When you are not using logging, referential integrity constraints on both the
manufact and stock tables would prohibit the triggers in this example from
executing. When you use INFORMIX-Universal Server with logging, however,
the triggers execute successfully because constraint checking is deferred until
all the triggered actions are complete, including the actions of cascading
triggers. See “Constraint Checking” for more information about how
constraints are handled when triggers execute.

The database server prevents loops of cascading triggers by not allowing you
to modify the triggering table in any cascading triggered action, except an
UPDATE statement, which does not modify any column that the triggering
UPDATE statement updated.

Constraint Checking

When you use logging, INFORMIX-Universal Server defers constraint
checking on the triggering statement until after the statements in the
triggered-action list execute. Universal Server effectively executes a SET
statement (SET CONSTRAINTS ALL DEFERRED) before it executes the
triggering statement. After the triggered action is completed, it effectively
executes another SET statement (SET CONSTRAINTS constr_name IMMEDIATE)
to check the constraints that were deferred. This action allows you to write
triggers so that the triggered action can resolve any constraint violations that
the triggering statement creates. For more information, see the SET statement
on page 1-644.

SQL Statements 1-279

CREATE TRIGGER

1-280 Informix Guide

Consider the following example, in which the table child has constraint r1,
which references the table parent. You define trigger trigl and activate it with
an INSERT statement. In the triggered action, trigl checks to see if parent has
a row with the value of the current cola in child; if not, it inserts it.

CREATE TABLE parent (cola INT PRIMARY KEY);
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT rl1);
CREATE TRIGGER trigl INSERT ON child
REFERENCING NEW AS new
FOR EACH ROW
WHENC(SELECT COUNT (*) FROM parent
WHERE cola = new.cola) = 0)
-- parent row does not exist
(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential
constraint, the row might not exist in the parent table. The database server
does not immediately return this error on a triggering statement. Instead, it
allows the triggered action to resolve the constraint violation by inserting the
corresponding row into the parent table. As the previous example shows,
you can check within the triggered action to see whether the parent row
exists, and if so, bypass the insert.

For a database without logging, Universal Server does not defer constraint
checking on the triggering statement. In this case, it immediately returns an
error if the triggering statement violates a constraint.

Universal Server does not allow the SET statement in a triggered action.
Universal Server checks this restriction when you activate a trigger because
the statement could occur inside a stored procedure.

to SQL: Syntax

CREATE TRIGGER

Preventing Triggers from Overriding Each Other

When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want
the triggered actions to interact, you can split the UPDATE statement into
multiple UPDATE statements, each of which updates an individual column.
As another alternative, you can create a single update trigger for all columns
that require a triggered action. Then, inside the triggered action, you can test
for the column being updated and apply the actions in the desired order. This
approach, however, is different than having the database server apply the
actions of individual triggers, and it has the following disadvantages:

= If the trigger has a BEFORE action, it applies to all columns because
you cannot yet detect whether a column has changed.

= If the triggering UPDATE statement sets a column to the current
value, you cannot detect the update, so the triggered action is
skipped. You might want to execute the triggered action even though
the value of the column has not changed.

Client/Server Environment

In an Universal Server database, the statements inside the triggered action
can affect tables in external databases. The following example shows an
update trigger on dbserverl, which triggers an update to items on
dbserver2:

CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING new AS post

FOR EACH ROW(UPDATE stores/@dbserver2:items
SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc)

SQL Statements 1-281

CREATE TRIGGER

If a statement from an external database server initiates the trigger, however,
and the triggered action affects tables in an external database, the triggered
actions fail. For example, the following combination of triggered action and
triggering statement results in an error when the triggering statement
executes:

- Triggered action from dbserverl to dbserver3:

CREATE TRIGGER upd_nt UPDATE ON newtab

REFERENCING new AS post

FOR EACH ROW(UPDATE stores/@dbserver3:items
SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

- Triggering statement from dbserver?2:

UPDATE stores/@dbserverl:newtab
SET qty = gty * 2 WHERE s_num = 5
AND mc = "ANZ';

Logging and Recovery

You can create triggers for databases, with and without logging. However,
when the database does not have logging, you cannot roll back when the
triggering statement fails. In this case, you are responsible for maintaining
data integrity in the database.

In INFORMIX-Universal Server, if the trigger fails and the database has trans-
actions, all triggered actions and the triggering statement are rolled back
because the triggered actions are an extension of the triggering statement.
The rest of the transaction, however, is not rolled back.

The row action of the triggering statement occurs before the triggered actions
in the FOR EACH ROW section. If the triggered action fails for a database
without logging, the application must restore the row that was changed by
the triggering statement to its previous value.

1-282 Informix Guide to SQL: Syntax

CREATE TRIGGER

When you use a stored procedure as a triggered action, if you terminate the
procedure in an exception-handling section, any actions that modify data
inside that section are rolled back along with the triggering statement. In the
following partial example, when the exception handler traps an error, it
inserts a row into the table logtab:

ON EXCEPTION IN (-201)
INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION

When the RAISE EXCEPTION statement returns the error, however, the
database server rolls back this insert because it is part of the triggered actions.
If the procedure is executed outside a triggered action, the insert is not rolled
back.

The stored procedure that implements a triggered action cannot contain any
BEGIN WORK, COMMIT WORK, or ROLLBACK WORK statements. If the
database has logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction.
In any case, another transaction-related statement cannot appear inside the
stored procedure.

You can use triggers to enforce referential actions that the database server
does not currently support. For any database without logging, you are
responsible for maintaining data integrity when the triggering statement
fails.

Trigger Object Modes

Trigger Object
Modes

— -
E DISABLED i{
ENABLED

The Trigger Object Modes option allows you to create a trigger in either the
enabled or disabled object mode.

SQL Statements 1-283

CREATE TRIGGER

You can create triggers in the following object modes.

Object Mode Effect

disabled When a trigger is created in disabled mode, the database server

does not execute the triggered action when the trigger event (an
insert, delete, or update operation) takes place. In effect, the
database server ignores the trigger even though its catalog
information is maintained.

enabled When a trigger is created in enabled mode, the database server

executes the triggered action when the trigger event (an insert,
delete, or update operation) takes place.

Specifying Object Modes for Triggers

You must observe the following rules when you specify the object mode for
a trigger in the CREATE TRIGGER statement:

If you do not specify the disabled or enabled object modes explicitly,
the default object mode is enabled.

In contrast to unique indexes and constraints of all types, you cannot
set triggers to the filtering object mode because a trigger does not
impose any type of data-integrity requirement on the tables in the
database.

You can use the SET statement to switch the mode of a disabled
trigger to the enabled mode. Once the trigger has been re-enabled,
the database server executes the triggered action whenever the
trigger event takes place. However, the re-enabled trigger does not
perform retroactively. The database server does not attempt to
execute the trigger for rows that were inserted, deleted, or updated
after the trigger was disabled and before it was enabled; therefore, be
cautious about disabling a trigger. If disabling a trigger will
eventually destroy the semantic integrity of the database, do not
disable the trigger in the first place.

You cannot create a trigger on a violations table or a diagnostics
table.

1-284 Informix Guide to SQL: Syntax

CREATE TRIGGER

References

See the DROP TRIGGER, CREATE PROCEDURE, and EXECUTE PROCEDURE
statements in this manual.

In the Informix Guide to SQL: Tutorial, see Chapter 14 for information about
stored procedures.

SQL Statements 1-285

CREATE VIEW

CREATE VIEW

Use the CREATE VIEW statement to create a new view that is based upon
existing tables and views in the database.

Syntax
E/C
View
CREATE VIEW —| Name /_|
p. 1-1047)
g column 2
(name)
OF TYPE —"OWDPe
(SELECT)
AS Statement \ /
subset
é. 1—288) WITH CHECK
OPTION

Element Purpose

Restrictions Syntax

row type name The name of a named row type You must have USAGE privileges Data Type, p. 1-855
that you use to specify the type on the named row type or be its

of a typed view

owner or the DBA. The named
row type must exist before you
can assign it to a view.

column name The name of a column in the See “Naming View Columns”on ldentifier, p. 1-962

view being created

1-286 Informix Guide to SQL: Syntax

page 1-288.

CREATE VIEW

Usage

You can create typed or untyped views. If you omit the OF TYPE clause, the
rows in the view are considered to be untyped and default to an unnamed
row type.

Typed views, like typed tables, are based on a named row type. Each column
in the view corresponds to a field in the named row type.

You can use a view in any SQL statement where you can use a table, except
the following.

ALTER FRAGMENT DROP TABLE
ALTER INDEX DROP TRIGGER
ALTER TABLE LOCK TABLE
CREATE INDEX RECOVER TABLE
CREATE TABLE RENAME TABLE
CREATE TRIGGER UNLOCK TABLE
DROP INDEX

The view behaves like a table that is called view name. It consists of the set of
rows and columns that the SELECT statement returns each time the SELECT
statement is executed by using the view. The view reflects changes to the
underlying tables with one exception. If a SELECT * clause defines the view,
the view has only the columns in the underlying tables at the time the view
is created. New columns that are subsequently added to the underlying
tables with the ALTER TABLE statement do not appear in the view.

The view name must be unique; that is, a view name cannot have the same
name as another database object, such as a table, synonym, or temporary
table.

The view inherits the data types of the columns from the tables from which
they come. Data types of virtual columns are determined from the nature of
the expression.

To create a view, you must have the Select privilege on all columns from
which the view is derived.

SQL Statements 1-287

CREATE VIEW

The SELECT statement is stored in the sysviews system catalog table. When
you subsequently refer to a view in another statement, the database server
performs the defining SELECT statement while it executes the new statement.

You cannot create a view on a temporary table.

If you create a view outside the CREATE SCHEMA statement, you receive
warnings if you use the -ansi flag or set DBANSIWARN. ¢

Subset of a SELECT Allowed in CREATE VIEW

The SELECT statement has the form that is described on page 1-593, but in
CREATE VIEW, it cannot have an ORDER BY clause, INTO TEMP clause, or
UNION operator. Do not use display labels in the select list; display labels are
interpreted as column names.

Naming View Columns

The number of columns that you specify in the column name parameter must
match the number of columns returned by the SELECT statement that defines
the view.

If you do not specify a list of columns, the view inherits the column names of
the underlying tables. In the following example, the view herostock has the
same column names as the ones in the SELECT statement:

CREATE VIEW herostock AS
SELECT stock_num, description, unit_price, unit, unit_descr
FROM stock WHERE manu_code = "HRO'

If the SELECT statement returns an expression, the corresponding column in
the view is called a virtual column. You must provide a name for virtual
columns. You must also provide a column name in cases where the selected
columns have duplicate column names when the table prefixes are stripped.
For example, when both orders.order_num and items.order_num appear in
the SELECT statement, you must provide two separate column names to label
them in the CREATE VIEW statement, as the following example shows:

CREATE VIEW someorders (custnum,ocustnum,newprice) AS
SELECT orders.order_num,items.order_num,
items.total _price*1.5
FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00

1-288 Informix Guide to SQL: Syntax

CREATE VIEW

If you must provide names for some of the columns in a view, then you must
provide names for all the columns; that is, the column list must contain an
entry for every column that appears in the view.

Using a View in the SELECT Statement

You can define a view in terms of other views, but you must abide by the
restrictions on creating views that are listed in Chapter 11 of the Informix
Guide to SQL.: Tutorial. See that manual for further information.

WITH CHECK OPTION Keywords

The WITH CHECK OPTION keywords instruct the database server to ensure
that all modifications that are made through the view to the underlying tables
satisfy the definition of the view.

The following example creates a view that is named palo_alto, which uses all
the information in the customer table for customers in the city of Palo Alto.
The database server checks any modifications made to the customer table
through palo_alto because the WITH CHECK OPTION is specified.

CREATE VIEW palo_alto AS
SELECT * FROM customer
WHERE city = 'Palo Alto'
WITH CHECK OPTION

What do the WITH CHECK OPTION keywords really check and prevent? It is
possible to insert into a view a row that does not satisfy the conditions of the
view (that is, a row that is not visible through the view). It is also possible to
update a row of a view so that it no longer satisfies the conditions of the view.
For example, if the view was created without the WITH CHECK OPTION
keywords, you could insert a row through the view where the city is Los
Altos, or you could update a row through the view by changing the city from
Palo Alto to Los Altos.

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server
to test every inserted or updated row to ensure that it meets the conditions
that are set by the WHERE clause of the view. The database server rejects the
operation with an error if the row does not meet the conditions.

SQL Statements 1-289

CREATE VIEW

However, even if the view was created with the WITH CHECK OPTION
keywords, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the
view definition if it does not appear in the WHERE clause of the SELECT
statement that defines the view.

Updating Through Views

Ifaview isbuilt on asingle table, the view is updatable if the SELECT statement
that defined it did not contain any of the following items:
= Columns in the select list that are aggregate values
s Columns in the select list that use the UNIQUE or DISTINCT keyword
= A GROUP BY clause
= Aderived value for a column, which was created using an
arithmetical expression

In an updatable view, you can update the values in the underlying table by
inserting values into the view.

Important: You cannot update or insert rows in a remote table through views with
check options.

Examples

The following statement creates a view that is based on the person table.
When you create a view without an OF TYPE clause, the view is referred to as
an untyped view.

CREATE VIEW v1 AS SELECT *
FROM person

The following statement creates a typed view that is based on the table
person. To create a typed view, you must include an OF TYPE clause. When
you create a typed view, the named row type that you specify immediately
after the OF TYPE keywords must already exist.

CREATE VIEW v2 OF TYPE person_t AS SELECT *
FROM person

For more information about how to create and use typed views, see
Chapter 11 of the Informix Guide to SQL: Tutorial.

1-290 Informix Guide to SQL: Syntax

CREATE VIEW

References

See the CREATE TABLE, DROP VIEW, GRANT, SELECT, and SET SESSION
AUTHORIZATION statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of views and
security in Chapter 11. Also, see the discussion of named row types in
Chapter 10.

SQL Statements 1-291

DATABASE

DATABASE

Use the DATABASE statement to select an accessible database as the current
database.

ESQL

Syntax
| DB |
SQLE
DATABASE b ;‘,fg,‘z,a: € |
p. 1-852 \ /
EXCLUSIVE
Usage

You can use the DATABASE statement to select any database on your database
server. To select a database on another Universal Server database server,
specify the name of the database server with the database name.

If you specify the name of the current database server or another database
server with the database name, the database server name cannot be
uppercase.

Issuing a DATABASE statement when a database is already open closes the
current database before opening the new one. Closing the current database
releases any cursor resources held by the database server, which invalidates
any cursors you have declared up to that point. If the user identity was
changed through a SET SESSION AUTHORIZATION statement, the original
user name is restored.

The current user (or PUBLIC) must have the Connect privilege on the
database specified in the DATABASE statement. The current user cannot have
the same user name as an existing role in the database.

You cannot include the DATABASE statement in a multistatement PREPARE
operation.

1-292 Informix Guide to SQL: Syntax

DATABASE

You can determine the type of database a user selects by checking the
warning flag after a DATABASE statement in the sqlca structure.

If the database has transactions, the second element of the sqlwarn structure
(sqlca.sglwarn.sqglwarnl) contains a W after the DATABASE statement

executes. ¢
If the database is ANSI compliant, the third element of the sqlwarn structure
(sqlca.sglwarn.sqlwarn2) contains a W after the DATABASE statement
executes. +
If the database is an INFORMIX-Universal Server database, the fourth element

of the sqlwarn structure (sqlca.sqlwarn.sglwarn3) contains a W after the
DATABASE statement executes.

If the database is running in secondary mode, the seventh element of the
sqlwarn structure (sqlca.sqlwarn.sqlwarn6) contains a W after the DATABASE
statement executes. ¢

EXCLUSIVE Keyword

The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others access to the database,
you must execute the CLOSE DATABASE statement and then reopen the
database without the EXCLUSIVE keyword.

The following statement opens the stores7 database on the training database
server in exclusive mode:

DATABASE stores7@training EXCLUSIVE

If another user has already opened the database, exclusive access is denied,
an error is returned, and no database is opened.

References

See the CLOSE DATABASE and CONNECT statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of database design
in Chapter 8 and implementing the data model in Chapter 9.

SQL Statements 1-293

DEALLOCATE COLLECTION

DEALLOCATE COLLECTION

Use the DEALLOCATE DESCRIPTOR statement to release memory for an
INFORMIX-ESQL/C collection variable that was previously allocated with
the ALLOCATE COLLECTION statement.

Syntax

[+

E/IC

DEALLOCATE COLLECTION variable I

nhame

S —

Element Purpose Restrictions Syntax

variable name Variable name that identifiesa Variable must contain the name Name must conform
typed or untyped collection of an ESQL/C collection to language-specific
variable for which to deallocate variable that has already been rules for variable
memory allocated. names.

Usage

The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the ESQL/C collection variable that variable name identifies.
You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation does not occur
automatically until the end of the program.

1-294 Informix Guide to SQL: Syntax

DEALLOCATE COLLECTION

The following example shows how to deallocate resources with the
DEALLOCATE COLLECTION statement for the untyped collection variable,
a_set:

EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;
EXEC SQL END DECLARE SECTION;

ékéc SQL allocate collection :a_set;
ékéc SQL deallocate collection :a_set;

The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an ESQL/C
collection variable only. To deallocate memory for ESQL/C row variables, use the
DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
ESQL/C collection variable, an error results. Once you deallocate a collection
variable, you can use the ALLOCATE COLLECTION to reallocate resources and
you can then reuse a collection variable.

References

See the ALLOCATE COLLECTION and DEALLOCATE ROW statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of collection data
types in Chapter 10. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of complex data types.

SQL Statements 1-295

DEALLOCATE DESCRIPTOR

DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free a system-descriptor
area that was previously allocated with the ALLOCATE DESCRIPTOR

statement.
Syntax
ESQL
DEALLOCATE DESCRIPTOR 'descriptor" }
descriptor /
variable

Element Purpose Restrictions Syntax
descriptor Quoted string that identifiesa System-descriptor area must Quoted String,
system-descriptor area already be allocated. The p. 1-1010
surrounding quotes must be
single.
descriptor Host variable name that System-descriptor area must Name must conform
variable identifies a system-descriptor already be allocated. to language-specific
area rules for variable

names.

Usage

The DEALLOCATE DESCRIPTOR statement frees all the memory that is
associated with the system-descriptor area that descriptor or descriptor variable
identifies. It also frees all the item descriptors (including memory for data
values in the value descriptors).

1-296 Informix Guide to SQL: Syntax

DEALLOCATE DESCRIPTOR

The following examples show the DEALLOCATE DESCRIPTOR statement for
INFORMIX-ESQL/C. The first line shows an embedded-variable name, and
the second line shows a quoted string that identifies the allocated system-
descriptor area.

EXEC SQL deallocate descriptor :descname;
EXEC SQL deallocate descriptor 'descl';

You can reuse a descriptor or descriptor variable after it is deallocated.
Deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error
results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an
sqlda structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

References

See the ALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH, GET
DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of dynamic SQL in
Chapter 5. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of dynamic SQL.

SQL Statements 1-297

DEALLOCATE ROW

DEALLOCATE ROW

Use the DEALLOCATE ROW statement to release memory for an
INFORMIX-ESQL/C row variable that was previously allocated with the
ALLOCATE ROW statement.

Syntax
DEALLOCATE ROW variable }

hame

Element Purpose Restrictions Syntax

variable name Variable name that identifiesa Variable must contain the name Name must conform
typed or untyped row variable of an ESQL/C row variable that to language-specific
for which to deallocate memory has already been allocated. rules for variable

names.

Usage

The DEALLOCATE ROW statement frees all the memory that is associated
with the ESQL/C row variable that variable name identifies. You must
explicitly release memory resources for a row variable with DEALLOCATE
ROW. Otherwise, deallocation does not occur automatically until the end of
the program.

The following example shows how to deallocate resources for the row
variable, a_row, with the DEALLOCATE ROW statement:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate row :a_row;

EXEC SQL deallocate row :a_row;

1-298 Informix Guide to SQL: Syntax

DEALLOCATE ROW

The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped row variables.

Tip: The DEALLOCATE ROW statement deallocates memory for an ESQL/C row
variable only. To deallocate memory for ESQL/C collection variables, use the
DEALLOCATE COLLECTION statement.

If you deallocate a nonexistent row variable or a variable that is not an
ESQL/C row variable, an error results. Once you deallocate a row variable,
you can use the ALLOCATE ROW to reallocate resources, and you can then
reuse a row variable.

References

See the ALLOCATE ROW and DEALLOCATE COLLECTION statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of row types in
Chapter 10. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of complex data types.

SQL Statements 1-299

DECLARE

DECLARE

Use the DECLARE statement to define a cursor, which associates rows with a
SELECT, INSERT, or EXECUTE FUNCTION statement.

Syntax
SELECT with
cursor
DECLARE identifier — CURSOR FOR—] CoIIect_i_c;rgIEerived
p. 1-318
L cursor i
! INSERT with
variable N Collection Derived
Table
. 1-320
- p
INSERT W
N— CURSOR Statement
(subset)
p. 1-312

LWITH

HOLD

SELECT FOR READ ONLY /|
Statement \
(subset) UI'D:[C))AFSI'E

OFQIumn

R name
\—. SCROLL

CURSOR \ / FOR N
WITH SELECT

HOLD N |Statement ¥
p. 1-593

statement id /
statement id

| variable =

EXECUTE

\ FUNCTION Y,

Statement
p. 1-394

1-300 Informix Guide to SQL: Syntax

DECLARE

Element Purpose Restrictions Syntax
column name A column that you can update The specified column mustexist, ldentifier, p. 1-962
through the cursor but it does not have to be in the
select list of the SELECT clause.
cursor id The name that the DECLARE You cannot specify a cursor Identifier, p. 1-962
statement assigns to the cursor name that a previous DECLARE
and that refers to the cursor in statement in the same program
other statements has specified.
cursor variable An embedded variable name Variable mustbe acharacterdata The name must
that holds the value of cursor id type. conform to
language-specific
rules for variable
names.
statement id A statement identifier thatisa The statement id must have Identifier, p. 1-962,
data structure representing the already been specified in a and PREPARE,
text of a prepared SQL statement PREPARE statement in the same p. 1-538
program.
statement id An embedded variable name Variable mustbe acharacterdata The name must
variable that holds the value of statement type. conform to
id language-specific
rules for variable
names.

Usage

A cursor is an identifier that you associate with a group of rows. The
DECLARE statement associates the cursor with one of the following database
objects:

= With an SQL statement, such as SELECT, EXECUTE FUNCTION, or
INSERT

Each of these SQL statements creates a different type of cursor. For
more information, see “Overview of Cursor Types” on page 1-303.

= With the statement identifier (statement id or statement id variable) of a
prepared statement.

You can prepare a SELECT, EXECUTE FUNCTION, or INSERT
statement and associate the prepared statement with a cursor. For
more information, see “Associating a Cursor With a Prepared
Statement” on page 1-316.

SQL Statements 1-301

DECLARE

= With a collection variable in an INFORMIX-ESQL/C program

The name of the collection variable appears in the FROM clause of a
SELECT or the INTO clause of an INSERT. For more information, see
“Associating a Cursor With a Collection Variable” on page 1-317.

The DECLARE statement assigns an identifier to the cursor, specifies its uses,
and directs the preprocessor to allocate storage to hold the cursor. The
DECLARE statement must precede any other statement that refers to the
cursor during the execution of the program.

The amount of available memory in the system limits the number of open
cursors and prepared statements that you can have at one time in one
process. Use FREE statement id or FREE statement id variable to release the
resources that a prepared statement holds; use FREE cursor id or FREE cursor
variable to release resources that a cursor holds.

A program can consist of one or more source-code files. By default, the scope
of a cursor is global to a program, so a cursor declared in one file can be refer-
enced from another file. In a multiple-file program, if you want to limit the
scope of cursors to the files in which they are declared, you must preprocess
all the files with the -local command-line option. See your SQL API product
manual for more information, restrictions, and performance issues when you
preprocess with the -local option.

A host variable used in place of the cursor name or statement identifier must
be a character data type. The following ESQL/C code defines a char host
variable called cursname:

EXEC SQL BEGIN DECLARE SECTION;
char cursname[20];
EXEC SQL END DECLARE SECTION;

Other ESQL/C character data types are also valid to hold cursor names and
statement identifiers.

To declare multiple cursors, use a single statement identifier. For instance, the
following INFORMIX-ESQL/C example does not return an error:

EXEC SQL prepare idl from 'select * from customer';
EXEC SQL declare x cursor for idl;

EXEC SQL declare y scroll cursor for idl;

EXEC SQL declare z cursor with hold for idl;

1-302 Informix Guide to SQL: Syntax

DECLARE

If you include the -ansi compilation flag (or if DBANSIWARN is set),
warnings are generated for statements that use dynamic cursor names or
dynamic statement identifier names and statements that use derived tables.
Some error checking is performed at runtime. The following list indicates the
typical checks:

= lllegal use of cursors (that is, normal cursors used as scroll cursors)

= Use of undeclared cursors

= Bad cursor or statement names (empty)
Checks for multiple declarations of a cursor of the same name are performed
at compile time only if the cursor or statement is an identifier. For example,
the code in the first example below results in a compile error. The code in the

second example does not result in a compile error because it uses a host
variable to hold the cursor name.

Results in error

EXEC SQL declare x cursor for
select * from customer;

EXEC.SOL declare x cursor for
select * from orders;

Runs successfully

EXEC SQL declare x cursor for
select * from customer;

étéoby("x", S);
EXEC SQL declare :s cursor for
select * from customer;

Overview of Cursor Types
With the DECLARE statement, you can declare the following types of cursors:

= A select cursor is a cursor that is associated with a SELECT statement.

= A function cursor is a cursor that is associated with an EXECUTE
FUNCTION statement, which executes routines that return values.

= Aninsert cursor is a cursor that is associated with an INSERT
statement.

SQL Statements 1-303

DECLARE

Any of these cursor types can have cursor characteristics: sequential, scroll,
and hold. These characteristics determine the structure of the cursor. For
more information, see “Cursor Characteristics” on page 1-313. In addition, a
select or function cursor can have a cursor mode: read-only or update. For
more information, see “Cursor Modes” on page 1-306.

The following table summarizes types of cursors that are available.

Cursor Mode Cursor Characteristic
Cursor Type Read-Only Update Sequential Scroll Hold
Select and a o
Function
n] 0 0
0 0
n] 0 0
n] 0
u] 0 0
Insert O
0 0

Tip: A cursor can also be associated with a statement identifier, enabling you to use
a cursor with INSERT, SELECT, or EXECUTE FUNCTION statement that is prepared
dynamically and to use different statements with the same cursor at different times.
In this case, the type of cursor depends on the statement that is prepared at the time
the cursor is opened (see the OPEN statement on page 1-525). For more information,
see “Associating a Cursor With a Prepared Statement” on page 1-316.

The following sections describe each of these cursor types.

1-304 Informix Guide to SQL: Syntax

DECLARE

Select or Function Cursor

When an SQL statement returns more than one group of values to an ESQL/C
program, you must declare a cursor to save the multiple groups, or rows, of
data and to access these rows one at a time. You must associate the following
SQL statements with cursors:

= When you associate a SELECT statement with a cursor, the cursor is
called a select cursor.

A select cursor is a data structure that represents a specific location
within the active set of rows that the SELECT statement retrieved.

= Whenyou associate an EXECUTE FUNCTION statement with a cursor,
the cursor is called a function cursor.

The function cursor represents the columns or values that a user-
defined function (and external function or an SPL function) returns.
Function cursors behave the same as select cursors, which are
enabled as update cursors.

Important: In previous releases of Informix products, the EXECUTE PROCEDURE
statement was used to execute stored procedures that returned values. For backward
compatibility, you can still use EXECUTE PROCEDURE to execute stored procedures
that return a value. However, Informix recommends that you execute new SPL
routines that return values, called SPL functions, with the EXECUTE FUNCTION
statement. For more information on how to use EXECUTE PROCEDURE with
function names, see page 1-404.

When you associate a SELECT or EXECUTE FUNCTION statement with a
cursor, the statement can include an INTO clause. However, if you prepare the
SELECT or EXECUTE FUNCTION statement, you must omit the INTO clause in
the PREPARE statement and use the INTO clause of the FETCH statement to
retrieve the values from the collection cursor.

SQL Statements 1-305

DECLARE

A select or function cursor enables you to scan returned rows of data and to
move data row by row into a set of receiving variables, as the following steps
describe:

1. Use a DECLARE statement to define a cursor and associate the
SELECT statement or the EXECUTE FUNCTION statement with the
cursor.

2. Open the cursor with the OPEN statement. The database server
processes the query until it locates or constructs the first row of the
active set.

3. Retrieve successive rows of data from the cursor with the FETCH
statement.

4. Close the cursor with the CLOSE statement when the active set is no
longer needed.

5. Free the cursor with the FREE statement. The FREE statement releases
the resources that are allocated for a select or function cursor.

Cursor Modes
You can declare a select or function cursor with one of two cursor modes:

= Read-only mode, with the FOR READ ONLY keywords
» Update mode, with the FOR UPDATE keywords

You cannot specify both the FOR UPDATE option and the FOR READ ONLY
option in the same DECLARE statement because these options are mutually
exclusive.

Read-Only Cursor

In a database that is not ANSI compliant, data in a select cursor or function
cursor is read only. That is, you cannot directly update the data that is within
a select or function cursor. Such a cursor is called a read-only cursor. To update
data in a read-only cursor, you must copy the data out of the read-only
cursor, perform the modifications on the copy, and then explicitly update the
row with an UPDATE statement and a WHERE clause to identify the row you
are updating.

1-306 Informix Guide to SQL: Syntax

ANS

DECLARE

In an ANSI-compliant database, you can directly update the data that is
within a select cursor because a select cursor and a function cursor are, by
default, update cursors. (For more information, see “Update Cursor”.) If you
want a select or function cursor to be for read only, you must declare a read-
only cursor with the FOR READ ONLY option of the DECLARE statement. The
FOR READ ONLY keywords state explicitly that a select or function cursor
cannot be used to modify data. The database server can use less stringent
locking for a read-only cursor than for an update cursor.

The following example declares a read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer_ansi
for read only;

The SELECT statement for the cursor must conform to all of the restrictions
for read-only cursors listed in “Subset of the SELECT Statement Associated
with Cursors” on page 1-311. ¢

In a database that is not ANSI compliant, a select cursor and a select cursor
with the FOR READ ONLY option are the same. The only advantage of speci-
fying the FOR READ ONLY keywords explicitly is for better program
documentation. The following example declares a read-only cursor in a non-
ANSI database:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, you can specify the FOR READ ONLY option as the following example
shows:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi
for read only;

Update Cursor

In a database that is not ANSI compliant, you cannot directly update the data
that is within a select cursor or function cursor because these cursors are, by
default, read-only cursors. (For more information, see “Read-Only Cursor”
on page 1-306.) To update data in a select or function cursor, you must declare
an update cursor with the FOR UPDATE option of the DECLARE statement.

SQL Statements 1-307

DECLARE

ANS

The following example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer_notansi
for update;

In an ANSI-compliant database, a select cursor and a select cursor with the
FOR UPDATE option are the same. You can use a select cursor to update or
delete data as long as the cursor was not declared with the FOR READ ONLY
option and it follows the restrictions on update cursors that are described in
“Subset of the SELECT Statement Associated with Cursors” on page 1-311.

The following example declares an update cursor in an ANSI-compliant
database:

EXEC SQL declare x_curs cursor for
select * from customer_ansi;

If you want to make it clear in the program documentation that this cursor is
an update cursor, you can specify the FOR UPDATE option as the following
example shows:

EXEC SQL declare x_curs cursor for
select * from customer_ansi
for update;

The SELECT statement for the cursor must conform to all of the restrictions
for update cursors listed in “Subset of the SELECT Statement Associated
with Cursors” on page 1-311. ¢

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row
by using an UPDATE or DELETE statement with the WHERE CURRENT OF
clause. The words CURRENT OF refer to the row that was most recently
fetched; they take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the
UPDATE statement because the decision to update and the values of the new
data items can be based on the original contents of the row. Your program can
evaluate or manipulate the selected data before it decides whether to update.
The UPDATE statement cannot interrogate the table that is being updated.

1-308 Informix Guide to SQL: Syntax

DECLARE

Locking with an update cursor

Use the FOR UPDATE keywords to notify the database server that updating is
possible and cause it to use more stringent locking than with a select cursor.
You declare an update cursor to let the database server know that the
program might update (or delete) any row that it fetches as part of the
SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable or write lock. Before the program modifies
the row, the row lock is promoted to an exclusive lock.

Although it is possible to declare an update cursor with the WITH HOLD
keywords, the only reason to do so is to break a long series of updates into
smaller transactions. You must fetch and update a particular row in the same
transaction. (For more information on hold cursors, see page 1-315.)

If an operation involves fetching and updating a very large number of rows,
the lock table that the database server maintains can overflow. The usual way
to prevent this overflow is to lock the entire table that is being updated. If this
action is impossible, an alternative is to update through a hold cursor and to
execute COMMIT WORK at frequent intervals. However, you must plan such
an application very carefully because COMMIT WORK releases all locks, even
those that are placed through a hold cursor.

Using FOR UPDATE with a list of columns

When you declare an update cursor, you can limit the update to specific
columns by including the OF keyword and a list of columns.You can modify
only those hamed columns in subsequent UPDATE.. WHERE CURRENT OF
statements. The columns need not be in the select list of the SELECT clause.

The following example declares an update cursor and specifies that this
cursor can update only the fname and Iname columns in the
customer_notansi table:

EXEC SQL declare name_curs cursor for

select * from customer_notansi
for update of fname, Iname;

SQL Statements 1-309

DECLARE

ANS

By default, a select cursor in a database that is ANSI compliant is an update
cursor. Therefore, the FOR UPDATE keywords are optional. However, if you
want an update cursor to be able to modify only some of the columns in a
table, you must specify these columns in the FOR UPDATE option. The
following example declares an update cursor and specifies that this cursor
can update only the fname and Iname columns in the customer_ansi table:

EXEC SQL declare y_curs cursor for
select * from customer_ansi
for update of fname, Iname;

¢

The principal advantage to specifying columns is documentation and
preventing programming errors. (The database server refuses to update any
other columns.) An additional advantage is speed, when the SELECT
statement meets the following criteria:

= The SELECT statement can be processed using an index.

= The columns that are listed are not part of the index that is used to
process the SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server must keep a list of each
row that is updated to ensure that no row is updated twice. When you use
the OF keyword to specify the columns that can be updated, the database
server determines whether to keep the list of updated rows. If the database
server determines that the list is unnecessary, then eliminating the work of
keeping the list results in a performance benefit. If you do not use the OF
keyword, the database server keeps the list of updated rows, although it
might be unnecessary.

This column restriction applies only to UPDATE.. WHERE CURRENT OF state-
ments. The OF column clause has no effect on subsequent DELETE statements
that use a WHERE CURRENT OF clause. (A DELETE statement removes the
contents of all columns.)

1-310 Informix Guide to SQL: Syntax

DECLARE

The following example contains INFORMIX-ESQL/C code that uses an update
cursor with a DELETE statement to delete the current row. Whenever the row
is deleted, the cursor remains between rows. After you delete data, you must
use a FETCH statement to advance the cursor to the next row before you can
refer to the cursor in a DELETE or UPDATE statement.

EXEC SQL declare g_curs cursor for
select * from customer where Tname matches :last_name
for update;

EXEC SQL open qg_curs;
for (;3)
{
EXEC SQL fetch g_curs into :cust_rec;
if (strncmp(SQLSTATE, "00", 2) != 0)
break;

/* Display customer values and prompt for answer */
printf("\n%s %s", cust_rec.fname, cust_rec.lname);
printf("\nDelete this customer? ");

scanf("%s", answer);

if (answer[0] == "y")
EXEC SQL delete from customer where current of g_curs;
if (strncmp(SQLSTATE, "00", 2) != 0)
break;
}
printf("\n");
EXEC SQL close g_curs;

Subset of the SELECT Statement Associated with Cursors

Not all SELECT statements can be associated with an update cursor or a
read-only cursor. If the DECLARE statement includes the FOR UPDATE clause
or the FOR READ ONLY clause, you must observe certain restrictions on the
SELECT statement that is included in the DECLARE statement (either directly
or as a prepared statement).

If the DECLARE statement includes the FOR UPDATE clause, the SELECT
statement must conform to the following restrictions:

= The statement can select data from only one table.

= The statement cannot include any aggregate functions.

= The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, FOR UPDATE, GROUP BY,
INTO TEMP, ORDER BY, UNION, or UNIQUE.

SQL Statements 1-311

DECLARE

If the DECLARE statement includes the FOR READ ONLY clause, the SELECT
statement must conform to the following restrictions:

s The SELECT statement cannot have a FOR READ ONLY clause.
= The SELECT statement cannot have a FOR UPDATE clause.

For a complete description of SELECT syntax and usage, see the SELECT
statement on page 1-593.

Insert Cursor

When you associate an INSERT statement with a cursor, the cursor is called an
insert cursor. An insert cursor is a data structure that represents the rows that
the INSERT statement is to add to the database. The insert cursor simply
inserts rows of data; it cannot be used to fetch data. To create an insert cursor,
you associate a cursor with a restricted form of the INSERT statement. The
INSERT statement must include a VALUES clause; it cannot contain an
embedded SELECT statement.

Create an insert cursor if you want to add multiple rows to the database in an
INSERT operation. An_insert cursor allows bulk insert data to be buffered in
memory and written fo disk when the buffer is full, as the following steps
describe:

1. Use a DECLARE statement to define an insert cursor for the INSERT
statement.

2. Open the cursor with the OPEN statement. The database server
creates the insert buffer in memory and positions the cursor at the
first row of the insert buffer.

3. Put successive rows of data into the insert buffer with the PUT
statement.

4. The database server writes the rows to disk only when the buffer is
full. You can use the CLOSE, FLUSH, or COMMIT WORK statement to
flush the buffer when it is less than full. This topic is discussed
further under the PUT and CLOSE statements.

1-312 Informix Guide to SQL: Syntax

DECLARE

5. Close the cursor with the CLOSE statement when the insert cursor is
no longer needed. You must close an insert cursor to insert any
buffered rows into the database before the program ends. You can
lose data if you do not close the cursor properly.

6. Freethe cursor with the FREE statement. The FREE statement releases
the resources that are allocated for an insert cursor.

An insert cursor increases processing efficiency (compared with embedding
the INSERT statement directly). This process reduces communication
between the program and the database server and also increases the speed of
the insertions.

Cursor Characteristics

Structurally, you can declare a cursor with the following cursor
characteristics:

= Asasequential cursor, which is the default characteristic
= Asascroll cursor, with the SCROLL keyword
= Asa hold cursor, with the WITH HOLD keywords

A select or function cursor can be either a sequential or scroll cursor. Aninsert
cursor can only be a sequential cursor. Select, function, and insert cursors can
optionally be hold cursors. The following sections explain these structural
characteristics.

Sequential Cursor

If you use only the CURSOR keyword in a DECLARE statement, you create a
sequential cursor, which can fetch only the next row in sequence from the
active set. The sequential cursor can read through the active set only once
each time it is opened. If you are using a sequential cursor for a select cursor,
on each execution of the FETCH statement, the database server returns the
contents of the current row and locates the next row in the active set.

SQL Statements 1-313

DECLARE

The following INFORMIX-ESQL/C example creates a read-only sequential
cursor in a database that is not ANSI compliant and an update sequential
cursor in an ANSI-compliant database:

EXEC SQL declare s_cur cursor for
select fname, lname into :st_fname, :st_lname
from orders where customer_num = 114;

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 1-312.) The following example
contains INFORMIX-ESQL/C code that declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no,:manu_code, :descr,:u_price,:unit,:u_desc);

Scroll Cursor

When you specify the SCROLL keyword in a DECLARE statement, you create
a scroll cursor, which can fetch rows of the active set in any sequence. The
following example creates a scroll cursor for a SELECT:

DECLARE sc_cur SCROLL CURSOR FOR
SELECT * FROM orders

You can create scroll cursors for select and function cursors but not for insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.

To implement a scroll cursor, the database server creates a temporary table to
hold the active set. With the active set retained as a table, you can fetch the
first, last, or any intermediate rows as well as fetch rows repeatedly without
having to close and reopen the cursor. See the FETCH statement on

page 1-408 for a discussion of these abilities.

The database server retains the active set for a scroll cursor in a temporary
table until the cursor is closed. On a multiuser system, the rows in the tables
from which the active-set rows were derived might change after a copy is
made in the temporary table. (For information about temporary tables, see
the INFORMIX-Universal Server Administrator’s Guide.) If you use a scroll
cursor within a transaction, you can prevent copied rows from changing
either by setting the isolation level to Repeatable Read or by locking the
entire table in share mode during the transaction. (See the SET ISOLATION
statement on page 1-719 and the LOCK TABLE statement on page 1-522.)

1-314 Informix Guide to SQL: Syntax

DECLARE

Hold Cursor

If you use the WITH HOLD keywords in a DECLARE statement, you create a
hold cursor. A hold cursor allows uninterrupted access to a set of rows across
multiple transactions. Ordinarily, all cursors close at the end of a transaction.
A hold cursor does not close; it remains open after a transaction ends.

You can use the WITH HOLD keywords to declare select and function cursors
sequential and scroll), and insert cursors. These keywords follow the
CURSOR keyword in the DECLARE statement. The following example creates
a sequential hold cursor for a SELECT:

DECLARE h1d_cur CURSOR WITH HOLD FOR
SELECT customer_num, Iname, city FROM customer

You can use a select hold cursor as the following ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one
set of records and a sequential cursor as a detail cursor to point to records that
are located in a different table. The records that the master cursor scans are
the basis for updating the records to which the detail cursor points. The
COMMIT WORK statement at the end of each iteration of the first WHILE loop
leaves the hold cursor ¢_master open but closes the sequential cursor
c_detail and releases all locks. This technique minimizes the resources that
the database server must devote to locks and unfinished transactions, and it
gives other users immediate access to updated rows.

EXEC SQL BEGIN DECLARE SECTION;
int p_custnum,
int save_status;
long p_orddate;

EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from
'select order_date
from orders where customer_num = ? for update';
EXEC SQL declare c_detail cursor for st_1;

EXEC SQL declare c_master cursor with hold for
select customer_num
from customer where city = 'Pittsburgh’;

EXEC SQL open c_master;
if(SQLCODE==0) /* the open worked */
EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while(SQLCODE==0) /* while no errors and not end of pittsburgh customers */
{
EXEC SQL begin work; /* start transaction for customer p_custnum */
EXEC SQL open c_detail using :p_custnum;
if(SQLCODE==0) /* detail open succeeded */
EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while(SQLCODE==0) /* while no errors and not end of orders */

SQL Statements 1-315

DECLARE

{
EXEC SQL update orders set order_date = '08/15/94"'
where current of c_detail;
if(status==0) /* update was ok */
EXEC SQL fetch c_detail into :p_orddate; /* next order */
}
if(SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */
else /* some failure in an update */
{
save_status = SQLCODE; /* save error for loop control */
EXEC SQL rollback work;
SQLCODE = save_status; /* force Toop to end */
}
if(SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */

}
EXEC SQL close c_master;

When you associate a hold cursor with an insert cursor, you can use transac-
tions to break a long series of PUT statements into smaller sets of PUT
statements. Instead of waiting for the PUT statements to fill the buffer and
trigger an automatic write to the database, you can execute a COMMIT WORK
statement to flush the row buffer. If you use a hold cursor, the COMMIT WORK
statement commits the inserted rows but leaves the cursor open for further
inserts. This method can be desirable when you are inserting a large number
of rows, because pending uncommitted work consumes database server
resources.

Use either the CLOSE statement to close the hold cursor explicitly or the
CLOSE DATABASE or DISCONNECT statements to close it implicitly. The
CLOSE DATABASE statement closes all cursors.

Associating a Cursor With a Prepared Statement

The PREPARE statement lets you assemble the text of an SQL statement at
runtime and pass the statement text to the database server for execution. If
you anticipate that a dynamically prepared SELECT statement or EXECUTE
FUNCTION statement that returns values could produce more than one row
of data, the prepared statement must be associated with a cursor. (See the
PREPARE statementon page 1-538 for more information about preparing SQL
statements.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement
text. You declare a cursor for the statement text by associating a cursor with
the statement identifier.

1-316 Informix Guide to SQL: Syntax

DECLARE

You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION statement. You cannot associate a scroll cursor with a prepared
INSERT statement or with a SELECT statement that was prepared to include a
FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be
prepared under the same statement identifier. In this way, it is possible to use
a single cursor with different statements at different times. The cursor must
be redeclared before you use it again.

The following example contains INFORMIX-ESQL/C code that prepares a
SELECT statement and declares a sequential cursor for the prepared
statement text. The statement identifier st_1 is first prepared from a SELECT
statement that returns values; then the cursor c_detail is declared for st_1.

EXEC SQL prepare st_1 from
'select order_date
from orders where customer_num = ?';
EXEC SQL declare c_detail cursor for st_1;

If you want use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you wish to prepare, as the
following INFORMIX-ESQL/C example shows:

EXEC SQL prepare sel_1 from 'select * from customer for update';
EXEC SQL declare sel_curs cursor for sel_1;

Associating a Cursor With a Collection Variable

The DECLARE statement allows you to declare a cursor for an ESQL/C
collection variable. Such a cursor is called a collection cursor. You use a
collection variable to access the elements of a collection (SET, MULTISET, LIST)
column. Use a cursor when you want to access one or more elements in a
collection variable.

Tip: To access only one element of a collection variable, you do not need to declare a
cursor. For information on how to select a single element, see “Selecting From a Col-
lection Variable” on page 1-610. For information on how to insert a single element,
see “Inserting Into a Collection Variable” on page 1-506.

SQL Statements 1-317

DECLARE

You can declare the following types of cursors for a collection variable:

= A select cursor for a collection variable

Include the Collection Derived Table clause with the SELECT
statement that you associate with the cursor.

= Aninsert cursor for a collection variable
Include the Collection Derived Table clause with the INSERT
statement that you associate with the cursor.

The Collection Derived Table clause identifies the collection variable for
which to declare the cursor. For more information on the Collection Derived
Table clause, see page 1-827.

A Select Cursor for a Collection Variable

To declare a select cursor for a collection variable, include the Collection
Derived Table clause with the SELECT statement that you associate with the
cursor. A select cursor allows you to select one or more elements from the
collection variable. The DECLARE for this select cursor has the following
restrictions:

= The select cursor is an update cursor.

The DECLARE statement cannot include the FOR READ ONLY clause
that specifies the read-only cursor mode.

= The select cursor must be a sequential cursor.

The DECLARE statement cannot specify the SCROLL or WITH HOLD
cursor characteristics.

1-318 Informix Guide to SQL: Syntax

DECLARE

The SELECT statement that you associate with the cursor also has some
restrictions:

s The SELECT statement cannot include the following clauses and
options: WHERE, GROUP BY, ORDER BY, HAVING, INTO TEMP, and
WITH REOPTIMIZATION.

= The select list of the SELECT cannot contain expressions.

= The select list must be an asterisk (*) if the collection contains
elements of opaque, distinct, built-in, or other collection data types.

= Column names in the select list must be simple column names.
These columns cannot use the following syntax:

database@server:table.column

When you declare a select cursor for a collection variable, the Collection
Derived Table clause of the SELECT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. For example, the following
DECLARE statement declares a select cursor for a collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_set;
EXEC SQL END DECLARE SECTION;

EXEC SQL declare set_curs cursor for
select * from table(:a_set);

To select the element(s) from the collection variable, use the FETCH statement
with the INTO clause. For more information, see “Fetching From a Collection
Cursor” on page 1-4109.

If you want to modify the elements of the collection variable, declare the
select cursor as an update cursor with the FOR UPDATE keywords. You can
then use the WHERE CURRENT OF clause of the DELETE and UPDATE state-
ments to delete or update elements of the collection. For more information,
see the DELETE and UPDATE statements in this manual.

SQL Statements 1-319

DECLARE

A collection cursor that includes a SELECT statement with the Collection
Derived Table clause allows you to access the elements in a collection
variable. To select elements, follow these steps:

1. Create aclient collection variable in your ESQL/C program.

2. Declare the collection cursor for the SELECT statement with the
DECLARE statement and open this cursor with the OPEN statement.

3. Fetch the element(s) from the collection cursor with the FETCH
statement and the INTO clause.

4. If necessary, perform any updates or deletes on the fetched data and
save the modified collection variable in the collection column.

Once the collection variable contains the correct elements, you can
use the UPDATE statement or the INSERT statement on a table name
to save the contents of the collection variable in a collection column
(SET, MULTISET, or LIST).

5. Close the collection cursor with the CLOSE statement.

For a code example that uses a collection cursor for a SELECT statement, see
“Fetching From a Collection Cursor” on page 1-419. For more information on
how to use ESQL/C collection variables, see the discussion of complex data
types in the INFORMIX-ESQL/C Programmer’s Manual.

An Insert Cursor For a Collection Variable

To declare an insert cursor for a collection variable, include the Collection
Derived Table clause with the INSERT statement that you associate with the
cursor. An insert cursor allows you to insert one or more elements in the
collection. The insert cursor must be a sequential cursor; the DECLARE
statement cannot specify the WITH HOLD cursor characteristic.

1-320 Informix Guide to SQL: Syntax

DECLARE

When you declare an insert cursor for a collection variable, the Collection
Derived Table clause of the INSERT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. However, you can use an input
parameter in the VALUES clause of the INSERT statement. This parameter
indicates that the collection element is to be provided later by the FROM
clause of the PUT statement. For example, the following DECLARE statement
declares an insert cursor for the a_set collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(smallint not null) a_mset;
int an_element;

EXEC SQL END DECLARE SECTION;

EXEC SQL declare mset_curs cursor for
insert into table(:a_mset)
values (?);

EXEC SQL open mset_curs;

while (1)

{

EXEC SQL put mset_curs from :an_element;
=
To insert the element(s) into the collection variable, use the PUT statement

with the FROM clause. For more information, see “Inserting into a Collection
Cursor” on page 1-560.

A collection cursor that includes an INSERT statement with the Collection
Derived Table clause allows you to insert many elements into a collection
variable. To insert elements, follow these steps:

1. Create a client collection variable in your ESQL/C program.

2. Declare the collection cursor for the INSERT statement with the
DECLARE statement and open the cursor with the OPEN statement.

3. Putthe element(s) into the collection cursor with the PUT statement
and the FROM clause.

4. Once the collection variable contains all the elements, you then use
the UPDATE statement or the INSERT statement on a table name to
save the contents of the collection variable in a collection column
(SET, MULTISET, or LIST).

5. Close the collection cursor with the CLOSE statement.

SQL Statements 1-321

DECLARE

For a code example that uses a collection cursor for an INSERT statement, see
“Inserting into a Collection Cursor” on page 1-560. For more information on
how to use ESQL/C collection variables, see the discussion on complex data
types INFORMIX-ESQL/C Programmer’s Manual.

Using Cursors within Transactions

To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins
only when the BEGIN WORK statement is executed.

In ANSI-compliant databases, transactions are always in effect. ¢

The database server enforces the following guidelines for insert and update
cursors. These guidelines ensure that modifications can be committed or
rolled back properly:

= Open an insert or update cursor within a transaction.
= Include PUT and FLUSH statements within one transaction.
= Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update
outside a transaction; however, you should fetch all the rows that pertain to
a given modification and then perform the modification all within a single
transaction. You cannot open and close hold or update cursors outside a
transaction.

The following example produces an error when the database server tries to
execute the UPDATE statement:

Results in error

EXEC SQL declare g_curs cursor for
select customer_num, fname, lname from customer
where Tname matches :Tast_name
for update;
EXEC SQL open qg_curs;
EXEC SQL fetch g_curs into :cust_rec; /* fetch before begin */
EXEC SQL begin work;
EXEC SQL update customer set Tname = 'Smith'
where current of g_curs;
/* error here */
EXEC SQL commit work;

1-322 Informix Guide to SQL: Syntax

DECLARE

The following example does not produce an error when the database server
tries to execute the UPDATE statement:

Runs successfully

EXEC SQL declare g_curs cursor for
select customer_num, fname, Iname from customer
where Tname matches :Tast_name
for update;
EXEC SQL open qg_curs;
EXEC SQL begin work;
EXEC SQL fetch g_curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set Tname = 'Smith'
where current of g_curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until
the cursor is closed or the transaction is committed or rolled back. If you
update a row when no transaction is in effect, the row lock is released when
the modified row is written to disk.

If you update or delete a row outside a transaction, you cannot roll back the
operation.

In a database that uses transactions, you cannot open an insert cursor outside
a transaction unless it was also declared with hold.
References

See the CLOSE, DELETE, EXECUTE FUNCTION, FETCH, FREE, INSERT, OPEN,
PREPARE, PUT, SELECT, and UPDATE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of cursors and data
modification in Chapter 5 and Chapter 6, respectively.

SQL Statements 1-323

DELETE

DELETE

Use the DELETE statement to delete one or more rows from a table, or one or
more elements in an SPL or INFORMIX-ESQL/C collection variable.

Syntax

E/C

Table Conditi
DE%.S&E N S Name WHERE pc.)rill.-l8l301n &l
p. 1-1044
)
|
|/

_ ONLY (| Table
Name

p. 1-1044 G cursor
CURRENT OF name
N View
Name
p. 1-1047
— Synonym
Name
p. 1-1042
G Collection Derived Y,
E/C

Table, p. 1-827 1 j
WHERE CURRENT OF cursor
name

Element Purpose Restrictions Syntax

cursor name The name of the cursor whose The cursor must have been Identifier, p. 1-962
current row or current collection previously declared in an SPL
element will be deleted FOREACH statement or a

DECLARE statement with a FOR
UPDATE clause.

1-324 Informix Guide to SQL: Syntax

E/C

P

DELETE

Usage
Use the DELETE statement to remove either of the following types of objects:

= Arow inatable: asingle row, a group of rows, all rows in a table, or
rows from multiple tables in a table hierarchy

= Anelementin acollection variable ¢

For information on how to delete an element from a collection variable, see
“Deleting from a Collection Variable” on page 1-330. The other sections of
this DELETE statement describe how to remove a row in a table.

If you use the DELETE statement without a WHERE clause, all the rows in the
table are deleted.

If you use the DELETE statement to remove rows of a supertable, rows from
both the supertable and its subtables can be deleted. To delete rows from the
supertable only, you must use the ONLY keyword prior to the table name, as
the following example shows:

DELETE FROM ONLY(super_tab)
WHERE name = "johnson"

Warning: If you use the DELETE statement on a supertable without the ONLY
keyword and without a WHERE clause, all rows of the supertable and its subtables
are deleted.

If you use the DELETE statement outside a transaction in a database that uses
transactions, each DELETE statement that you execute is treated as a single
transaction.

Each row affected by a DELETE statement within a transaction is locked for
the duration of the transaction; therefore, a single DELETE statement that
affects a large number of rows locks the rows until the entire operation is
complete. If the number of rows affected is very large, you might exceed the
limits your operating system places on the maximum number of simulta-
neous locks. If this occurs, you can either reduce the scope of the DELETE
statement or lock the entire table before you execute the statement.

If you specify a view name, the view must be updatable. See “Updating
Through Views” on page 1-290 for an explanation of an updatable view.

SQL Statements 1-325

DELETE

ANSI

If you omit the WHERE clause while you are working within the SQL menu,
DB-Access prompts you to verify that you want to delete all rows from a table.
You do not receive a prompt if you run the DELETE statement within a
command file. ¢

Statements are always within an implicit transaction in an ANSI-compliant
database; therefore, you cannot have a DELETE statement outside a
transaction. ¢

Deleting Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted. A
For example, if an opagque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for very large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function
called destroy(). When you use the DELETE statement to delete a row that
contains one of these opaque types, the database server automatically
invokes the destroy() function for the type. The destroy() support function
can decide how remove the data, regardless of where it is stored. For more
information on the destroy() support function, see the Extending
INFORMIX-Universal Server: Data Types manual.

Deleting Rows That Contain Collection Data Types

When a row contains a column that is a collection data type (LIST, MULTISET,
or SET), you can search for a particular element in the collection, and delete
the row or rows in which the element is found. For example, the following
statement deletes any rows from the new_tab table in which the set_col
column contains the element jimmy smith:

DELETE FROM new_tab
WHERE '"jimmy smith' IN set_col

1-326 Informix Guide to SQL: Syntax

E/C

DELETE

Using Cascading Deletes

Use the ON DELETE CASCADE option of the REFERENCES clause on either the
CREATE TABLE or ALTER TABLE statement to specify that you want deletes to
cascade from one table to another. For example, the stock table contains the
column stock_num as a primary key. The catalog and items tables each
contain the column stock_num as foreign keys with the ON DELETE
CASCADE option specified. When a delete is performed from the stock table,
rows are also deleted in the catalog and items tables, which are referred
through the foreign keys.

If a cascading delete is performed without a WHERE clause, all rows in the
parent table (and subsequently, the affected child tables) are deleted.

WHERE Clause

Use the WHERE clause to specify one or more rows that you want to delete.
The WHERE conditions are the same as the conditions in the SELECT
statement. For example, the following statement deletes all the rows of the
items table where the order number is less than 1034:

DELETE FROM items
WHERE order_num < 1034

If you include a WHERE clause that selects all rows in the table, DB-Access
gives no prompt and deletes all rows. ¢

Deleting and the WHERE Clause

If you delete from a table in an ANSI-compliant database with a DELETE that
contains a WHERE clause and no rows are found, that database server issues
a warning. You can detect this warning condition in either of the following
ways:

= The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value ‘02000.” In an SQL API application, the SQLSTATE
variable contains this same value.

= InanSQL APl application, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

SQL Statements 1-327

DELETE

ESQL

ESQL

ANSI

I (n I
T
—

The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE ... WHERE ... is a part of a multistatement prepare and the database
server returns no rows. ¢

In a database that is not ANSI compliant, the database server does not return
awarning when it finds no matching rows for the WHERE clause of a DELETE
statement. The SQLSTATE code is ‘00000’ and the SQLCODE code is zero (0).
However, if the DELETE ... WHERE ... is a part of a multistatement prepare, and
no rows are returned, the database server does issue a warning. It sets
SQLSTATE to ‘02000’ and SQLCODE value to 100.

For additional information about the SQLSTATE code, see the GET
DIAGNOSTICS statement in this manual. For information about the
SQLCODE code, see the description of the sqlca structure in the Informix
Guide to SQL.: Tutorial.

WHERE CURRENT OF Clause

You can use the WHERE CURRENT OF clause to delete either of the following
objects:

= The current row of the active set of a cursor
= The current element of a collection cursor (INFORMIX-ESQL/C only)

You access both of these objects with an update cursor. An update cursor is a
sequential cursor that is associated with a SELECT statement but can modify
and delete the contents of the cursor. For more information on the update
cursor, see page 1-307. ¢

To use the WHERE CURRENT OF clause, you must have previously used the
DECLARE statement with the FOR UPDATE clause to define the cursor name for
the update cursor. (See the DECLARE statement on page 1-300.) ¢

Before you can use the WHERE CURRENT OF clause, you must declare a
cursor with the FOREACH statement. (See the FOREACH statement on
page 2-27.)¢

All select cursors are potentially update cursors in ANSI-compliant
databases. You can use the WHERE CURRENT OF clause with any select
cursor. ¢

1-328 Informix Guide to SQL: Syntax

ESQL

DELETE

Deleting the Current Row

When you specify a table or view name in the FROM clause of the SELECT, the
DECLARE statement defines a cursor that populates an active set with the
rows of the specified tables or views. The DELETE... WHERE CURRENT OF
statement deletes the current row of the active set of a cursor. When you use
the WHERE CURRENT OF clause, the DELETE statement removes the row of
the active set at the current position of the cursor. After the deletion, no
current row exists; you cannot use the cursor to delete or update a row until
you reposition the cursor with a FETCH statement. ¢

Deleting a Collection Element

You declare a collection cursor when you associate a cursor with SELECT
statement that includes a Collection Derived Table clause. You use one of the
following statements to declare a collection cursor:

= Inan ESQL/C program, use the DECLARE statement.

For more information, see “Associating a Cursor With a Collection
Variable” on page 1-317 in the DECLARE statement.

= Inan SPL routine, use the FOREACH statement.
For more information, see the FOREACH statement on page 2-27.

A collection cursor is an update cursor by default. However, you can
optionally specify the FOR UPDATE clause with the SELECT statement. With
an update cursor, you can use the DELETE..WHERE CURRENT OF statement
to delete the current element of a collection cursor. For more information, see
“Deleting from a Collection Variable” on page 1-330.

Important: You can only declare a select cursor on a collection variable. Neither
INFORMIX-ESQL/C nor SPL supports cursors on row variables. For more informa-
tion, see “Updating a Row Variable” on page 1-798.4

SQL Statements 1-329

DELETE

E/C

SPL

E/C

SPL

1-330

1.
2.

Deleting from a Collection Variable

The DELETE statement with the Collection Derived Table clause allows you
to delete elements from a collection variable. The Collection Derived Table
clause identifies the collection variable in which to delete the elements. For
more information, see “Collection Derived Table” on page 1-827.

In an INFORMIX-ESQL/C program, declare a host variable of type collection
for a collection variable. This collection variable can be typed or untyped. ¢

In an SPL routine, declare a variable of type COLLECTION, LIST, MULTISET, or
SET for a collection variable. This collection variable can be typed or
untyped. ¢

To delete elements, follow these steps:

Create a collection variable in your SPL routine or ESQL/C program.

Optionally, select a collection column into the collection variable
with the SELECT statement (without the Collection Derived Table
clause).

Delete elements of the collection variable with the DELETE statement
and the Collection Derived Table Clause.

After the collection variable contains the correct elements, use the
INSERT or UPDATE statement on a table name to save the collection
variable in the collection column (SET, MULTISET, or LIST).

The DELETE statement and the Collection Derived Table clause allow you to
perform the following operations on a collection variable:

Delete a particular element in the collection.

You must declare an update cursor for the collection variable and use
DELETE with the WHERE CURRENT OF clause. For more information
on how to use an update cursor with ESQL/C, see the DECLARE
statement on page 1-300. For more information on how to use an
update cursor with SPL, see “FOREACH” on page 2-27.

The application or SPL routine must position the update cursor on
the element to be deleted and then use DELETE...WHERE CURRENT
OF to delete this value. For more information on the WHERE
CURRENT OF clause of DELETE, see page 1-328.

Informix Guide to SQL: Syntax

E/C

DELETE

Delete all elements in the collection.

Use the DELETE statement (without the WHERE CURRENT OF clause).
No cursor is required to delete all elements of a collection.

For example, the following DELETE statement removes all elements
in the a_list ESQL/C collection variable:
EXEC SQL delete from table(:a_list);
.
You could also use the following statements in an SPL routine;

DEFINE a COLLECTION;
DELETE FROM TABLE (a);

¢

A DELETE of an element or elements in a collection variable cannot include
a WHERE clause.

The collection variable stores the elements of the collection. However, it has
no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the
collection column with one of the following SQL statements:

To update the collection column in the table with the collection
variable, use an UPDATE statement on a table or view name and
specify the collection variable in the SET clause.

For more information, see “Updating Collection Columns” on
page 1-786 in the UPDATE statement.

Toinsert a collection in a column, use the INSERT statement on a table
or view name and specify the collection variable in the VALUES
clause.

For more information, see “Inserting Values into Collection
Columns” on page 1-501 in the INSERT statement.

SQL Statements 1-331

DELETE

Suppose that the set_col column of a row in the tablel table is defined as a
SET and for one row contains the values{1,8,4,5,2}. The following ESQL/C
code fragment uses an update cursor and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(smallint not null) a_set;
int an_int;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from tablel
where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:a_set)
for update;

EXEC SQL open set_curs;
while (i<coll_size)
{
EXEC SQL fetch set_curs into :an_int;
if (an_int = 4)
{
EXEC SQL delete from table(:a_set)
where current of set_curs;

break;
}
i+t
}
EXEC SQL update tablel set set_col = :a_set
where int_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

After the DELETE statement executes, this collection variable contains the
elements{1,8,5, 2}. The UPDATE statement at the end of this code fragment
saves the modified collection into the set_col column of the database.
Without this UPDATE statement, the collection column never has element 4
deleted.

For information on how to use collection host variables in an ESQL/C
program, see the discussion of complex data types in the INFORMIX-ESQL/C
Programmer’s Manual. ¢

1-332 Informix Guide to SQL: Syntax

SPL

DELETE

You can also delete the element with the value 4 from the set {1,8,4,5,2} with
an SPL routine, as the following example shows.

CREATE_PROCEDURE test6()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);

SELECT set_col INTO b FROM tablel
WHERE id = 6;
-- Select the set in one row from the table
-- into a collection variable

FOREACH cursorl FOR
SELECT * INTO a FROM TABLE(b);
-- Select each element one at a time from
-- the collection derived table b into a
IF a = 4 THEN
DELETE FROM TABLE(b)
WHERE CURRENT OF cursorl;
-- Delete the element if it has the value 4
EXIT FOREACH;
END IF;
END FOREACH;

UPDATE tablel SET set_col = b
WHERE id = 6;
-- Update the base table with the new collection

END PROCEDURE;

This SPL routine defines two variables, a and b, each to hold a SET of
SMALLINT values. The first SELECT statement selects a SET column from one
row of tablel into b. Then, the routine declares a cursor that selects one
element at a time from b into a. When the cursor is positioned on the element
with the value 4, the DELETE statement deletes that element from b. Last, the
UPDATE statement updates the row of tablel with the new collection that is
stored in b.

For information on how to use collection variables in an SPL routine, see
Chapter 14 of the Informix Guide to SQL: Tutorial. ¢

SQL Statements 1-333

DELETE

E/C Deleting a Row Variable

SPL The DELETE statement does not support a row variable in the Collection
Derived Table clause. A row variable must have a value for each field. For
more information, see “Updating a Row Variable” on page 1-798. ¢

References

See the DECLARE, INSERT, OPEN, and SELECT statements in Chapter 1 of this
manual. See the FOREACH statement in Chapter 2 of this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of cursors and data
modification in Chapter 5 and Chapter 6, respectively, and the discussion of
stored routines in Chapter 14. In the Guide to GLS Functionality, see the
discussion of the GLS aspects of the DELETE statement.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex data types in the INFORMIX-ESQL/C
Programmer’s Manual.

1-334 Informix Guide to SQL: Syntax

DESCRIBE

DESCRIBE

Use the DESCRIBE statement to obtain information about a prepared
statement before you execute it. The information can be stored in a system-
descriptor area or in an sqglda structure.

Syntax
ESQL
DESCRIBE statement id SQL DlIJESSIgRC’;IPTOR 'descriptor’
statement { descriptor
id variable variable

INTO sqglda pointer

Element Purpose Restrictions Syntax
descriptor A quoted string that identifiesa The system-descriptorareamust Quoted String,
system-descriptor area to which have been previously allocated p. 1-1010
values are assigned with the ALLOCATE
DESCRIPTOR statement.
descriptor A host variable that holds the The same restrictions apply to ~ Variable name must
variable value of descriptor descriptor variable as apply to conform to
descriptor. language-specific
rules for variable
names.
sglda pointer A pointer to an sqlda structure You cannot begin an sqlda See the discussion of

pointer with adollar sign ($) ora sqldastructureinthe
colon (:). You must use an sqlda INFORMIX-ESQL/C
structure if you are using Programmer’s
dynamic SQL statements. Manual.

(10f2)

SQL Statements 1-335

DESCRIBE

Element Purpose Restrictions Syntax
statement id The statement identifier for a The statement identifier must be PREPARE, p. 1-538
prepared SQL statement defined in a previous PREPARE
statement.
statement id A host variable that contains the The statement identifier must be Variable name must
variable value of statement id defined in a previous PREPARE conform to
statement. The variable must be language-specific
a character data type. rules for variable
names.

(2 of 2)

Usage

The DESCRIBE statement allows you to determine, at runtime, the following
information about a prepared statement:

= The DESCRIBE statement returns the prepared statement type.

= The DESCRIBE statement can determine whether an UPDATE or
DELETE statement contains a WHERE clause.

» For a SELECT, EXECUTE FUNCTION, or INSERT statement, the
DESCRIBE statement also returns the number, data types and size of
the values, and the name of the column or expression that the query
returns.

With this information, you can write code to allocate memory to hold
retrieved values and display or process them after they are fetched.

Describing the Statement Type

The DESCRIBE statement takes a statement identifier from a PREPARE
statement as input. When the DESCRIBE statement executes, the database
server sets the value of the SQLCODE (the sqglcode field of the sqlca) to
indicate the statement type (that is, the keyword with which the statement
begins). If the prepared statement text contains more than one SQL statement,
the DESCRIBE statement returns the type of the first statement in the text.

1-336 Informix Guide to SQL: Syntax

DESCRIBE

SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. See the discussion on exception
handling in the INFORMIX-ESQL/C Programmer’s Manual for more infor-
mation about possible SQLCODE values after a DESCRIBE statement.

You can test the number against the constant names that are defined. In
INFORMIX-ESQL/C, the constant names are defined in the sqlstype.h header
file. A printed list of the possible values and their constant names appears in
the INFORMIX-ESQL/C Programmer’s Manual.

The DESCRIBE statement uses the SQLCODE field differently than any other
statement, possibly returning a nonzero value when it executes successfully.
You can revise standard error-checking routines to accommodate this
behavior, if desired.

Checking for Existence of a WHERE Clause

If the DESCRIBE statement detects that a prepared statement contains an
UPDATE or DELETE statement without a WHERE clause, the DESCRIBE
statement sets the following sqlca variable to W.

Product Field Name

ESQL/C sqlca.sqlwarn.sqlwarn4

Without a WHERE clause, the update or delete action is applied to the entire
table. Check this variable to avoid unintended global changes to your table.

SQL Statements 1-337

DESCRIBE

X/IO0

Describing SELECT, EXECUTE FUNCTION, or INSERT

If the prepared statement text includes a SELECT statement without an INTO
TEMP clause, an EXECUTE FUNCTION statement, or an INSERT statement, the
DESCRIBE statement also returns a description of each column or expression
that is included in the SELECT, EXECUTE FUNCTION, or INSERT list. You can
store these descriptions in one of the following dynamic-management
structures:

= A system-descriptor area
For more information, see “USING SQL DESCRIPTOR Clause”.
= Ansqlda structure
For more information, see “INTO sqglda pointer Clause” on
page 1-340.
These dynamic-management structures provide the following information:

= The data type of the column, as defined in the table
= The length of the column, in bytes
= The name of the column or expression

USING SQL DESCRIPTOR Clause

If the prepared statement contains parameters for which the number of
parameters or parameter data types is to be supplied at runtime, you can
describe these input values in a system-descriptor area. A system-descriptor
area describes the data type and memory location of one or more values.

You can also use an sqglda structure to dynamically supply parameters.
However, a system-descriptor area conforms to the X/Open standards. ¢

The USING SQL DESCRIPTOR clause lets you store the description of a SELECT,
INSERT, or EXECUTE FUNCTION list in a system-descriptor area that an
ALLOCATE DESCRIPTOR statement creates. You can obtain information about
the resulting columns of a prepared statement through a system-descriptor
area.

1-338 Informix Guide to SQL: Syntax

DESCRIBE

The following example shows the use of a system-descriptor area in a
DESCRIBE statement. In the first example system-descriptor area is a quoted
string; in the second example, it is a host variable name.

main()
{

EXEC.SOL allocate descriptor 'descl' with max 3;

EXEC SQL prepare cursl FROM 'select * from tab';

EXEC SQL describe cursl using sql descriptor 'descl';
}

EXEC SQL describe cursl using sql descriptor :desclvar;

The DESCRIBE...USING SQL DESCRIPTOR statement performs the following
tasks on a system-descriptor area:

= It sets the COUNT field in the system-descriptor area to the number
of values in the SELECT, EXECUTE FUNCTION, or INSERT list. If
COUNT is greater than the number of item descriptors (occurrences)
in the system-descriptor area, the system returns an error.

» Itsetsthe TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the item descriptor.

If the column has an opaque data type, DESCRIBE...USING SQL
DESCRIPTOR sets the EXTYPEID, EXTYPENAME, EXTYPELENGTH,
EXTYPEOWNERLENGTH, and EXTYPEOWNERNAME fields of the
item descriptor.

» Itallocates memory for the DATA field in each item descriptor, based
on the TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You can modify the system-descriptor-area information with the SET
DESCRIPTOR statement. You must modify the system-descriptor area to show
the address in memory that is to receive the described value. You can change
the data type to another compatible type. This change causes data conversion
to take place when the data is fetched.

SQL Statements 1-339

DESCRIBE

You can use the system-descriptor area in statements that support a USING
SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

INTO sglda pointer Clause

If the prepared statement contains parameters for which the number of
parameters or their data types is to be supplied at runtime, you can describe
these input values in an sglda structure. An sqglda structure describes the
data type and memory location of one or more values.

The INTO sglda pointer clause lets you allocate memory for an sqlda structure
and store its address in an sglda pointer. The DESCRIBE statement fills in the
allocated memory with descriptive information for a SELECT, INSERT, or
EXECUTE FUNCTION list.

The DESCRIBE statement sets the sqlda.sqgld field to the number of values in
the SELECT, INSERT, or EXECUTE FUNCTION list. The sqlda structure also
contains an array of data descriptors (sqlvar structures), one for each value
in the SELECT, INSERT, or EXECUTE FUNCTION list. After a DESCRIBE
statement is executed, the sqlda.sqglvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sglownername fields of the
item descriptor.

The DESCRIBE statement allocates memory for an sqlda pointer once it is
declared in a program. However, the application program must designate the
storage area of the sqlda.sqlvar.sqldata fields.

See the INFORMIX-ESQL/C Programmer’s Manual for further information on
the sqglda structure.

1-340 Informix Guide to SQL: Syntax

DESCRIBE

Describing a Collection Variable

The DESCRIBE statement can provide this information about a collection
variable when you use the USING SQL DESCRIPTOR or INTO clause.

You must perform the DESCRIBE statement after you open the select or insert
cursor. Otherwise, DESCRIBE cannot get information about the collection
variable because it is the OPEN...USING statement that specifies the name of
the collection variable to use.

The following ESQL/C code fragment shows how to dynamically select the
elements of the :a_set collection variable into a system-descriptor area called
descl:

EXEC SQL BEGIN DECLARE SECTION;

client collection a_set;

int i, set_count;

int element_type, element_value;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'descl';

EXEC SQL select set_col into :a_set from tablel;

EXEC SQL prepare set_id from
'select * from table(?)'
EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor 'descl';

do
{

EXEC SQL fetch set_curs using sql descriptor
"descl"';

EXEC SQL get descriptor 'descl' :set_count =
count;

for (i = 1; i <= set_count; i++)
{
EXEC SQL get descriptor 'descl' value :i
:element_type = TYPE;
switch
{

SQL Statements 1-341

DESCRIBE

case SQLINTEGER:
EXEC SQL get descriptor 'descl' value

:element_value = data;

} /?.énd switch */
} /* end for */
} while (SQLCODE == 0);

EXEC SQL close set_curs;

EXEC SQL free set_curs;

EXEC SQL free set_id;

EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'descl';

References

See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET
DESCRIPTOR statements in this manual for further information about using
dynamic management statements.

In the Informix Guide to SQL.: Tutorial, see the discussion of the DESCRIBE
statement in Chapter 5.

For further information about how to use a system-descriptor area or an
sqlda pointer with a FETCH or an INSERT statement, refer to the
INFORMIX-ESQL/C Programmer’s Manual.

1-342 Informix Guide to SQL: Syntax

DISCONNECT

DISCONNECT

The DISCONNECT statement terminates a connection between an application
and a database server.

Syntax
| DB_|
SQLE
DISCONNECT |

; CURRENT 7 |

DEFAULT ——
ALL v

‘connection name ' /|

conn_nm variable /

R

Element Purpose Restrictions Syntax
connection Quoted string that identifiesa Specified connection name must Quoted String,
name connection to be terminated match a connection name p. 1-1010

assigned by the CONNECT

statement.
conn_nm Host variable that holds the Variable must be a fixed-length Variable name must
variable value of connection name character data type. Specified conform to

connection name must match a language-specific
connection name assigned by the rules for variable
CONNECT statement. names.

SQL Statements 1-343

DISCONNECT

ESQL

Usage

The DISCONNECT statement lets you terminate a connection to a database
server. If a database is open, it closes before the connection drops. Even if you
made a connection to a specific database only, that connection to the database
server is terminated by the DISCONNECT statement.

You cannot use the PREPARE statement for the DISCONNECT statement.

If you disconnect a specific connection using connection name or conn_nm
variable, DISCONNECT generates an error if the specified connection is not a
current or dormant connection.

A DISCONNECT statement that does not terminate the current connection
does not change the context of the current environment (the connection
context). ¢

DEFAULT Option

Use the DEFAULT option to identify the default connection for a
DISCONNECT statement. The default connection is one of the following
connections:

= An explicit default connection (a connection established with the
CONNECT TO DEFAULT statement)

= Animplicit default connection (any connection made using the
DATABASE, CREATE DATABASE, or START DATABASE statements)

You can use DISCONNECT to disconnect the default connection. See
“DEFAULT Option” on page 1-100 and “Implicit Connection with
DATABASE Statements” on page 1-101 for more information.

If the DATABASE statement does not specify a database server, as shown in
the following example, the default connection is made to the default database
server:

EXEC SQL database 'stores7';

EXEC SQL disconnect default;

1-344 Informix Guide to SQL: Syntax

DISCONNECT

If the DATABASE statement specifies a database server, as shown in the
following example, the default connection is made to that database server:

EXEC SQL database 'stores/@mydbsrvr';

EXEC SQL disconnect default;

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. See “DEFAULT Option” on page 1-100 and “Implicit Connection
with DATABASE Statements” on page 1-101 for more information about the
default database server and implicit connections.

CURRENT Keyword

Use the CURRENT keyword with the DISCONNECT statement as a shorthand
form of identifying the current connection. The CURRENT keyword replaces
the current connection name. For example, the DISCONNECT statement in the
following excerpt terminates the current connection to the database server
mydbsrvr:

CONNECT TO 'stores7@mydbsrvr'

DISCONNECT CURRENT

When a Transaction is Active

When a transaction is active, the DISCONNECT statement generates an error.
The transaction remains active, and the application must explicitly commit it
or roll it back. If an application terminates without issuing a DISCONNECT
statement (because of a system crash or program error, for example), active
transactions are rolled back.

Disconnecting in a Thread-Safe Environment

If you issue the DISCONNECT statement in a thread-safe ESQL/C application,
keep in mind that an active connection can only be disconnected from within
the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates
an error if such an attempt is made.

SQL Statements 1-345

DISCONNECT

However, once a connection becomes dormant, any other thread can discon-
nect this connection unless an ongoing transaction is associated with the
dormant connection (the connection was established with the WITH CON-
CURRENT TRANSACTION clause of CONNECT). If the dormant connection
was not established with the WITH CONCURRENT TRANSACTION clause,
DISCONNECT generates an error when it tries to disconnect it.

See the SET CONNECTION statement on page 1-682 for an explanation of con-
nections in a thread-safe ESQL/C application.

Specifying the ALL Option

Use the keyword ALL to terminate all connections established by the appli-
cation up to that time. For example, the following DISCONNECT statement
disconnects the current connection as well as all dormant connections:

DISCONNECT ALL

The ALL keyword has the same effect on multithreaded applications that it
has on single-threaded applications. Execution of the DISCONNECT ALL
statement causes all connections in all threads to be terminated. However, the
DISCONNECT ALL statement fails if any of the connections is in use or has an
ongoing transaction associated with it. If either of these conditions is true,
none of the connections is disconnected.

References

See the CONNECT, SET CONNECTION, and DATABASE statements in this
manual.

For information on multithreaded applications, see the INFORMIX-ESQL/C
Programmer’s Manual.

1-346 Informix Guide to SQL: Syntax

DROP CAST

Use the DROP CAST statement to remove a previously defined cast from the
database.
Syntax
[+
| DB |
| E/C_|
[SQLE_
source target
DROP CAST (— data As daa —) —
type type
Element Purpose Restrictions Syntax
source data type The data type on which the cast The type must exist at the time Data Type, p. 1-855
operates the cast is dropped.
target data type The data type that results when The type must exist at the time Data Type, p. 1-855
the cast is invoked the cast is dropped.

Usage

You must be the owner of the cast or have the DBA privilege to use the DROP
CAST statement.

SQL Statements 1-347

DROP CAST

What Happens When You Drop a Cast

When you drop a cast, the cast definition is removed from the database. Once
you drop a cast, it cannot be invoked either explicitly or implicitly. Dropping
a cast has no effect on the function associated with the cast. Use the DROP
FUNCTION statement to remove a function from the database.

Warning: Do not drop the system-defined casts, which are owned by user informix.
The database server uses system-defined casts for automatic conversions between
built-in data types.

A cast that is defined on a particular data type can also be used on any
distinct types created from that type. When you drop the cast, you can no
longer invoke it for the distinct types. Dropping a cast that is defined for a
distinct type has no effect on casts for its source type.

When you create a distinct type, the database server automatically defines an
explicit cast from the distinct type to its source type and another explicit cast
from the source type to the distinct type. When you drop the distinct type, the
database server automatically drops these two casts.

References

See the CREATE CAST statement in this manual for information about
creating a cast.

See the DROP FUNCTION statement in this manual for information about how
to remove a function that is used to implement a cast.

See the Data Types segment in this manual and Chapter 3, “Environment
Variables” in the Informix Guide to SQL: Reference for information about data

types.

1-348 Informix Guide to SQL: Syntax

DROP DATABASE

DROP DATABASE

Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, indexes, and data.

Syntax
B
| DB
| E/C_
SQLE
Database |
DROP DATABASE Name |
p. 1-852
Usage

You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an
error message and does not drop the database.

You cannot drop the current database or a database that is being used by
another user. All the database users must first execute the CLOSE DATABASE
statement.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement.

The following statement drops the stores7 database:

DROP DATABASE stores7

When you drop a database with transactions, the transaction-log file that is
associated with the database is removed.

The DROP DATABASE statement does not remove the database directory if it
includes any files other than those created for database tables and their
indexes.

SQL Statements 1-349

DROP DATABASE

You can specify the full pathname of the database in quotes, as the following
example shows:

DROP DATABASE '/u/training/stores7'

You cannot use a ROLLBACK WORK statement to undo a DROP DATABASE
statement. If you roll back a transaction that contains a DROP DATABASE
statement, the database is not re-created, and you do not receive an error
message.

Use this statement with caution. DB-Access does not prompt you to verify
that you want to delete the entire database. ¢

You can use a simple database name in a program or host variable, or you can
use the full database server and database name. See “Database Name” on
page 1-852 for more information. ¢

References

See the CREATE DATABASE and CLOSE DATABASE statements in this manual.

1-350 Informix Guide to SQL: Syntax

DROP FUNCTION

DROP FUNCTION

Use the DROP FUNCTION statement to remove an external function or anSPL
function from the database.

Syntax
[+
SQLE
Function
DROP FUNCTION — Name ’ %
p. 1-959 \L C’__D j
(parameter)
data type
SPECIFIC FUNCTION —— Sﬁgggc
p. 1-1034

Element Purpose Restrictions Syntax
parameter data The data type of the parameter The data type must be the data Identifier, p. 1-962
type type (or list of data types)

specified in the CREATE
FUNCTION statement when the

function was created.
. ___|

Usage

A function is a user-defined routine that returns one or more values. In
INFORMIX-Universal Server, you can write functions in Stored Procedure
Language (SPL) or in an external language, such as C.

SQL Statements 1-351

DROP FUNCTION

Because you can overload routines in INFORMIX-Universal Server, you can
define more than one function with the same name but with different
parameter lists. Therefore, a function name alone might not identify a
function. In that case, you must specify one of the following in the DROP
FUNCTION statement:

= The SPECIFIC keyword and a specific name
= The parameter data types after the function name

The keyword FUNCTION, the function name, and the number, type, and
order of parameters (as they appear from left to right in the DROP FUNCTION
statement) make up the function signature. The function signature unambig-
uously identifies the function. For a given function, at least one item in the
signature must be unique among all the functions stored in a name space or
database.

Dropping a function removes the text and executable versions of the
function.

You cannot use DROP FUNCTION to drop any type of procedure.

You can also use DROP ROUTINE to drop a function. For more information on
DROP ROUTINE, see page 1-365.

Function Name

The function name can be the name of any user-defined function stored on
the local database server. You can use a fully qualified function name to drop
a function stored on a remote server, if either of the following conditions is
true:

= The fully qualified function name uniquely identifies the function
and you do not need to specify a parameter list to drop the function.
= All of the parameters the function accepts are of built-in data types.

You cannot drop a remote function if any of its parameters are opaque,
distinct, collection, or row types.

The syntax of the function name is described in the Function Name segment
on page 1-959.

1-352 Informix Guide to SQL: Syntax

SPL

DROP FUNCTION

Specific Name

A specific name uniquely identifies the function within the database. If you
use the DROP SPECIFIC FUNCTION statement, you must use the function’s
specific name as it is defined in the CREATE FUNCTION statement.

With DROP SPECIFIC FUNCTION, you must use the specific name of a
function. You cannot use the specific name of a procedure.

The syntax of the specific name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the function or have the DBA privilege to use the
DROP FUNCTION statement.

Examples

If you use parameter data types to identify a function, they follow the
function name, as in the following example:

DROP FUNCTION compare(int, int)

If you use the specific name for the function, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC FUNCTION compare_point

SPL Functions

Because you cannot change the text of an SPL function, you must drop it
using DROP FUNCTION or DROP ROUTINE and then re-create it using
CREATE FUNCTION. Make sure that you have a copy of the SPL function text
somewhere outside the database, in case you want to re-create it after it is
dropped.

You cannot drop an SPL function within the same SPL function. ¢

SQL Statements 1-353

DROP FUNCTION

References

In this manual, see the CREATE FUNCTION, CREATE FUNCTION FROM, DROP
FUNCTION, DROP ROUTINE, and EXECUTE FUNCTION statements.

In the Informix Guide to SQL: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.

1-354 Informix Guide to SQL: Syntax

DROP INDEX

DROP INDEX

Use the DROP INDEX statement to remove a previously defined index from
the database.

Syntax
[+
| DB |
EIC
SQLE
DROP INDEX Index '
Name |
p. 1-980

Usage

You must be the owner of the index or have the DBA privilege to use the
DROP INDEX statement.

The following example drops the index o_num_ix that joed owns. The
stores7 database must be the current database.

DROP INDEX stores7:joed.o_num_ix

You cannot use the DROP INDEX statement on a column or columns to drop
a unique constraint that is created with a CREATE TABLE statement; you must
use the ALTER TABLE statement to remove indexes that are created as
constraints with a CREATE TABLE or ALTER TABLE statement.

The index is not actually dropped if it is shared by constraints. Instead, it is
renamed in the sysindexes system catalog table with the following format:

[spacel<tabid>_<constraint id>

SQL Statements 1-355

DROP INDEX

In this example, tabid and constraint_id are from the systables and
sysconstraints system catalog tables, respectively. The idxname (index
name) column in the sysconstraints table is then updated to reflect this
change. For example, the renamed index name might be something like the
following (quotes used to show the spaces):

“121_13”

If this index is a unique index with only referential constraints sharing it, the
index is downgraded to a duplicate index after it is renamed.

References

See the ALTER TABLE, CREATE INDEX, and CREATE TABLE statements in this
manual.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
indexes.

1-356 Informix Guide to SQL: Syntax

DROP OPCLASS

DROP OPCLASS

Use the DROP OPCLASS statement to remove an existing operator class from
the database.

Syntax

opclass
BEEl—— DROPOPCLASS o2 — RESTRICT

Element Purpose Restrictions Syntax
opclass Name of the operator class being The operator class must have Identifier, p. 1-962
name dropped been created with the CREATE

OPCLASS statement. You must
remove all dependent objects
(such as indexes) defined on this
operator class, before you can
drop the operator class.

Usage

You must be the owner of the operator class or have DBA privilege to use the
DROP OPCLASS statement.

The RESTRICT keyword is required with the DROP OPCLASS statement.
RESTRICT causes DROP OPCLASS to fail if the database contains indexes or
secondary access methods that use the opclass name operator class. The DROP
OPCLASS statement cannot drop these indexes or the access methods.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:

DROP OPCLASS abs_btree_ops RESTRICT

SQL Statements 1-357

DROP OPCLASS

References
See CREATE OPCLASS in this manual.

For information on how to create or extend an operator class, see the
Extending INFORMIX-Universal Server: Data Types manual.

1-358 Informix Guide to SQL: Syntax

DROP PROCEDURE

DROP PROCEDURE

Use the DROP PROCEDURE statement to remove an external procedure or an
SPL procedure from the database.

Syntax
Kl
SQLE
Procedure
DROP PROCEDURE Name ’ _|
— 1 C pamerer). f
(parameter)
L Function data type
Name
p. 1-959
SPECIFIC PROCEDURE Sﬁae;;gc
p. 1-1034

Element Purpose Restrictions Syntax
parameter data The data type of the parameter ~ The data type must be the data Identifier, p. 1-962
type type (or list of data types)

specified in the CREATE
PROCEDURE statement when the
procedure was created.

Usage

A procedure is a user-defined routine that does not return a value. In
INFORMIX-Universal Server, you can write procedures in Stored Procedure
Language (SPL) or in an external language, such as C.

SQL Statements 1-359

DROP PROCEDURE

1-360

Because you can overload routines in INFORMIX-Universal Server, you can
define more than one procedure with the same name but with different
parameter lists. Therefore, a procedure name alone might not identify a
procedure. In that case, you must specify one of the following in the DROP
PROCEDURE statement:

= The SPECIFIC keyword and a specific name
= The parameter data types after the procedure name

The keyword PROCEDURE, the procedure nhame, and the number, type, and
order of parameters (as they appear from left to right in the DROP
PROCEDURE statement) make up the signature for the procedure. The
procedure signature unambiguously identifies the procedure. For a given
procedure, at least one item in the signature must be unique among all the
procedures stored in a name space or database.

Dropping a procedure removes the text and executable versions of the
procedure.

You can also use DROP ROUTINE to drop a procedure. For more information
on DROP ROUTINE, see page 1-365.

Procedure Name

The procedure name can be the name of any user-defined procedure stored
on the local database server. You can use a fully qualified procedure name to
drop a procedure stored on a remote server, if either of the following condi-
tions is true:

= The fully qualified procedure name uniquely identifies the
procedure and you do not need to specify a parameter list to drop the
procedure.

= All of the parameters the procedure accepts are built-in data types.

You cannot drop a remote procedure if any of its parameters are opaque,
distinct, collection, or row types.

The syntax of a procedure name, including a fully qualified procedure name,
is described in the Procedure Name segment on page 1-1004.

Informix Guide to SQL: Syntax

DROP PROCEDURE

Specific Name

A specific name uniquely identifies the procedure within the database. If you
use the DROP SPECIFIC PROCEDURE statement, you must use the specific
name for the procedure as it is defined in the CREATE PROCEDURE statement.

When you use DROP SPECIFIC PROCEDURE with SPL routines, you can use
the name of an SPL procedure or SPL function. This feature provides
backward compatibility with earlier Informix products and is described in
“SPL Backward Compatibility Option” on page 1-362. ¢

When you use DROP SPECIFIC PROCEDURE with external routines, you must
use the specific name of a procedure. You cannot use the specific name of a
function. ¢

The syntax of the specific name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the procedure or have the DBA privilege to use the
DROP PROCEDURE statement.

Examples

If you use parameter data types to identify a procedure, they follow the
procedure name, as in the following example:

DROP PROCEDURE compare(int, int)

If you use the specific name for the procedure, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC PROCEDURE compare_point

SQL Statements 1-361

DROP PROCEDURE

SPL

SPL

1-362

SPL Procedures

Because you cannot change the text of an SPL function, you must drop it
using DROP PROCEDURE or DROP ROUTINE and then recreate it using
CREATE PROCEDURE. If you want to recreate it after it is dropped, make sure
that you have a copy of the SPL procedure text somewhere outside the
database.

You cannot drop an SPL procedure within the same SPL procedure. ¢

SPL Backward Compatibility Option

For backward compatibility with earlier Informix products, you can use
DROP PROCEDURE to drop an SPL function (that is, an SPL routine that
returns a value). However, Informix recommends that you use DROP
PROCEDURE only with procedures. You can also use DROP FUNCTION or
DROP ROUTINE to drop an SPL function. ¢

References

In this manual, see the CREATE PROCEDURE, CREATE PROCEDURE FROM,
DROP PROCEDURE, DROP ROUTINE, and EXECUTE PROCEDURE statements.

In the Informix Guide to SQL: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.

Informix Guide to SQL: Syntax

DROP ROLE

DROP ROLE
Use the DROP ROLE statement to remove a previously created role from the
database.
Syntax

[+

| DB |

E/C
SQLE
DROP ROLE role name |

Element Purpose Restrictions Syntax

role name Name of the role being dropped The role name must have been Identifier, p. 1-962
created with the CREATE ROLE
statement

Usage

The DROP ROLE statement is used to remove an existing role. Either the DBA
or a user to whom the role was granted with the WITH GRANT OPTION can
issue the DROP ROLE statement.

After arole is dropped, the privileges associated with that role, such as table-
level privileges or fragment-level privileges, are dropped, and a user cannot
grant or enable a role. If a user is using the privileges of a role when the role
is dropped, the user automatically loses those privileges.

A role exists until either the DBA or a user to whom the role was granted with
the WITH GRANT OPTION uses the DROP ROLE statement to drop the role.

The following statement drops the role engineer:

DROP ROLE engineer

SQL Statements 1-363

DROP ROLE

References

See the CREATE ROLE, GRANT, REVOKE, and SET ROLE statements in this
manual.

1-364 Informix Guide to SQL: Syntax

DROP ROUTINE

DROP ROUTINE

Use the DROP ROUTINE statement to remove any type of user-defined
routine from the database.

Syntax
SQLE
Procedure
DROP ROUTINE Name : _|
p. 1-1004 ,
(; parameter. 2)
Function Name data type
p. 1-959
SPECIFIC ROUTINE — | Specific
Name
p. 1-1034

Element Purpose Restrictions Syntax
parameter data The data type of the parameter The data type must be the data Identifier, p. 1-962
type type (or list of data types)

specified in the CREATE
FUNCTION or CREATE
PROCEDURE statement when the

routine was created.
. __|

Usage

You can use DROP ROUTINE with any type of routine—an external function,
an external procedure, an SPL function, or an SPL procedure. The DROP
ROUTINE statement is useful when you do not know whether a routine is a
function or a procedure.

SQL Statements 1-365

DROP ROUTINE

Because you can overload routines in INFORMIX-Universal Server, you can
define more than one routine with the same name but with different
parameter lists. Therefore, a routine name alone might not uniquely identify
a routine. In that case, you must specify one of the following in the DROP
ROUTINE statement:

= The SPECIFIC keyword and a specific name
= The parameter data types after the routine name

The keyword PROCEDURE or FUNCTION, the routine name, and the number,
type, and order of parameters (as they appear from left to right in the DROP
ROUTINE statement) make up the routine signature. The routine signature
unambiguously identifies the routine. For a given routine, at least one item in
the signature must be unique among all the routines stored in a name space
or database.

Dropping a routine removes the text and executable versions of the routine.

You can also use DROP FUNCTION to drop a function and DROP PROCEDURE
to drop a procedure. The DROP FUNCTION statement is described on
page 1-351, and the DROP PROCEDURE statement is described on page 1-359.

Procedure Name or Function Name

A procedure name identifies a routine registered with the CREATE
PROCEDURE statement and a function name identifies a function registered
with the CREATE FUNCTION statement. Without a database qualifier, the
routine must reside on the local database server.

You can use a fully qualified procedure name to drop a routine stored on a
remote server, if either of the following conditions is true:

= The fully qualified name uniquely identifies the routine, and you do
not need to specify a parameter list to drop the procedure.
= The parameter list contains only built-in data types.

= No ambiguity is caused by both a procedure and a function having
the same name.

1-366 Informix Guide to SQL: Syntax

DROP ROUTINE

You cannot drop a remote procedure if any of its parameters are opaque,
distinct, collection, or row types.

For the syntax of a fully qualified name, see “Procedure Name” on
page 1-1004 or “Function Name” on page 1-959.

Specific Name

A specific name uniquely identifies a routine within the database. If you use
the DROP SPECIFIC ROUTINE statement, you must use the identifier assigned
with the SPECIFIC clause of the CREATE PROCEDURE or CREATE FUNCTION
statement.

The syntax of Specific Name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the routine or have the DBA privilege to use the
DROP ROUTINE statement.

Examples

If you use parameter data types to identify a routine, they follow the routine
name, as in the following example:

DROP ROUTINE compare(int, int)

If you use the specific name for the routine, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC ROUTINE compare_point

SQL Statements 1-367

DROP ROUTINE

SPL SPL Routines

Because you cannot change the text of an SPL routine, you must drop it with
DROP PROCEDURE, DROP FUNCTION, or DROP ROUTINE and then re-create
it with CREATE PROCEDURE or CREATE FUNCTION. If you want to recreate it
after it is dropped, make sure that you have a copy of the SPL routine text
somewhere outside the database.

You cannot drop an SPL routine from within the same SPL routine. ¢

References

In this manual, see the CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, EXECUTE FUNCTION, and EXECUTE
PROCEDURE statements.

In the Informix Guide to SQL.: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.

1-368 Informix Guide to SQL: Syntax

DROP ROW TYPE

DROP ROW TYPE

Use the DROP ROW TYPE statement to remove an existing named row type
from the database.

Syntax

(92}
Slzigf.
mO

row type name RESTRICT |

DROP ROW TYPE

Element Purpose Restrictions Syntax
row type name The name of the named row type The type must have been created Data Type, p. 1-855
to be dropped with the CREATE ROW TYPE Identifier, p. 1-962
statement. The named row type
must already exist. The named row type
can be of the form

The named row type cannot be
dropped ifitis currently used in
any columns, tables or inher-

itance hierarchies.
|

owner.type.

Usage

You must be the owner of the row type or have the DBA privilege to use the
DROP ROW TYPE statement.

You cannot drop a named row type if the row type name is in use. You cannot
drop a named row type when any of the following conditions are true:

= Any existing tables or columns are using the row type.

= The row type is a supertype in an inheritance hierarchy.

= Aview is defined on the row type.

SQL Statements 1-369

DROP ROW TYPE

To drop a named row type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement does not drop unnamed row types.

The Restrict Keyword

The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on that named row
type exist.

The DROP ROW TYPE statement fails and returns an error message if:

= the named row type is used for an existing table or column.

Check the systables and syscolumns system catalog tables to find
out whether any tables or types use the named row type.

= the named row type is the supertype in an inheritance hierarchy.

Look in the sysinherits system catalog table to see which types have
child types.

Example

The following statement drops the row type named employee_t:

DROP ROW TYPE employee_t RESTRICT

References

See the CREATE ROW TYPE statement in this manual to learn how to create
row types.

See the Informix Guide to SQL: Reference for a description of the system catalog
tables.

See Chapter 10 of the Informix Guide to SQL: Tutorial for a discussion of named
row types.

1-370 Informix Guide to SQL: Syntax

DROP SYNONYM

DROP SYNONYM

Use the DROP SYNONYM statement to remove a previously defined synonym
from the database.

Syntax

Synonym |

DROP SYNONYM Name |

p. 1-1042

Usage

You must be the owner of the synonym or have the DBA privilege to use the
DROP SYNONYM statement.

The following statement drops the synonym nj_cust, which cathyg owns:

DROP SYNONYM cathyg.nj_cust

If a table is dropped, any synonyms that are in the same database as the table
and that refer to the table are also dropped.

If a synonym refers to an external table, and the table is dropped, the
synonym remains in place until you explicitly drop it using DROP SYNONYM.
You can create another table or synonym in place of the dropped table and
give the new object the name of the dropped table. The old synonym then
refers to the new object. See the CREATE SYNONYM statement for a complete
discussion of synonym chaining.

SQL Statements 1-371

DROP SYNONYM

References
See the CREATE SYNONYM statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of synonyms in
Chapter 11.

1-372 Informix Guide to SQL: Syntax

DROP TABLE

DROP TABLE

Use the DROP TABLE statement to remove a previously defined table, along
with its associated indexes and data from the database.

Syntax
I
| DB |
E/C
SQLE
Table
DROP TABLE Name |

p. 1-1044 |
Synonym CASCADE

Name

p. 1-1042 RESTRICT

Usage

You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

If you issue a DROP TABLE statement, you are not prompted to verify that you
want to delete an entire table. ¢

Effects of DROP TABLE Statement

Use the DROP TABLE statement with caution. When you remove a table, you
also delete the data stored in it, the indexes or constraints on the columns
(including all the referential constraints placed on its columns), any local
synonyms assigned to it, any triggers created for it, and any authorizations
you have granted on the table. You also drop all views based on the table and
any violations and diagnostics tables associated with the table. You do not
remove any synonyms for the table that have been created in an external
database.

SQL Statements 1-373

DROP TABLE

Specifying CASCADE Mode

The CASCADE mode means that a DROP TABLE statement removes the table
and all related database objects, including referential constraints built on the
table, views defined on the table, and any violations and diagnostics tables
associated with the table. If the table is the supertable in an inheritance
hierarchy, CASCADE drops all of the subtables as well as the supertable.

The CASCADE mode is the default mode of the DROP TABLE statement. You
can also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode

With the RESTRICT keyword, you can control the success or failure of the
drop operation for supertables, for tables that have referential constraints
and views defined on the table, and for tables that have violations and
diagnostics tables associated with the table. Using the RESTRICT option
causes the drop operation to fail and an error message to be returned if any
of the following conditions are true:

» Existing referential constraints reference table name.

= Existing views are defined on table name.

= Any violations and diagnostics tables are associated with table name.
= The table name is the supertable in an inheritance hierarchy.

Dropping a Table with Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque data type contains spatial or multi-
representational data, it might provide a choice of how to store the data:
inside the internal structure or, for very large objects, in a smart large object.

The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on a
table whose rows contain an opaque type, the database server automatically
invokes the destroy() function for the type. The destroy() function can
perform certain operations on columns of the opaque data type before the
table is dropped. For more information about the destroy() support function,
see the Extending INFORMIX-Universal Server: Data Types manual.

1-374 Informix Guide to SQL: Syntax

DROP TABLE

Tables That Cannot Be Dropped
You cannot drop the following types of tables:

= You cannot drop any system catalog tables.
= You cannot drop a table that is not in the current database.

= You cannot drop a violations or diagnostics table. Before you can
drop such a table, you must first issue a STOP VIOLATIONS TABLE
statement on the base table with which the violations and
diagnostics tables are associated.

Examples of Dropping a Table

The following example deletes two tables. Both tables are within the current
database and are owned by the current user. Neither table has a violations or
diagnostics table associated with it. Neither table has a referential constraint
or view defined on it.

DROP TABLE customer
DROP TABLE stores7@accntg:joed.state

References
See the CREATE TABLE and DROP DATABASE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of data integrity and
creating a table in Chapter 4 and Chapter 9, respectively.

SQL Statements 1-375

DROP TRIGGER

DROP TRIGGER

Use the DROP TRIGGER statement to remove a previously defined trigger
definition from the database.

Syntax

I

| DB

| E/C_

SQLE
Trigger

DROP TRIGGER Name |

p. 1-258

Usage

You must be the owner of the trigger or have the DBA privilege to use the
DROP TRIGGER statement.

Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database.

The following statement drops the items_pct trigger:

DROP TRIGGER items_pct

You cannot drop a trigger inside a stored procedure if the procedure is called
within a data manipulation statement. For example, in the following INSERT
statement, a DROP TRIGGER statement is illegal inside the stored procedure
procl:

INSERT INTO orders EXECUTE PROCEDURE procl(vala, valb)

1-376 Informix Guide to SQL: Syntax

DROP TRIGGER

References

See the CREATE PROCEDURE statement in this manual for more information
about a stored procedure that is called within a data manipulation statement.

For more information about triggers, see the CREATE TRIGGER statement in
this manual.

SQL Statements 1-377

DROP TYPE

DROP TYPE

Use the DROP TYPE statement to remove an existing distinct or opaque data
type from the database.

Syntax

DROP TYPE

data type —————— RESTRICT 4|

Element

Purpose Restrictions Syntax

data type

The distinct or opaque datatype The type musthave beencreated Data Type, p. 1-855
to be removed from the database with the CREATE DISTINCT TYPE

or CREATE OPAQUE TYPE The distinct type or

statement. Do not remove built- opaque type can be

in types. of the form
owner.type.

Usage

To drop a distinct or opaque type with the DROP TYPE statement, you must
be the owner of the data type or have the DBA privilege.

When use the DROP TYPE statement, you remove the type definition from the
database (in the sysxtdtypes system catalog table). In general, this statement
does not remove any definitions for casts or support functions associated
with that data type.

Important: When you drop a distinct type, the database server automatically drops
the two explicit casts between the distinct type and the type on which it is based.

1-378 Informix Guide to SQL: Syntax

DROP TYPE

You cannot drop a distinct or opaque type if the database contains any casts,
columns, or functions whose definitions reference the type.

The following statement drops the new_type type:

DROP TYPE new_type RESTRICT

References

See the CREATE DISTINCT TYPE and CREATE OPAQUE TYPE statements in this
manual for information. See the CREATE ROW TYPE and DROP ROW TYPE
statements in this manual for information about how to define and remove
row types from the database. See the CREATE TABLE statement in this manual
for more information about creating tables that reference a data type.

See the Data Types segment in this manual for more information about data
types.

SQL Statements 1-379

DROP VIEW

DROP VIEW

Use the DROP VIEW statement to remove a previously defined view from the
database.

Syntax
[+
| E/C |
SQLE
DROP VIEW View |
Name |
p. 1-1047
CASCADE
Synonym
Name
0. 11042 RESTRICT

Usage

You must own the view or have the DBA privilege to use the DROP VIEW
statement.

When you drop view name, you also drop all views that have been defined in
terms of that view. You can also specify this default condition with the
CASCADE keyword.

When you use the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any existing views are defined on view name, which would
be abandoned in the drop operation.

You can query the sysdepend system catalog table to determine which views,
if any, depend on another view.

The following statement drops the view that is named custl:

DROP VIEW custl

1-380 Informix Guide to SQL: Syntax

DROP VIEW

References
See the CREATE VIEW and DROP TABLE statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of views in
Chapter 11.

SQL Statements 1-381

EXECUTE

EXECUTE

statements.

Syntax

Use the EXECUTE statement to run a previously prepared statement or set of

ESQL
statement id

EXECUTE
i statement
id variable

S
E— SN

jpe=—_—

INTO USING
Clause Clause
p. 1-384 p. 1-389

Element Purpose

Restrictions Syntax

statement id Identifier for an SQL statement

Host variable that identifies an
SQL statement

statement id
variable

You must have defined the
statement identifier in a
previous PREPARE statement.
After you release the database
server resources (using a FREE
statement), you cannot use the
statement identifier with a
DECLARE cursor or with the
EXECUTE statement until you
prepare the statement again.

You must have defined the host
variable in a previous PREPARE
statement. The host variable
must be a character data type.

PREPARE, p. 1-538

PREPARE, p. 1-538

1-382 Informix Guide to SQL: Syntax

EXECUTE

Usage

The EXECUTE statement passes a prepared SQL statement to the database
server for execution. The following example shows an EXECUTE statement
within an INFORMIX-ESQL/C program:

EXEC SQL prepare del_1 from
'delete from customer
where customer_num = 119";
EXEC SQL execute del_1;

Once prepared, an SQL statement can be executed as often as needed.

If the statement contained question mark (?) placeholders, you use the USING
clause to provide specific values for them before execution.For more infor-
mation, see the “USING Clause” on page 1-389.

You can execute any prepared statement except the following:

s A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows
of data, you can use the DECLARE, OPEN, and FETCH cursor state-

ments to retrieve the data rows. In addition, you can use EXECUTE on
a prepared SELECT INTO TEMP statement to achieve the same result.

= A prepared EXECUTE FUNCTION statement for an SPL function that
returns more than one row

When you prepare an EXECUTE FUNCTION statement for a SPL
function that returns multiple rows, you need to use the DECLARE,
OPEN and FETCH cursor statements just as you would with a SELECT
statement that returns multiple rows.

For more information on how to execute a SELECT or an EXECUTE
FUNCTION, see “PREPARE” on page 1-538.

If you create or drop a trigger after you prepared a triggering INSERT,
DELETE, or UPDATE statement, the prepared statement returns an error when
you execute it.

Scope of Statement Identifiers

A program can consist of one or more source-code files. By default, the scope
of a statement identifier is global to the program, so a statement identifier
created in one file can be referenced from another file.

SQL Statements 1-383

EXECUTE

In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is executed, you can preprocess all the files
with the -local command-line option. See your SQL API product manual for
more information, restrictions, and performance issues when you preprocess
files with the -local option.

INTO Clause
INTO
Clause
)
output
—»— INTO variable -
\ name ! 4
. output
— indicator
variable
output
INDICATOR — mdlcator
variable
N SQL DESCRIPTOR 'output descriptor' /|
E/C : output descriptor variable —
L DESCRIPTOR

output sqlda pointer -

Element Purpose Restrictions Syntax

output Quoted string that identifiesa System-descriptor area must Quoted String,

descriptor system-descriptor area already be allocated. p. 1-1010

output Host variable name that System-descriptor area must Quoted String,

descriptor identifies the system-descriptor already be allocated. p. 1-1010

variable area

output Host variable that receives a Variable cannot be DATETIME or Variable name must

indicator return code if null data is placed INTERVAL data type. conform to

variable in the corresponding output language-specific
variable rules for variable

names.

(10of2)

1-384 Informix Guide to SQL: Syntax

EXECUTE

Element Purpose Restrictions Syntax
output Points to an sqlda structure that You cannot begin an output DESCRIBE, p. 1-335
sglda defines the data type and sqlda pointer with a dollar sign
pointer memory location of values that ($) oracolon (:). You must use an
correspond to the question-mark sqlda structure if you are using
(?) placeholder in a prepared dynamic SQL statements.
statement.
output Host variable whose contents Variable must be a character Variable name must
variable replace a question-mark (?) data type. conform to
name placeholder in a prepared language-specific
statement rules for variable

names.

(2 of 2)

The INTO clause allows you to save the return values of the following SQL
statements:;

= A prepared singleton SELECT statement that returns only one row of
column values for the columns in the select list

= A prepared EXECUTE FUNCTION statement for an SPL function that
returns only one group of values

The INTO clause provides a concise and efficient alternative to more compli-
cated and lengthy syntax. In addition, by placing values into variables that
can be displayed, the INTO clause simplifies and enhances your ability to
retrieve and display data values. For example, if you use the INTO clause, you
do not have to use the PREPARE, DECLARE, OPEN, and FETCH sequence of
statements to retrieve values.

Important: 1f you execute a prepared SELECT statement that returns more than one
row of data or a prepared EXECUTE FUNCTION for an SPL function that returns
more than one group of return values, you receive an error message. In addition, if
you prepare and declare a statement, and then attempt to execute that statement, you
receive an error message.

You cannot select a null value from a table column and place that value into an
output variable. If you know in advance that a table column contains a null value,
make sure after you select the data that you check the indicator variable that is
associated with the column to determine if the value is null.

SQL Statements 1-385

EXECUTE

E/C

The following list describes how to use the INTO clause with the EXECUTE
statement:

1. Declare the output variables that the EXECUTE statement uses in its
INTO clause.

2. Use the PREPARE statement to prepare your SELECT or EXECUTE
FUNCTION statement.

3. Use the EXECUTE statement, with the INTO clause, to execute your
SELECT or EXECUTE FUNCTION statement.

You can specify any of the following items to store return values from a
SELECT or EXECUTE FUNCTION statement before you execute it:

= A host variable name (if the number and data type of the return val-
ues are known at compile time)

= A system-descriptor area that identifies a dynamically generated
descriptor for the value

= Ansqlda structure that is a pointer to a dynamically generated
descriptor for the value. ¢

Saving Values In Host or Program Variables

If you know the number of return values to be supplied at runtime and their
data types, you can define the values that the SELECT or EXECUTE FUNCTION
statement returns as host variables in your program. You use these host
variables with the INTO keyword, followed by the names of the variables.
These variables are matched with the return values in a one-to-one corre-
spondence, from left to right.

You must supply one variable name for each value that the SELECT or
EXECUTE FUNCTION returns. The data type of each variable must be
compatible with the corresponding return value of the prepared statement.

The following example shows how to use the INTO clause of an EXECUTE
statement to execute a singleton SELECT and store the column values in host
variables:

EXEC SQL prepare sell from
"select fname, Tname from customer \
where customer_num =123";

EXEC SQL execute sell into :fname, :lname;

1-386 Informix Guide to SQL: Syntax

X/O

EXECUTE

The following example shows how to use the INTO clause to execute a
SELECT statement that returns multiple rows of data:

EXEC SQL BEGIN DECLARE SECTION;
int customer_num =100;

char fname[25];

EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sell from 'select fname from customer
where customer_num=?";

for (;customer_num < 200; customer_num++)
{
EXEC SQL execute sell into :fname using :customer_num;
printf("Customer number is %d\n", customer_num);
printf("Customer first name is %s\n\n", fname);
}

For more information on how to use input parameters, see “USING Clause”
on page 1-389.

Saving Values in a System-Descriptor Area

If you do not know the number of return values to be supplied at runtime or
their data types, you can associate output values with a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure (page 1-388) to supply parameters
dynamically. However, a system-descriptor area conforms to the X/Open
standards. ¢

To specify a system-descriptor area as the location of output values, use the
INTO SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are stored in the system-descriptor area.

The following example show how to use system-descriptor area to execute
prepared statements in INFORMIX-ESQL/C:

EXEC SQL allocate descriptor 'descl';

sprintf(sel_stmt, "%s %s %s",
"select fname, Tname from customer"”,
"where customer_num =",
cust_num);

EXEC SQL prepare sell from :sel_stmt;

EXEC SQL execute sell into sql descriptor 'descl';

SQL Statements 1-387

EXECUTE

E/C

The COUNT field corresponds to the number of values that the prepared
statement returns. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement. You can obtain the
value of a field with the GET DESCRIPTOR statement and set the value with
the SET DESCRIPTOR statement.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

Saving Values in an sqlda Structure

If you do not know the number of output values to be returned at runtime or
their data types, you can associate output values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more return
values. To specify an sqlda structure as the location of return values, use the
INTO DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sglda
structure describes into the sqlda structure.

The following example shows how to use an sqlda structure to execute a
prepared statement in INFORMIX-ESQL/C:

struct sqlda *pointer2;

sprintf(sel_stmt, "%s %s %s",
"select fname, Iname from customer",
"where customer_num =",
cust_num);
EXEC SQL prepare sell from :sel_stmt;
EXEC SQL describe sell into pointer2;
EXEC SQL execute sell into descriptor pointer2;

The sqgld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values
that the SELECT or EXECUTE FUNCTION statement returns.

For more information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. 4

1-388 Informix Guide to SQL: Syntax

USING Clause

EXECUTE

USING
Clause

—®—— USING 4

E/C

L DESCRIPTOR

storage
variable
name

==

— . —indicator

Sstorage

variable

storage

INDICATOR — indicator

torage descriptor variable -

variable

N SQL DESCRIPTOR T 'storage descriptor' —
s

storage sqlda pointer B

variable. It receives truncation

information if truncation occurs.

Element Purpose Restrictions Syntax

storage Quoted string that identifiesa System-descriptor area must Quoted String,

descriptor system-descriptor area already be allocated. Make sure p. 1-1010

surrounding quotes are single.

storage Host variable name that System-descriptor area must Variable name must

descriptor identifies a system-descriptor already be allocated. conform to

variable area language-specific
rules for variable
names.

storage Host variable that receives a Variable cannot be DATETIME or Variable name must

indicator return code if null data is placed INTERVAL data type. conform to

variable in the corresponding data language-specific

rules for variable
names.

(10f2)

SQL Statements 1-389

EXECUTE

Element Purpose Restrictions Syntax
storage Points to an sqlda structure that You cannot begin storage sglda DESCRIBE, p. 1-335
sglda defines the data type and pointer with a dollar sign ($) or a
pointer memory location of values that colon (;). You must use an sqlda
correspond to the question-mark structure if you are using
(?) placeholder in a prepared dynamic SQL statements.
statement.
storage Host variable whose contents Variable must be a character Variable name must
variable replace a question-mark (?) data type. conform to
name placeholder in a prepared language-specific
statement rules for variable
names.

E/C

(2 of 2)

The USING clause specifies values that are to replace question-mark (?)
placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

You can specify any of the following items to replace the question-mark
placeholders in a statement before you execute it:

= A host variable name (if the number and data type of the question
marks are known at compile time)

= A system-descriptor area that identifies a dynamically-generated
descriptor for the value

= An sqlda structure that is a pointer to a dynamically-generated
descriptor for the value ¢

Supplying Parameters Through Host or Program Variables

If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the statement
as host variables in your program. You pass parameters to the database
server by opening the cursor with the USING keyword, followed by the
names of the variables. These variables are matched with prepared statement
guestion-mark (?) parameters in a one-to-one correspondence, from left to
right.

1-390 Informix Guide to SQL: Syntax

XIO

EXECUTE

You must supply one storage variable name for each placeholder. The data
type of each variable must be compatible with the corresponding value that
the prepared statement requires.

The following example executes the prepared UPDATE statement in
INFORMIX-ESQL/C:

stcopy ("update orders set order_date = ? where po_num = ?", stml);
EXEC SQL prepare statement_1 from :stml;
EXEC SQL execute statement_l using :order_date,:po_num;

Supplying Parameters Through a System-Descriptor Area

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure (page 1-392) to dynamically supply
parameters. However, a system-descriptor area conforms to the X/Open
standards. ¢

To specify a system-descriptor area as the location of parameters, use the
USING SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are used to replace question-mark (?) placeholders in the PREPARE
statement.

The following example show how to use system-descriptor area to execute
prepared statements in INFORMIX-ESQL/C:

EXEC SQL allocate descriptor 'descl';
EXEC SQL execute prep_stmt using sql descriptor 'descl';

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement. You can obtain the
value of a field with the GET DESCRIPTOR statement and set the value with
the SET DESCRIPTOR statement.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

SQL Statements 1-391

EXECUTE

E/C

1-392

Supplying INFORMIX-ESQL/C Parameters Through an sqlda Structure

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from an sqglda structure. An
sqlda structure lists the data type and memory location of one or more values
to replace question-mark (?) placeholders. To specify an sqlda structure as
the location of parameters, use the USING DESCRIPTOR clause of the
EXECUTE statement. Each time the EXECUTE statement is run, the values that
the sqglda structure describes are used to replace question-mark (?) place-
holders in the PREPARE statement.

The following example shows how to use an sqlda structure to execute a
prepared statement in INFORMIX-ESQL/C:

struct sqlda *pointer?;
ékéC SQL execute prep_stmt using descriptor pointer?Z;

The sqgld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

For more information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. ¢

Error Conditions with EXECUTE

Following an EXECUTE statement, the sqglca record (see the
INFORMIX-ESQL/C Programmer’s Manual) can reflect two results:

= The sqlca record can reflect an exception within the EXECUTE
statement.

= The sqlca structure can also reflect the success or failure of the
prepared statement that EXECUTE runs. For example, when an
UPDATE ... WHERE ... statement within a prepared object processes
zero rows, the database server sets sqlca.sqlcode to 100.

In a database that is not ANSI compliant, if any statement fails to access any
rows, the database server returns an SQLCODE value of zero(0).

Informix Guide to SQL: Syntax

ANSI

EXECUTE

In an ANSI-compliant database, if you prepare and execute any of the
following statements, and no rows are returned, the database server returns
an SQLCODE value of SQLNOTFOUND (100):

= INSERT INTO table-name SELECT ... WHERE ...
s SELECT INTO TEMP ... WHERE ...
= DELETE ... WHERE
= UPDATE .. WHERE ... ¢
In a multistatement prepare, if any statement in the preceding list fails to

access rows, in either ANSI databases or databases that are not ANSI
compliant, the database server returns SQLNOTFOUND (100).

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

References

See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
EXECUTE IMMEDIATE, GET DESCRIPTOR, GET DIAGNOSTICS, PREPARE, PUT,
and SET DESCRIPTOR statements in this manual.

In the Informix Guide to SQL.: Tutorial, see the discussion of the EXECUTE
statement in Chapter 5.

SQL Statements 1-393

EXECUTE FUNCTION

EXECUTE FUNCTION

Use the EXECUTE FUNCTION statement to execute an SPL function or external
function.

Syntax

EXECUTE Function

Name () Clause —|
Fuwcnowg Name_ |
)
LSPL variable Argument :

0
Slzfg|
mO

SPL INTO

p. 1-824

1-394

Element Purpose Restrictions Syntax
SPL A variable created with The SPL variable must be CHAR, Identifier, p. 1-962
variable the DEFINE statement VARCHAR, NCHAR, or NVARCHAR

that contains the name of data type.
an SPL routine to be
executed

The name assigned to SPL variable
must be non-null and the name of an
existing SPL function.

Usage

The EXECUTE FUNCTION statement invokes the named user-defined
function, specifies its arguments, and determines where the results are
returned. A function is a user-defined routine that returns one or more
values. An external function, written in a language other than SPL, returns
exactly one value. An SPL function can return one or more values.

Informix Guide to SQL: Syntax

EXECUTE FUNCTION

You can use EXECUTE FUNCTION to execute an SPL function or an external
function. You cannot use EXECUTE FUNCTION to execute any type of user-
defined procedure. Instead, use the EXECUTE PROCEDURE statement to
execute procedures.

How EXECUTE FUNCTION Works

For a function to be executed with the EXECUTE FUNCTION statement, the
following conditions must exist:

= The qualified function name or the function signature (the function
name with its parameter list) must be unique within the name space
or database.

= The function must exist.

= The function must not have any OUT parameters.
If an EXECUTE FUNCTION statement specifies fewer arguments than the
called function expects, the unspecified arguments are said to be missing.
Missing arguments are initialized to their corresponding parameter default
values, if you specified default values. The syntax of specifying default

values for parameters in described in “Routine Parameter List” on
page 1-1028.

The EXECUTE FUNCTION statement returns an error under the following
conditions:
= It specifies more arguments than the called function expects.

= One or more arguments are missing and do not have default values.
In this case, the arguments are initialized to the value of UNDEFINED.

= The fully qualified function name or the function signature is not
unique.

= No function with the specified name or signature that you specify is
found.

= You use it to try to execute a user-defined procedure.

SQL Statements 1-395

EXECUTE FUNCTION

Function Name

With EXECUTE FUNCTION, you can use either of the following types of
names to execute a remote function;

= If you use a fully qualified function name, the database server deter-
mines which function to use based only on the routine type (which is
FUNCTION) and the function name.

= If you use a function signature, the database server uses the function
name and its full parameter list during routine resolution to
determine which function to use.

For more detailed information, see the Function Name segment on page
1-959.

INTO Clause

INTO
Clause

—p— INTO % data variable i 7

indicator
variable

. $ indicator

variable

INDICATOR — indicator variable/
%

. data structure

1-396 Informix Guide to SQL: Syntax

EXECUTE FUNCTION

data structure

indicator
variable

A structure that has been
declared as a host variable

A program variable that receives
a return code if null data is
placed in the corresponding data
variable

data variable must be a host
variable.

If you issue this statement
within an SPL routine, the data
variable must be an SPL variable.

If you issue this statement
within a CREATE TRIGGER
statement, the data variable must
be column names within the

triggering table or another table.

The individual elements of the
structure must be matched
appropriately to the data type of
values being selected.

This parameter is optional, but
you should use an indicator
variable if the possibility exists
that the value of the corre-
sponding data variable is null.

Element Purpose Restrictions Syntax
data A variable that receives the If you issue this statement The name of a
variable value returned by a function within an ESQL/C program, the receiving variable

must conform to
language-specific
rules for variable
names.

For the syntax of SPL
variables, see
Identifier, p. 1-962.

For the syntax of
column names, see
Identifier, p. 1-962.

The name of the data
structure must
conform to
language-specific
rules for data
structures.

The name of the
indicator variable
must conform to
language-specific
rules for indicator
variables.

into :c_num;

You must specify an INTO clause with EXECUTE FUNCTION to name the
variables that receive the values that the function returns. If the function
returns more than one value, the values are returned into the list of variables
in the order in which you specify them.

If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values.
The following example shows a SELECT statement in INFORMIX-ESQL/C:

EXEC SQL execute function cust_num(fname, Tname, company_name)

SQL Statements 1-397

EXECUTE FUNCTION

ESQL

SPL

E/C

INTO Clause with Indicator Variables

You should use an indicator variable if the possibility exists that data
returned from the user-defined function statement is null. See the
INFORMIX-ESQL/C Programmer’s Manual for more information about
indicator variables. ¢

INTO Clause with Cursors

If the EXECUTE FUNCTION statement executes a user-defined function that
returns more than one row of values, it must execute a cursor function. A
cursor function can return one or more rows of values and must be associated
with a function cursor to execute.

To return more than one row of values, an external function must be defined
as an iterator function. For more information on how to write iterator
functions, see the DataBlade APl Programmer’s Manual. ¢

To return more than one row of values, an SPL function must include the
WITH RESUME keywords in its RETURN statement. For more information on
how to write SPL functions, see Chapter 14 in the Informix Guide to SQL:
Tutorial. ¢

In an INFORMIX-ESQL/C program, use the DECLARE statement to declare the
function cursor and the FETCH statement to fetch the rows individually from
the function cursor. You can put the INTO clause in the FETCH statement
rather than in the EXECUTE FUNCTION statement, but you cannot put it in
both. The following INFORMIX-ESQL/C code examples show different ways
you can use the INTO clause:

Using the INTO clause in the EXECUTE FUNCTION statement

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num)
into :ord_num, :ord_date;

EXEC SQL open f_curs;

while (SQLCODE == 0)
EXEC SQL fetch f_curs;

EXEC SQL close f_curs;

1-398 Informix Guide to SQL: Syntax

SPL

ESQL

SPL

EXECUTE FUNCTION

Using the INTO clause in the FETCH statement

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num);
EXEC SQL open f_curs;
while (SQLCODE == 0)
EXEC SQL fetch f_curs into :ord_num, :ord_date;
EXEC SQL close f_curs;

¢

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see the
FOREACH statement on page 2-27. ¢

Preparing an EXECUTE FUNCTION...INTO Statement

You cannot prepare an EXECUTE FUNCTION statement that has an INTO
clause. You can prepare the EXECUTE FUNCTION without the INTO clause,
declare a function cursor for the prepared statement, open the cursor, and
then use the FETCH statement with an INTO clause to fetch the return values
into the program variable(s). Alternatively, you can declare a cursor for the
EXECUTE FUNCTION statement without first preparing the statement and
include the INTO clause in the EXECUTE FUNCTION when you declare the
cursor. Then open the cursor, and fetch the return values from the cursor
without using the INTO clause of the FETCH statement. ¢

Dynamic Routine-Name Specification of SPL Functions

Dynamic routine-name specification simplifies the writing of an SPL function
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement, you
can use an SPL variable to hold the routine name, instead of listing the explicit
name of an SPL routine.

For more information about how to execute SPL functions dynamically, see
Chapter 14 in the Informix Guide to SQL: Tutorial. ¢

SQL Statements 1-399

EXECUTE FUNCTION

References

See the CREATE FUNCTION, CREATE FUNCTION FROM, DROP FUNCTION,
DROP ROUTINE, and EXECUTE PROCEDURE statements in Chapter 1 of this
manual. Also see the CALL and FOREACH statements in Chapter 2 of this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of writing SPL
routines in Chapter 14.

1-400 Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE

EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to perform the functions of the
PREPARE, EXECUTE, and FREE statements.

Syntax
[+
ESQL
Quoted
EXECUTE IMMEDIATE String
\L p. 1-1010
statement variable name

Element Purpose Restrictions Syntax
statement Host variable whose valueisa The host variable must have Variable name must
variable name character string that consists of been defined within the conform to
one or more SQL statements program. The variable must be language-specific
character data type. For rules for variable
additional restrictions, see names.

“EXECUTE IMMEDIATE and
Restricted Statements” on

page 1-402 and “Restrictions on
Allowed Statements” on

page 1-403.

Usage

The quoted string is a character string that includes one or more SQL
statements. The string, or the contents of statement variable name, is parsed
and executed if correct; then all data structures and memory resources are
released immediately. In the usual method of dynamic execution, these
functions are distributed among the PREPARE, EXECUTE, and FREE
statements.

SQL Statements 1-401

EXECUTE IMMEDIATE

1-402

The EXECUTE IMMEDIATE statement makes it easy to execute dynamically a
single simple SQL statement, which is constructed during program execution.
For example, you could obtain the name of a database from program input,
construct the DATABASE statement as a program variable, and then use
EXECUTE IMMEDIATE to execute the statement, which opens the database.

The following example shows the EXECUTE IMMEDIATE statement in
INFORMIX-ESQL/C:

sprintf(cdb_text, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb_text;

EXECUTE IMMEDIATE and Restricted Statements

You cannot use the EXECUTE IMMEDIATE statement to execute the following
SQL statements.

CLOSE GET DIAGNOSTICS
CONNECT GET DESCRIPTOR
CREATE FUNCTION FROM OPEN

CREATE PROCEDURE FROM OUTPUT
DECLARE PREPARE
DISCONNECT SELECT

EXECUTE SET CONNECTION
EXECUTE FUNCTION SET DESCRIPTOR
EXECUTE PROCEDURE (if the SPL WHENEVER
routine returns values)

FETCH

Use a PREPARE statement and either a cursor or the EXECUTE statement to
execute a dynamically constructed SELECT statement.

Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE

Restrictions on Allowed Statements

The following restrictions apply to the statement that is contained in the
guoted string or in statement variable name;

The statement cannot contain a host-language comment.

Names of host-language variables are not recognized as such in
prepared text. The only identifiers that you can use are names
defined in the database, such as table names and columns.

The statement cannot reference a host variable list or a descriptor; it
must not contain any question-mark (?) placeholders, which are
allowed with a PREPARE statement.

The text must not include any embedded SQL statement prefix or
terminator, such as the dollar sign ($), colon (:), or the words EXEC
SQL.

A SELECT or INSERT statement cannot contain a Collection Derived
Table clause. EXECUTE IMMEDIATE cannot process input host
variables, which are required for a collection variable. Use EXECUTE
or a cursor to process prepared accesses to collection variables.

References

See the EXECUTE, FREE, and PREPARE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of quick execution in
Chapter 5.

SQL Statements 1-403

EXECUTE PROCEDURE

EXECUTE PROCEDURE

Use the EXECUTE PROCEDURE statement to execute an SPL procedure or an
external procedure.

Syntax
E/C
SQLE
Procedure i
EXECUTE PROCEDURE Name () 1
i p. 1-1004 \ [E {
y b
receivin
Argument k INTO g_variab/eg
Function p. 1-824
Name
p.1-959
SPL
variable

1-404 Informix Guide to SQL: Syntax

EXECUTE PROCEDURE

Element Purpose Restrictions Syntax
receiving A variable that receives If you issue this statement within an The name of areceiving variabl
variable the value returned by an ESQL/C program, the receiving must conform to language-
SPL function that you variable must be a host variable. specific rules for variable
execute with EXECUTE £y, ssue this statement within an N2Mes:
PROCEDURE. SPL routine, the receiving variable For the syntax of SPL variables,
must be an SPL variable. see ldentifier, p. 1-962.
If you issue this statement withina For the syntax of column names,
CREATE TRIGGER statement, the see Identifier, p. 1-962.
receiving variable must be a column
name within the triggering table or
another table.
SPL A variable created with The SPL variable must have the data Identifier, p. 1-962
variable the DEFINE statement type CHAR, VARCHAR, NCHAR, or
that contains the name of NVARCHAR.
an SPL (rjoutme to be The name you assign to SPL variable
executed. must be non-null and the name of an
existing routine.

SPL

Usage

The EXECUTE PROCEDURE statement invokes the named user-defined
procedure and specifies its arguments. A procedure is a user-defined routine
that does not return a value. Use EXECUTE PROCEDURE to execute an SPL
procedure or an external procedure.

For backward compatibility with earlier Informix products, INFORMIX-
Universal Server continues to support the INTO clause of the EXECUTE
PROCEDURE statement to save values that a stored procedure returns.
However, Informix recommends that you use EXECUTE PROCEDURE only
with procedures and EXECUTE FUNCTION with functions. For more infor-
mation, see “INTO Clause” on page 1-407. ¢

SQL Statements 1-405

EXECUTE PROCEDURE

1-406

How EXECUTE PROCEDURE Works

For a procedure to be executed with the EXECUTE PROCEDURE statement, the
following conditions must exist:

= The qualified procedure name or the procedure signature (the
procedure name with its parameter list) must be unique within the
name space or database.

= The procedure must exist.

If an EXECUTE PROCEDURE statement has fewer arguments than the called
procedure expects, the unspecified arguments are said to be missing. Missing
arguments are initialized to their corresponding parameter default values, if
you specified default values. The syntax of specifying default values for
parameters in described in “Routine Parameter List” on page 1-1028.

The EXECUTE PROCEDURE statement returns an error under the following
conditions:
= It has more arguments than the called procedure expects.

= One or more arguments are missing and do not have default values.
In this case the arguments are initialized to the value of UNDEFINED.

= The fully qualified procedure name or the procedure signature is not
unique.

= No procedure with the specified hame or signature is found.

Procedure Name

With EXECUTE PROCEDURE, you can use either of the following types of
names to execute a remote procedure:

= If you use a fully qualified procedure name, the database server deter-
mines which procedure to use based only on the routine type (which
is PROCEDURE) and the procedure name.

= If you use a procedure signature, the database server uses the
procedure name and its full parameter list during routine resolution
to determine which procedure to use.

For more detailed information, see the Procedure Name segment on page
1-1004.

Informix Guide to SQL: Syntax

SPL

SPL

EXECUTE PROCEDURE

INTO Clause

For backward compatibility with earlier Informix products, you can use
EXECUTE PROCEDURE to execute a stored procedure that returns a value. To
save the return values of a stored procedure, specify an INTO clause of
EXECUTE PROCEDURE to hame the variables that receive the return values.

If the stored procedure (or SPL function) returns more than one value, the
values are returned into the list of variables in the order in which you specify
them. If the stored procedure returns more than one row or a collection data
type, you must access the rows or collection elements with a cursor.

For more information on stored procedures of earlier Informix products, see
the CREATE PROCEDURE statement. ¢

Dynamic Routine-Name Specification of SPL Procedures

Dynamic routine-name specification simplifies the writing of an SPL procedure
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement, you
can use an SPL variable to hold the routine name, instead of listing the explicit
name of an SPL routine.

If the SPL variable names a stored procedure that returns a value, include the
INTO clause of EXECUTE PROCEDURE to specify a receiving variable (or
variables) to hold the value (or values) that the stored procedure returns.

For more information on how to execute SPL procedures dynamically, see
Chapter 14 in the Informix Guide to SQL: Tutorial. ¢

References

See the CREATE PROCEDURE, CREATE PROCEDURE FROM, DROP
PROCEDURE, DROP ROUTINE, and EXECUTE FUNCTION statements in
Chapter 1 of this manual. Also see the CALL statement in Chapter 20of this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of writing SPL
routines in Chapter 14.

SQL Statements 1-407

FETCH

FETCH

Use the FETCH statement to move a cursor to a new row in the active set and
to retrieve the row values from memory:.

Syntax
FETCH cursor id INTO varlable >/ |
— O\ cusor
variable ___indicator
N— NEXT — variable
PREVIOUS .
indicator
PRIOR INDICATOR- 2")
data structure
N— FIRST —] Y
LAST
N— CURRENT — L
descriptor —
USING DESCRIPTOR P
descriptor__/
N RELATIVE row variable
position
+
- DESCRIPTOR e —
pointer
\-ABSOLUTE————— oW
position

1-408 Informix Guide to SQL: Syntax

FETCH

Element

Purpose

Restrictions

Syntax

cursor id

cursor variable

data structure

data variable

descriptor

descriptor
variable

Identifier for a select or function
cursor from which rows are to be
retrieved

Host variable that holds the
value of cursor id

Structure that has been declared
as a host variable

Host variable that receives one
value from the fetched row

Quoted string that identifies the
system-descriptor area into
which you fetch the contents of a
row

Host variable name that holds
the value of descriptor

A DECLARE statement must
have previously created the
cursor and the OPEN statement
must have previously open it.

The host variable must be a
character data type. The cursor
identified in cursor variable must
have been created in an earlier
DECLARE statement and opened
in an earlier OPEN statement.

The individual members of the
data structure must be matched
appropriately to the type of
values that are being fetched. If
yOu use a program array, you
must list both the array name
and a specific element of the
array in data structure.

The host variable must have a
data type that is appropriate for
the value that is fetched into it.

The system-descriptor area must
have been allocated with the
ALLOCATE DESCRIPTOR
statement.

The system-descriptor area that
is identified in descriptor variable
must have been allocated with
the ALLOCATE DESCRIPTOR
statement.

Identifier, p. 1-962

Variable name must
conform to
language-specific
rules for variable
names.

Data-structure name
must conform to
language-specific
rules for data-
structure names.

Variable name must
conform to
language-specific
rules for variable
names.

Quoted String,
p. 1-1010

Variable name must
conform to
language-specific
rules for variable
names.

(10f2)

SQL Statements 1-409

FETCH

Element

Purpose

Restrictions

Syntax

indicator
variable

row position

sglda pointer

Host variable that receives a
return code if null data is placed
in the corresponding data
variable

Integer value or host variable
that contains an integer value.
The integer value gives the
position of the desired row in the
active set of rows. See “FETCH
with a Scroll Cursor” on

page 1-412 for adiscussion of the
RELATIVE and ABSOLUTE
keywords and the meaning of
row position with each keyword.
Pointer to an sqldastructure that
receives the values from the
fetched row

This parameter is optional, but
use an indicator variable if the
possibility exists that the value
of data variable is null. If you
specify the indicator variable
without the INDICATOR
keyword, you cannot putaspace