
INFORMIX-Universal
Server

Informix Guide to SQL: Syntax

®

Version 9.1
March 1997
Set No. 000-3878

ii INFORMIX
Published by INFORMIX® Press Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright  1981-1997 by Informix Software, Inc. or their subsidiaries, provided that portions may be
copyrighted by third parties, as set forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

INFORMIX; INFORMIX-OnLine Dynamic Server; Illustra; DataBlade

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “®,” and in numerous other countries worldwide:

Regents of the University of California: BSD
Microsoft Corporation: Microsoft; MS; MS-DOS;

(“DOS” as used herein refers to MS-DOS and/or PC-DOS operating systems.)
X/Open Company Ltd.: UNIX; X/Open

All other marks or symbols are registered trademarks or trademarks of their respective owners.

Documentation Team: Diana Chase, Sally Cox, Barbara Daniell, Brian Deutscher, Geeta Karmarkar,
Abby Knott, Dawn Maneval, Virginia Panlasigui, Judith Sherwood

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.

Table of Contents

Table of
Contents
Introduction
About This Manual 3

Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Assumptions About Your Locale. 6
Demonstration Database 6

Major Features 7
Documentation Conventions 9

Typographical Conventions 9
Icon Conventions 10
Syntax Conventions 12
Sample-Code Conventions 18

Additional Documentation 19
On-Line Manuals 19
Printed Manuals 19
Error Message Files 20
Documentation Notes, Release Notes, Machine Notes . . . 20

Compliance with Industry Standards 21
Informix Welcomes Your Comments 21

Chapter 1 SQL Statements
How to Enter SQL Statements 1-6
How to Enter SQL Comments 1-9
Categories of SQL Statements 1-12
ANSI Compliance and Extensions 1-17
Statements . 1-19

ALLOCATE COLLECTION 1-20
ALLOCATE DESCRIPTOR. 1-22
ALLOCATE ROW. 1-25
ALTER FRAGMENT 1-27
ALTER INDEX 1-49

iv Inform
ALTER TABLE 1-52
BEGIN WORK. 1-88
CLOSE 1-90
CLOSE DATABASE 1-94
COMMIT WORK. 1-96
CONNECT 1-98
CREATE CAST 1-109
CREATE DATABASE 1-114
CREATE DISTINCT TYPE 1-118
CREATE FUNCTION 1-122
CREATE FUNCTION FROM. 1-131
CREATE INDEX 1-134
CREATE OPAQUE TYPE 1-164
CREATE OPCLASS 1-171
CREATE PROCEDURE 1-178
CREATE PROCEDURE FROM 1-188
CREATE ROLE 1-190
CREATE ROUTINE FROM 1-192
CREATE ROW TYPE 1-194
CREATE SCHEMA 1-201
CREATE SYNONYM 1-204
CREATE TABLE 1-208
CREATE TRIGGER 1-255
CREATE VIEW 1-286
DATABASE. 1-292
DEALLOCATE COLLECTION 1-294
DEALLOCATE DESCRIPTOR 1-296
DEALLOCATE ROW 1-298
DECLARE 1-300
DELETE 1-324
DESCRIBE 1-335
DISCONNECT 1-343
DROP CAST 1-347
DROP DATABASE 1-349
DROP FUNCTION 1-351
DROP INDEX 1-355
DROP OPCLASS 1-357
DROP PROCEDURE 1-359
DROP ROLE 1-363
DROP ROUTINE 1-365
DROP ROW TYPE 1-369
DROP SYNONYM 1-371
DROP TABLE 1-373
DROP TRIGGER 1-376
DROP TYPE 1-378
DROP VIEW 1-380
EXECUTE 1-382
EXECUTE FUNCTION. 1-394
EXECUTE IMMEDIATE 1-401
ix Guide to SQL: Syntax

EXECUTE PROCEDURE 1-404
FETCH. 1-408
FLUSH. 1-423
FREE . 1-426
GET DESCRIPTOR 1-430
GET DIAGNOSTICS 1-438
GRANT 1-458
GRANT FRAGMENT 1-477
INFO . 1-486
INSERT 1-492
LOAD . 1-512
LOCK TABLE 1-522
OPEN . 1-525
OUTPUT 1-536
PREPARE 1-538
PUT . 1-552
RENAME COLUMN 1-565
RENAME DATABASE 1-568
RENAME TABLE 1-569
REVOKE 1-572
REVOKE FRAGMENT 1-586
ROLLBACK WORK 1-591
SELECT 1-593
SET . 1-644
SET AUTOFREE 1-673
SET CONNECTION 1-682
SET DATASKIP 1-689
SET DEBUG FILE TO 1-692
SET DEFERRED_PREPARE 1-695
SET DESCRIPTOR 1-699
SET EXPLAIN 1-711
SET ISOLATION 1-719
SET LOCK MODE 1-724
SET LOG 1-727
SET OPTIMIZATION. 1-729
SET PDQPRIORITY 1-731
SET ROLE 1-734
SET SESSION AUTHORIZATION 1-736
SET TRANSACTION 1-738
START VIOLATIONS TABLE 1-744
STOP VIOLATIONS TABLE 1-763
UNLOAD. 1-765
UNLOCK TABLE 1-773
UPDATE 1-775
UPDATE STATISTICS 1-801
WHENEVER. 1-814

Segments . 1-821
Argument. 1-824
Collection Derived Table 1-827
Table of Contents v

vi Inform
Condition 1-831
Constraint Name 1-850
Database Name 1-852
Data Type 1-855
DATETIME Field Qualifier 1-874
Expression 1-876
External Routine Reference 1-956
Function Name 1-959
Identifier 1-962
Index Name 1-980
INTERVAL Field Qualifier 1-982
Literal Collection 1-985
Literal DATETIME 1-991
Literal INTERVAL 1-994
Literal Number 1-997
Literal Row 1-999
Procedure Name 1-1004
Quoted Pathname 1-1007
Quoted String 1-1010
Relational Operator 1-1014
Return Clause 1-1020
Routine Modifier 1-1022
Routine Parameter List 1-1028
Specific Name 1-1034
Statement Block 1-1037
Synonym Name 1-1042
Table Name. 1-1044
View Name. 1-1047

Chapter 2 SPL Statements
CALL. 2-4
CONTINUE 2-7
DEFINE 2-8
EXIT . 2-20
FOR . 2-22
FOREACH 2-27
IF . 2-34
LET . 2-39
ON EXCEPTION 2-43
RAISE EXCEPTION 2-49
RETURN 2-51
SYSTEM 2-54
TRACE 2-57
WHILE 2-61

Index
ix Guide to SQL: Syntax

Introduction

Introduction
About This Manual 3
Organization of This Manual 4
Types of Users 5
Software Dependencies 5
Assumptions About Your Locale 6
Demonstration Database 6

Major Features . 7

Documentation Conventions 9
Typographical Conventions 9
Icon Conventions 10

Comment Icons 10
Feature and Product Icons. 11
Compliance Icons 12

Syntax Conventions 12
Elements That Can Appear on the Path 13
How to Read a Syntax Diagram 16

Sample-Code Conventions 18

Additional Documentation 19
On-Line Manuals 19
Printed Manuals 19
Error Message Files 20
Documentation Notes, Release Notes, Machine Notes 20

Compliance with Industry Standards 21

Informix Welcomes Your Comments 21

2 Inform
ix Guide to SQL: Syntax

R ead this introduction for an overview of the information
provided in this manual and for an understanding of the documentation
conventions used.

About This Manual
The Informix Guide to SQL: Syntax manual contains syntax descriptions for the
Structured Query Language (SQL) and Stored Procedure Language (SPL)
statements that Universal Server supports.

This manual is part of a series of manuals that discusses the Informix imple-
mentation of SQL. This volume and the Informix Guide to SQL: Reference are
references that you can use on a daily basis after you finish reading the
Informix Guide to SQL: Tutorial.

Important: This manual does not cover the product called INFORMIX-SQL or any
other Informix application development tool.
Introduction 3

Organization of This Manual
Organization of This Manual
This manual includes the following chapters:

■ This Introduction provides an overview of the manual and describes
the documentation conventions used.

■ Chapter 1, “SQL Statements,” describes SQL statements and seg-
ments. The chapter is divided into six sections. The first four sections
provide an introduction to the statements and segments. These sec-
tions cover the following subjects: entry of SQL statements, entry of
SQL comments, categories of SQL statements, and categories of ANSI
compliance. The fifth and sixth sections, “Statements” and “Seg-
ments,” are the major sections of the chapter.

❑ “Statements” explains the workings of all the SQL statements
that Informix products support. Detailed syntax diagrams walk
you through every clause of each SQL statement, and syntax
tables explain the input parameters for each clause. Thorough
usage instructions, pertinent examples, and references to related
material complete the description of each SQL statement.

❑ “Segments” explains all the SQL segments. SQL segments are
language elements, such as table names and expressions, that
occur in many SQL statements. Instead of describing each
segment in each statement where it occurs, this manual provides
a comprehensive stand-alone description of each segment.
Whenever a segment occurs within a given syntax diagram, the
diagram points to the stand-alone description of the segment in
this section for further information.

■ Chapter 2, “SPL Statements,” presents all the detailed syntax dia-
grams and explanations for SPL statements. You can use stored
procedures to perform any function you can perform in SQL as well
as to expand what you can accomplish with SQL alone. You write a
stored procedure using SPL and SQL statements. For task-oriented
information about using stored procedures, see the Informix Guide to
SQL: Tutorial.

■ The Index is a combined index for the manuals in the SQL series.
Each page reference in the index ends with a code that identifies the
manual in which the page appears. The same index also appears in
the Informix Guide to SQL: Reference and the Informix Guide to SQL:
Tutorial.
4 INFORMIX

Types of Users
The following items are an integral part of this manual although they do not
appear in it:

■ A description of the structure and contents of the stores7 demon-
stration database appears in the Informix Guide to SQL: Reference.

■ A glossary of object-relational database terms that are used in the
SQL manual series appears in the Informix Guide to SQL: Reference.

Types of Users
This manual is written for SQL users, database administrators and SQL devel-
opers who use Informix products and SQL on a regular basis.

Software Dependencies
This manual assumes that you are using the following Informix software:

■ INFORMIX-Universal Server, Version 9.1

The database server must be installed either on your computer or on
another computer to which your computer is connected over a
network.

In this manual, all instances of Universal Server refer to INFORMIX-
Universal Server.

■ An Informix SQL application programming interface (API), such as
INFORMIX-ESQL/C, Version 9.1, or the DB-Access database access
utility, which is shipped as part of your database server.

The SQL API or DB-Access enables you to compose queries, send
them to the database server, and view the results that the database
server returns.
Introduction 5

Assumptions About Your Locale
Assumptions About Your Locale
Informix products can support many languages, cultures, and code sets. All
culture-specific information is brought together in a single environment,
called a GLS (Global Language Support) locale.

This manual assumes that you are using the default locale, en_us.8859-1. This
locale supports U.S. English format conventions for dates, times, and
currency. In addition, this locale supports the ISO 8859-1 code set, which
includes the ASCII code set plus many 8-bit characters such as é, è, and ñ.

If you plan to use nondefault characters in your data or your SQL identifiers,
or if you want to conform to the nondefault collation rules of character data,
you need to specify the appropriate nondefault locale(s). For instructions on
how to specify a nondefault locale, additional syntax, and other consider-
ations related to GLS locales, see the Guide to GLS Functionality.

Demonstration Database
The DB-Access utility, which is provided with your Informix database server
products, includes a demonstration database called stores7 that contains
information about a fictitious wholesale sporting-goods distributor. Sample
command files are also included.

Many examples in Informix manuals are based on the stores7 demonstration
database. The stores7 database is described in detail and its contents are
listed in Appendix A of the Informix Guide to SQL: Reference.

The script that you use to install the demonstration database is called
dbaccessdemo7 and is located in the $INFORMIXDIR/bin directory. For a
complete explanation of how to create and populate the demonstration
database on your database server, refer to the DB-Access User Manual.
6 INFORMIX

Major Features
Major Features
The following SQL features are new with Universal Server, Version 9.1.

ALLOCATE COLLECTION DROP TYPE
ALLOCATE ROW EXECUTE FUNCTION
CREATE CAST SET AUTOFREE
CREATE DISTINCT TYPE SET DEFERRED_PREPARE
CREATE FUNCTION Argument
CREATE FUNCTION FROM Collection Derived Table
CREATE OPAQUE TYPE External Routine Reference
CREATE OPCLASS Function Name
CREATE ROUTINE FROM Literal Collection
CREATE ROW TYPE Literal Row
DEALLOCATE COLLECTION Quoted Pathname
DEALLOCATE ROW Return Clause
DROP CAST Routine Modifier
DROP FUNCTION Routine Parameter List
DROP OPCLASS Specific Name
DROP ROUTINE Statement Block
DROP ROW TYPE
Introduction 7

Major Features
The following SQL features are enhanced for use with Universal Server,
Version 9.1.

The Introduction to each Version 9.1 product manual contains a list of major
features for that product. The Introduction to each manual in the Version 9.1
Informix Guide to SQL series contains a list of new SQL features.

Major features for Version 9.1 Informix products also appear in release notes.

ALLOCATE DESCRIPTOR FLUSH
ALTER FRAGMENT FREE
ALTER INDEX GET DESCRIPTOR
ALTER TABLE GET DIAGNOSTICS
CREATE INDEX GRANT
CREATE PROCEDURE INFO
CREATE PROCEDURE FROM INSERT
CREATE SCHEMA OPEN
CREATE SYNONYM PREPARE
CREATE TABLE PUT
CREATE VIEW REVOKE
DEALLOCATE DESCRIPTOR SELECT
DECLARE SET DESCRIPTOR
DELETE SET EXPLAIN
DESCRIBE UPDATE
DROP INDEX UPDATE STATISTICS
DROP PROCEDURE Condition
DROP TABLE Data Type
EXECUTE Expression
EXECUTE PROCEDURE Procedure Name
FETCH Quoted String
8 INFORMIX

Documentation Conventions
Documentation Conventions
This section describes the conventions that this manual uses. These conven-
tions make it easier to gather information from this and other Informix
manuals.

The following conventions are covered:

■ Typographical conventions

■ Icon conventions

■ Syntax conventions

■ Sample-code conventions

Typographical Conventions
This manual uses the following standard set of conventions to introduce new
terms, illustrate screen displays, describe command syntax, and so forth.

Convention Meaning

KEYWORD All keywords appear in uppercase letters in a serif font.

italics Within text, new terms and emphasized words appear in italics.
Within syntax diagrams, values that you are to specify appear
in italics.

boldface Identifiers (names of classes, objects, constants, events,
functions, program variables, forms, labels, and reports),
environment variables, database names, filenames, table
names, column names, icons, menu items, command names,
and other similar terms appear in boldface.

 (1 of 2)
Introduction 9

Icon Conventions
Tip: When you are instructed to “enter” characters or to “execute” a command,
immediately press RETURN after the entry. When you are instructed to “type” the
text or to “press” other keys, no RETURN is required.

Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify warnings, important notes, or tips. This information
is always displayed in italics.

monospace Information that the product displays and information that you
enter appear in a monospace typeface.

KEYSTROKE Keys that you are to press appear in uppercase letters in a sans
serif font.

♦ This symbol indicates the end of feature-, product-, platform-,
or compliance-specific information.

Icon Description

The warning icon identifies vital instructions, cautions, or
critical information.

The important icon identifies significant information about
the feature or operation that is being described.

The tip icon identifies additional details or shortcuts for the
functionality that is being described.

Convention Meaning

 (2 of 2)
10 INFORMIX

Icon Conventions
Feature and Product Icons

Feature and product icons identify paragraphs that contain feature-specific
or product-specific information.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the feature- or product-specific
information.

Icon Description

Identifies information that relates to the Informix Global
Language Support (GLS) feature.

Identifies information that is valid only for DB-Access.

Identifies information that is valid only for SQL statements
in INFORMIX-ESQL/C.

Identifies information that is valid only for
INFORMIX-ESQL/C.

Identifies information that is valid only for
INFORMIX-OnLine/Optical.

Identifies information that is valid only if you are using
Informix Stored Procedure Language (SPL).

GLS

D/B

ESQL

E/C

OP

SPL
Introduction 11

Syntax Conventions
Compliance Icons

Compliance icons indicate paragraphs that provide guidelines for complying
with a standard.

These icons can apply to a row in a table, one or more paragraphs, or an entire
section. A ♦ symbol indicates the end of the compliance information.

Syntax Conventions
This section describes conventions for syntax diagrams. Each diagram
displays the sequences of required and optional keywords, terms, and
symbols that are valid in a given statement or segment, as Figure 1 shows.

Figure 1
Example of a Simple Syntax Diagram

Each syntax diagram begins at the upper-left corner and ends at the upper-
right corner with a vertical terminator. Between these points, any path that
does not stop or reverse direction describes a possible form of the statement.

Icon Description

Identifies information that is specific to an ANSI-compliant
database.

Identifies functionality that conforms to X/Open. This
functionality is available when you compile your SQL API
with the -xopen flag.

l
ANSI

X/O

+

SET EXPLAIN ON

OFF
12 INFORMIX

Syntax Conventions
Syntax elements in a path represent terms, keywords, symbols, and segments
that can appear in your statement. The path always approaches elements
from the left and continues to the right, except in the case of separators in
loops. For separators in loops, the path approaches counterclockwise from
the right. Unless otherwise noted, at least one blank character separates
syntax elements.

Elements That Can Appear on the Path

You might encounter one or more of the following elements on a path.

Element Description

KEYWORD A word in UPPERCASE letters is a keyword. You must
spell the word exactly as shown; however, you can use
either uppercase or lowercase letters.

(. , ; @ + * - /) Punctuation and other nonalphanumeric characters
are literal symbols that you must enter exactly as
shown.

' ' Single quotes are literal symbols that you must enter
as shown.

variable A word in italics represents a value that you must
supply. A table immediately following the diagram
explains the value.

A reference in a box represents a subdiagram. Imagine
that the subdiagram is spliced into the main diagram
at this point. When a page number is not specified, the
subdiagram appears on the same page.

 (1 of 3)

ADD
Clause
p. 1-14

ADD Clause
Introduction 13

Syntax Conventions
An icon is a warning that this path is valid only for
some products, or only under certain conditions.
Characters on the icons indicate what products or
conditions support the path.

These icons might appear in a syntax diagram:

This path is valid only for DB-Access.

This path is valid only for
INFORMIX-ESQL/C.

This path is valid for external routines.

This path is valid only if you are using
Informix Stored Procedure Language
(SPL).

This path is valid for the SQL Editor.

This path is valid only for
INFORMIX-OnLine/Optical.

This path is an Informix extension to
ANSI SQL-92 entry-level standard SQL. If
you initiate Informix extension checking
and include this syntax branch, you
receive a warning. If you have set the
DBANSIWARN environment variable at
compile time, or have used the -ansi
compile flag, you receive warnings at
compile time. If you have DBANSIWARN
set at runtime, or if you compiled with
the -ansi flag, warning flags are set in the
sqlwarn structure.

This path is valid only if your database or
application uses a nondefault GLS locale.

A shaded option is the default action.

Syntax that is enclosed between a pair of arrows is
a subdiagram.

Element Description

 (2 of 3)

E/C

D/B

E/C

EXT

SPL

SQLE

OP

+

GLS

ALL
14 INFORMIX

Syntax Conventions
The vertical line terminates the syntax diagram.

A branch below the main path indicates an optional
path. (Any term on the main path is required, unless
a branch can circumvent it.)

A set of multiple branches indicates that a choice
among more than two different paths is available.

A loop indicates a path that you can repeat.
Punctuation along the top of the loop indicates the
separator symbol for list items. If no symbol appears,
a blank space is the separator.

A gate () on a path indicates that you can only use
that path the indicated number of times, even if it is
part of a larger loop. Here you can specify size no more
than three times.

Element Description

 (3 of 3)

NOT

NULLIS

ERROR

WARNING

NOT FOUND

statement

variable

,

size

,

3

3

Introduction 15

Syntax Conventions
How to Read a Syntax Diagram

Figure 2 shows a syntax diagram that uses many of the elements that are
listed in the previous table.

The three icons at the top left of this diagram indicate that you can construct
this statement if you are using DB-Access, ESQL/C, or the SQL Editor. To use
the diagram to construct a statement, begin at the far left with the keywords
DELETE FROM. Then follow the diagram to the right, proceeding through the
options that you want.

Figure 2
Example of a Syntax Diagram

DELETE
FROM

Table
Name

p. 1-1034

WHERE Condition
p. 1-824

Collection
Derived Table

p. 1-821

WHERE CURRENT OF cursor
name

cursor
nameCURRENT OF

E/C

E/C

DB

SQLE

View
Name

p. 1-1038

ONLY ()Table
Name

p. 1-1034

+

Synonym
Name

p. 1-1032

SPL

+

E/C
16 INFORMIX

Syntax Conventions
To construct a DELETE statement

1. You must type the words DELETE FROM.

2. If you are using DB-Access, ESQL/C, or the SQL Editor, you can delete
a table, view, or synonym:

■ Follow the diagram by typing the table name, view name, or
synonym, as desired. Refer to the appropriate segment for
available syntax options.

■ You must type the keyword WHERE.

■ If you are using DB-Access or the SQL Editor, you must include
the Condition clause to specify a condition to delete. To find the
syntax for deleting a condition, go to the “Condition” segment
on page 1-803.

■ If you are using ESQL/C or SPL, you can include either the
Condition clause to delete a specific condition or the CURRENT
OF cursorname clause to delete a row from the table.

3. If you are using ESQL/C, you can also choose to delete from a
collection-derived table:

■ Follow the diagram by going to the segment “Collection Derived
Table” on page 1-800. Follow the syntax for the segment.

■ You can stop, taking the direct route to the terminator, or you can
include the WHERE CURRENT OF cursorname clause to delete a
row from a collection-derived table.

4. Follow the diagram to the terminator. Your DELETE statement is
complete.
Introduction 17

Sample-Code Conventions
Sample-Code Conventions
Examples of SQL code occur throughout this manual. Except where noted,
the code is not specific to any single Informix application development tool.
If only SQL statements are listed in the example, they are not delimited by
semicolons. For instance, you might see the code in the following example:

CONNECT TO stores7
...

DELETE FROM customer
WHERE customer_num = 121

...

COMMIT WORK
DISCONNECT CURRENT

To use this SQL code for a specific product, you must apply the syntax rules
for that product. For example, if you are using the Query-language option of
DB-Access, you must delimit multiple statements with semicolons. If you are
using an SQL API, you must use EXEC SQL at the start of each statement and
a semicolon (or other appropriate delimiter) at the end of the statement.

Tip: Ellipsis points in a code example indicate that more code would be added in a
full application, but it is not necessary to show it to describe the concept being
discussed.

For detailed directions on using SQL statements for a particular application
development tool or SQL API, see the manual for your product.
18 INFORMIX

Additional Documentation
Additional Documentation
For additional information, you might want to refer to the following types of
documentation:

■ On-line manuals

■ Printed manuals

■ Error message files

■ Documentation notes, release notes, and machine notes

On-Line Manuals
A CD that contains Informix manuals in electronic format is provided with
your Informix products. You can install the documentation or access it
directly from the CD. For information about how to install, read, and print on-
line manuals, see either the installation guide for your product or the instal-
lation insert that accompanies the documentation CD.

The documentation set that is provided on the CD describes Universal Server,
its implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

Printed Manuals
The Universal Server documentation set describes Universal Server, its
implementation of SQL, and its associated application-programming
interfaces. For an overview of the manuals in the Universal Server
documentation set, see Getting Started with INFORMIX-Universal Server.

To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com.

Please provide the following information:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and telephone number
Introduction 19

Error Message Files
Error Message Files
Informix software products provide ASCII files that contain all the Informix
error messages and their corrective actions. To read the error messages in the
ASCII file, Informix provides scripts that let you display error messages on
the screen (finderr) or print formatted error messages (rofferr). For a detailed
description of these scripts, see the Introduction to the Informix Error Messages
manual.

Documentation Notes, Release Notes, Machine Notes
In addition to printed documentation, the following on-line files, located in
the $INFORMIXDIR/release/en_us/0333 directory, supplement the infor-
mation in this manual.

Please examine these files because they contain vital information about
application and performance issues.

On-Line File Purpose

SQLSDOC_9.1 The documentation-notes file describes features that are not
covered in this manual or that have been modified since
publication.

SERVERS_9.1 The release-notes file describes feature differences from earlier
versions of Informix products and how these differences might
affect current products. This file also contains information about
any known problems and their workarounds.

IUNIVERSAL_9.1 The machine-notes file describes any special actions that are
required to configure and use Informix products on your
computer. Machine notes are named for the product described.
20 INFORMIX

Compliance with Industry Standards
Compliance with Industry Standards
The American National Standards Institute (ANSI) has established a set of
industry standards for SQL. Informix SQL-based products are fully compliant
with SQL-92 Entry Level (published as ANSI X3.135-1992), which is identical
to ISO 9075:1992, on INFORMIX-Universal Server. In addition, many features
of Universal Server comply with the SQL-92 Intermediate and Full Level and
X/Open SQL CAE (common applications environment) standards.

Informix Welcomes Your Comments
Please tell us what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about corrections or clari-
fications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send email, our address is:

doc@informix.com

Or send a facsimile to the Informix Technical Publications Department at:

415-926-6571

We appreciate your feedback.
Introduction 21

1
Chapter
SQL Statements
How to Enter SQL Statements 1-6

How to Enter SQL Comments 1-9

Categories of SQL Statements 1-12

ANSI Compliance and Extensions 1-17

Statements . 1-19
ALLOCATE COLLECTION 1-20
ALLOCATE DESCRIPTOR. 1-22
ALLOCATE ROW 1-25
ALTER FRAGMENT 1-27
ALTER INDEX 1-49
ALTER TABLE 1-52
BEGIN WORK 1-88
CLOSE. 1-90
CLOSE DATABASE 1-94
COMMIT WORK 1-96
CONNECT . 1-98
CREATE CAST 1-109
CREATE DATABASE. 1-114
CREATE DISTINCT TYPE 1-118
CREATE FUNCTION 1-122
CREATE FUNCTION FROM 1-131
CREATE INDEX 1-134
CREATE OPAQUE TYPE 1-164
CREATE OPCLASS 1-171
CREATE PROCEDURE 1-178
CREATE PROCEDURE FROM 1-188
CREATE ROLE 1-190

1-2 Infor
CREATE ROUTINE FROM 1-192
CREATE ROW TYPE 1-194
CREATE SCHEMA 1-201
CREATE SYNONYM 1-204
CREATE TABLE 1-208
CREATE TRIGGER 1-255
CREATE VIEW 1-286
DATABASE . 1-292
DEALLOCATE COLLECTION 1-294
DEALLOCATE DESCRIPTOR 1-296
DEALLOCATE ROW 1-298
DECLARE . 1-300
DELETE . 1-324
DESCRIBE . 1-335
DISCONNECT 1-343
DROP CAST . 1-347
DROP DATABASE. 1-349
DROP FUNCTION 1-351
DROP INDEX 1-355
DROP OPCLASS 1-357
DROP PROCEDURE 1-359
DROP ROLE . 1-363
DROP ROUTINE 1-365
DROP ROW TYPE 1-369
DROP SYNONYM 1-371
DROP TABLE 1-373
DROP TRIGGER 1-376
DROP TYPE . 1-378
DROP VIEW . 1-380
EXECUTE. 1-382
EXECUTE FUNCTION 1-394
EXECUTE IMMEDIATE 1-401
EXECUTE PROCEDURE 1-404
FETCH . 1-408
FLUSH . 1-423
FREE . 1-426
GET DESCRIPTOR 1-430
GET DIAGNOSTICS 1-438
GRANT . 1-458
mix Guide to SQL: Syntax

GRANT FRAGMENT 1-477
INFO . 1-486
INSERT . 1-492
LOAD . 1-512
LOCK TABLE . 1-522
OPEN. 1-525
OUTPUT . 1-536
PREPARE . 1-538
PUT . 1-552
RENAME COLUMN 1-565
RENAME DATABASE 1-568
RENAME TABLE. 1-569
REVOKE . 1-572
REVOKE FRAGMENT 1-586
ROLLBACK WORK 1-591
SELECT . 1-593
SET . 1-644
SET AUTOFREE 1-673
SET CONNECTION. 1-682
SET DATASKIP 1-689
SET DEBUG FILE TO 1-692
SET DEFERRED_PREPARE 1-695
SET DESCRIPTOR 1-699
SET EXPLAIN . 1-711
SET ISOLATION 1-719
SET LOCK MODE 1-724
SET LOG . 1-727
SET OPTIMIZATION 1-729
SET PDQPRIORITY 1-731
SET ROLE . 1-734
SET SESSION AUTHORIZATION 1-736
SET TRANSACTION 1-738
START VIOLATIONS TABLE 1-744
STOP VIOLATIONS TABLE 1-763
UNLOAD . 1-765
UNLOCK TABLE. 1-773
UPDATE. 1-775
UPDATE STATISTICS 1-801
WHENEVER . 1-814
SQL Statements 1-3

1-4 Infor
Segments . 1-821
Argument . 1-824
Collection Derived Table. 1-827
Condition . 1-831
Constraint Name 1-850
Database Name 1-852
Data Type . 1-855
DATETIME Field Qualifier 1-874
Expression . 1-876
External Routine Reference 1-956
Function Name 1-959
Identifier . 1-962
Index Name . 1-980
INTERVAL Field Qualifier 1-982
Literal Collection 1-985
Literal DATETIME. 1-991
Literal INTERVAL 1-994
Literal Number 1-997
Literal Row . 1-999
Procedure Name 1-1004
Quoted Pathname 1-1007
Quoted String 1-1010
Relational Operator 1-1014
Return Clause 1-1020
Routine Modifier 1-1022
Routine Parameter List 1-1028
Specific Name 1-1034
Statement Block. 1-1037
Synonym Name. 1-1042
Table Name . 1-1044
View Name . 1-1047
mix Guide to SQL: Syntax

This chapter provides comprehensive reference information about
SQL statements and the SQL segments that recur in SQL statements. It is
organized into the following sections:

■ “How to Enter SQL Statements” shows how to use the information
in the statement descriptions to enter SQL statements correctly.

■ “How to Enter SQL Comments” shows how to enter comments for
your SQL statements in DB-Access command files, SQL APIs, and
stored procedures.

■ “Categories of SQL Statements” divides SQL statements into several
functional categories and lists the statements within each category.
Some examples of these categories are data definition statements,
data manipulation statements, and data integrity statements.

■ “ANSI Compliance and Extensions” explains how the SQL state-
ments in this manual comply with the ANSI SQL standard. This
section provides a list of ANSI-compliant statements, a list of ANSI-
compliant statements with Informix extensions, and a list of state-
ments that are Informix extensions to the ANSI standard.

■ “Statements” gives comprehensive descriptions of SQL statements.
The statements are listed in alphabetical order.

■ “Segments” gives comprehensive descriptions of SQL segments. The
segments are listed in alphabetical order. SQL segments are language
elements, such as table names and expressions, that occur in many
SQL statements. Instead of describing each segment in each
statement where it occurs, this chapter provides a comprehensive
stand-alone description of each segment. Whenever a segment
occurs within the syntax diagram for an SQL statement, the diagram
points to the stand-alone description of the segment for further
information.
SQL Statements 1-5

How to Enter SQL Statements
The following table summarizes the sections of this chapter.

How to Enter SQL Statements
The purpose of the statement descriptions in this chapter is to help you to
enter SQL statements successfully and to understand the behavior of the
statements. Each statement description includes the following information:

■ A brief introduction that explains the purpose of the statement

■ A syntax diagram that shows how to enter the statement correctly

■ A syntax table that explains each input parameter in the syntax
diagram

■ Rules of usage, including examples that illustrate these rules

Section Starting Page Scope

“How to Enter
SQL Statements”

1-6 This section shows how to use the
statement descriptions to enter SQL
statements correctly.

“How to Enter
SQL Comments”

1-9 This section shows how to enter
comments for SQL statements.

“Categories of SQL
Statements”

1-12 This section lists SQL statements by
functional category.

“ANSI
Compliance and
Extensions”

1-17 This section lists SQL statements by
degree of ANSI compliance.

“Statements” 1-19 This section gives reference descriptions
of all SQL statements.

“Segments” 1-821 This section gives reference descriptions
of all SQL segments.
1-6 Informix Guide to SQL: Syntax

How to Enter SQL Statements
If a statement consists of multiple clauses, the statement description provides
the same set of information for each clause.

Each statement description concludes with references to related information
in this manual and other manuals.

The major aids for entering SQL statements successfully include:

■ the combination of the syntax diagram and syntax table.

■ the examples of syntax that appear in the rules of usage.

■ the references to related information.

Using Syntax Diagrams and Syntax Tables
Before you try to use the syntax diagrams in this chapter, it is helpful to read
“Syntax Conventions” on page 12 of the Introduction. This section is the key
to understanding the syntax diagrams in the statement descriptions.

The “Syntax Conventions” section explains the elements that can appear in a
syntax diagram and the paths that connect the elements to each other. This
section also includes a sample syntax diagram that illustrates the major
elements of all syntax diagrams. The narrative that follows the sample
diagram shows how to read the diagram in order to enter the statement
successfully.

When a syntax diagram within a statement description includes input
parameters, the syntax diagram is followed by a syntax table that shows how
to enter the parameters without generating errors. Each syntax table includes
the following columns:

■ The Elements column lists the name of each parameter as it appears
in the syntax diagram.

■ The Purpose column briefly states the purpose of the parameter. If
the parameter has a default value, it is listed in this column.

■ The Restrictions column summarizes the restrictions on the
parameter, such as acceptable ranges of values.

■ The Syntax column refers to the SQL segment that gives the detailed
syntax for the parameter.
SQL Statements 1-7

How to Enter SQL Statements
Using Examples
To understand the main syntax diagram and subdiagrams for a statement,
study the examples of syntax that appear in the rules of usage for each
statement. These examples have two purposes:

■ To show how to accomplish particular tasks with the statement or its
clauses

■ To show how to use the syntax of the statement or its clauses in a
concrete way

Tip: An efficient way to understand a syntax diagram is to find an example of the
syntax and compare it with the keywords and parameters in the syntax diagram. By
mapping the concrete elements of the example to the abstract elements of the syntax
diagram, you can understand the syntax diagram and use it more effectively.

For an explanation of the conventions used in the examples in this manual,
see “Sample-Code Conventions” on page 18 of the Introduction.

Using References
For help in understanding the concepts and terminology in the SQL
statement description, check the “References” section at the end of the
description.

The “References” section points to related information in this manual and
other manuals that helps you to understand the statement in question. This
section provides some or all of the following information:

■ The names of related statements that might contain a fuller
discussion of topics in this statement

■ The titles of other manuals that provide extended discussions of
topics in this statement

■ The chapters in the Informix Guide to SQL: Tutorial that provide a task-
oriented discussion of topics in this statement

Tip: If you do not have extensive knowledge and experience with SQL, the “Informix
Guide to SQL: Tutorial” gives you the basic SQL knowledge that you need to under-
stand and use the statement descriptions in this manual.
1-8 Informix Guide to SQL: Syntax

How to Enter SQL Comments
How to Enter SQL Comments
You can add comments to clarify the purpose or effect of particular SQL state-
ments. Your comments can help you or others to understand the role of the
statement within a program, stored procedure, or command file. The code
examples in this manual sometimes include comments that clarify the role of
an SQL statement within the code.

The following table shows the SQL comment symbols that you can enter in
your code. A Y in a column signifies that you can use the symbol with the
product or database type named in the column heading. An N in a column
signifies that you cannot use the symbol with the product or database type
that the column heading names.

Comment
Symbol

SQL
APIs

Stored
Procedures
(SPL)

DB-Access ANSI-
Compliant
Databases

Databases
That Are
Not ANSI
Compliant

Description

double
dash
(--)

Y Y Y Y Y The double dash precedes the
comment. The double dash can
comment only a single line. To
comment more than one line,
you must put the double dash
at the beginning of each
comment line.

curly
brackets
({})

N Y Y Y Y Curly brackets enclose the
comment. The { precedes the
comment, and the } follows the
comment. You can use curly
brackets for single-line
comments or for multiple-line
comments.
SQL Statements 1-9

How to Enter SQL Comments
If the product that you are using supports both comment symbols, your
choice of a comment symbol depends on your requirements for ANSI
compliance:

■ The double dash (--) complies with the ANSI SQL standard.

■ Curly brackets ({}) are an Informix extension to the standard.

If ANSI compliance is not an issue, your choice of comment symbols is a mat-
ter of personal preference.

You can use either comment symbol when you enter SQL statements with the
SQL editor and when you create SQL command files with the SQL editor or a
system editor. An SQL command file is an operating-system file that contains
one or more SQL statements. Command files are also known as command
scripts. For more information about command files, see the discussion of
command scripts in the Informix Guide to SQL: Tutorial. For information on
creating and modifying command files with the SQL editor or a system editor
in DB-Access, see the DB-Access User Manual. ♦

You can use either comment symbol in any line of a SPL routine. See the
discussion of commenting and documenting a procedure in the Informix
Guide to SQL: Tutorial. ♦

You can use the double dash (--) to comment SQL statements in your SQL API.
For further information on the use of SQL comment symbols and language-
specific comment symbols in application programs, see the manual for your
SQL API. ♦

Examples of SQL Comment Symbols
Some simple examples can help to illustrate the different ways of using the
SQL comment symbols.

Examples of the Double-Dash Symbol

The following example shows the use of the double dash (--) to comment an
SQL statement. In this example, the comment appears on the same line as the
statement.

SELECT * FROM customer -- Selects all columns and rows

DB

SPL

ESQL
1-10 Informix Guide to SQL: Syntax

How to Enter SQL Comments
In the following example, the user enters the same SQL statement and the
same comment as in the preceding example, but the user places the comment
on a line by itself:

SELECT * FROM customer
-- Selects all columns and rows

In the following example, the user enters the same SQL statement as in the
preceding example but now enters a multiple-line comment:

SELECT * FROM customer
-- Selects all columns and rows
-- from the customer table

Examples of the Curly-Brackets Symbols

The following example shows the use of curly brackets ({}) to comment an
SQL statement. In this example, the comment appears on the same line as the
statement.

SELECT * FROM customer {Selects all columns and rows}

In the following example, the user enters the same SQL statement and the
same comment as in the preceding example but places the comment on a line
by itself:

SELECT * FROM customer
{Selects all columns and rows}

In the following example, the user enters the same SQL statement as in the
preceding example but enters a multiple-line comment:

SELECT * FROM customer
{Selects all columns and rows
 from the customer table}

♦

Non-ASCII Characters in SQL Comments
You can enter non-ASCII characters (including multibyte characters) in SQL
comments if your locale supports a code set with the non-ASCII characters.
For further information on the GLS aspects of SQL comments, see the Guide to
GLS Functionality. ♦

SPL

DB

GLS
SQL Statements 1-11

Categories of SQL Statements
Categories of SQL Statements
SQL statements are divided into the following categories:

■ Access method statements

■ Auxiliary statements

■ Client/server connection statements

■ Cursor manipulation statements

■ Data access statements

■ Data definition statements

■ Data integrity statements

■ Data manipulation statements

■ Dynamic management statements

■ Query optimization information statements

■ Routine definition statements

■ SPL statements

The specific statements for each category are listed below.

Access Method Statements
ALTER ACCESS_METHOD (See the Virtual-Table Interface Programmer’s
Manual.)
CREATE ACCESS_METHOD (See the Virtual-Table Interface Programmer’s
Manual.)
CREATE OPCLASS
DROP ACCESS_METHOD (See the Virtual-Table Interface Programmer’s Manual.)
DROP OPCLASS

Auxiliary Statements
INFO
OUTPUT
GET DIAGNOSTICS
WHENEVER
1-12 Informix Guide to SQL: Syntax

Categories of SQL Statements
Client/Server Connection Statements
CONNECT
DISCONNECT
SET CONNECTION

Cursor Manipulation Statements
CLOSE
DECLARE
FETCH
FLUSH
FREE
OPEN
PUT

Data Access Statements
GRANT
GRANT FRAGMENT
LOCK TABLE
REVOKE
REVOKE FRAGMENT
SET ISOLATION
SET LOCK MODE
SET ROLE
SET SESSION AUTHORIZATION
SET TRANSACTION
UNLOCK TABLE
SQL Statements 1-13

Categories of SQL Statements
Data Definition Statements
ALTER FRAGMENT
ALTER INDEX
ALTER TABLE
CLOSE DATABASE
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE INDEX
CREATE OPAQUE TYPE
CREATE ROLE
CREATE ROW TYPE
CREATE SCHEMA
CREATE SYNONYM
CREATE TABLE
CREATE TRIGGER
CREATE VIEW
DATABASE
DROP CAST
DROP DATABASE
DROP INDEX
DROP ROLE
DROP ROW TYPE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE
DROP VIEW
RENAME COLUMN
RENAME DATABASE
RENAME TABLE
1-14 Informix Guide to SQL: Syntax

Categories of SQL Statements
Data Integrity Statements
BEGIN WORK
CHECK TABLE
COMMIT WORK
CREATE AUDIT
DROP AUDIT
RECOVER TABLE
REPAIR TABLE
ROLLBACK WORK
ROLLFORWARD DATABASE
SET
SET LOG
START DATABASE
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE

Data Manipulation Statements
DELETE
INSERT
LOAD
SELECT
UNLOAD
UPDATE

Dynamic Management Statements
ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE
EXECUTE
EXECUTE IMMEDIATE
FREE
GET DESCRIPTOR
PREPARE
SET DESCRIPTOR
SQL Statements 1-15

Categories of SQL Statements
Query Optimization Information Statements
SET EXPLAIN
SET OPTIMIZATION
SET PDQPRIORITY
UPDATE STATISTICS

Routine Definition Statements
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROUTINE FROM
DROP FUNCTION
DROP PROCEDURE
DROP ROUTINE
EXECUTE FUNCTION
EXECUTE PROCEDURE

SPL Statements
CALL
CONTINUE
DEFINE
EXIT
FOR
FOREACH
LET
ON EXCEPTION
RAISE EXCEPTION
RETURN
SET DEBUG FILE TO
SYSTEM
TRACE
WHILE
1-16 Informix Guide to SQL: Syntax

ANSI Compliance and Extensions
ANSI Compliance and Extensions
The following lists show statements that are compliant with the ANSI SQL-92
standard at the entry level, statements that are ANSI compliant but include
Informix extensions, and statements that are Informix extensions to the ANSI
standard.

ANSI-Compliant Statements
CLOSE
COMMIT WORK
ROLLBACK WORK
SET SESSION AUTHORIZATION
SET TRANSACTION

ANSI-Compliant Statements with Informix Extensions
CREATE SCHEMA
CREATE TABLE
CREATE VIEW
DECLARE
DELETE
EXECUTE
FETCH
GRANT
INSERT
OPEN
SELECT
SET CONNECTION
UPDATE
WHENEVER

Statements That Are Extensions to the ANSI Standard
ALLOCATE COLLECTION
ALLOCATE DESCRIPTOR
ALLOCATE ROW
ALTER FRAGMENT
ALTER INDEX
ALTER TABLE
BEGIN WORK
SQL Statements 1-17

ANSI Compliance and Extensions
CLOSE DATABASE
CONNECT
CREATE CAST
CREATE DATABASE
CREATE DISTINCT TYPE
CREATE FUNCTION
CREATE FUNCTION FROM
CREATE INDEX
CREATE OPAQUE TYPE
CREATE OPCLASS
CREATE PROCEDURE
CREATE PROCEDURE FROM
CREATE ROLE
CREATE ROUTINE
CREATE ROUTINE FROM
CREATE ROW TYPE
CREATE SYNONYM
CREATE TRIGGER
DATABASE
DEALLOCATE COLLECTION
DEALLOCATE DESCRIPTOR
DEALLOCATE ROW
DESCRIBE
DISCONNECT
DROP CAST
DROP DATABASE
DROP FUNCTION
DROP INDEX
DROP OPCLASS
DROP PROCEDURE
DROP ROLE
DROP ROW TYPE
DROP SYNONYM
DROP TABLE
DROP TRIGGER
DROP TYPE
DROP VIEW
EXECUTE FUNCTION
EXECUTE IMMEDIATE
EXECUTE PROCEDURE
FLUSH
FREE
GET DESCRIPTOR
GET DIAGNOSTICS
1-18 Informix Guide to SQL: Syntax

Statements
GRANT FRAGMENT
INFO
LOAD
LOCK TABLE
OUTPUT
PREPARE
PUT
RENAME COLUMN
RENAME DATABASE
RENAME TABLE
REVOKE
REVOKE FRAGMENT
SET
SET DATASKIP
SET DEBUG FILE TO
SET DESCRIPTOR
SET EXPLAIN
SET ISOLATION
SET LOCK MODE
SET LOG
SET OPTIMIZATION
SET PDQPRIORITY
SET ROLE
START VIOLATIONS TABLE
STOP VIOLATIONS TABLE
UNLOAD
UNLOCK TABLE
UPDATE STATISTICS

Statements
This section gives comprehensive reference descriptions of SQL statements.
The statement descriptions appear in alphabetical order. For an explanation
of the structure of statement descriptions, see “How to Enter SQL State-
ments” on page 1-6.
SQL Statements 1-19

1-20 Informix Guide to SQL: Syntax

ALLOCATE COLLECTION
ALLOCATE COLLECTION
Use the ALLOCATE COLLECTION statement to allocate memory for an
INFORMIX-ESQL/C collection variable.

Syntax

Usage
The ALLOCATE COLLECTION statement creates a place in memory for the
data in the collection variable that variable name identifies. To create a
collection variable for an ESQL/C program, perform the following steps:

1. Declare the collection variable as a client collection variable in an
ESQL/C program.

The collection variable can be a typed or untyped collection
variable.

2. Allocate memory for the collection variable with the ALLOCATE
COLLECTION statement.

3. Populate the collection variable with elements.

If you wish to modify elements into an existing collection, select the
existing elements of the collection column into a collection variable
with the SELECT statement (with no Collection Derived Table
clause).

Element Purpose Restrictions Syntax
variable name Variable name that identifies a

typed or untyped collection
variable for which to allocate
memory

Variable must contain the name
of an unallocated ESQL/C
collection host variable.

Name must conform
to language-specific
rules for variable
names.

variable
nameALLOCATE COLLECTION

E/C
+

ALLOCATE COLLECTION
The following example shows how to allocate resources with the ALLOCATE
COLLECTION statement for the untyped collection variable, a_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
...
EXEC SQL deallocate collection :a_set;

The following example uses ALLOCATE COLLECTION to allocate resources
for a typed collection variable, a_typed_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_typed_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_typed_set;
...
EXEC SQL deallocate collection :a_typed_set;

The ALLOCATE COLLECTION statement sets SQLCODE (sqlca.sqlcode) to
zero if the memory allocation was successful and to a negative error code if
the allocation failed.

Tip: The ALLOCATE COLLECTION statement allocates memory for an ESQL/C
collection variable only. To allocate memory for ESQL/C row variables, use the
ALLOCATE ROW statement.

You must explicitly release memory with the DEALLOCATE COLLECTION
statement. Once you free the collection variable with the DEALLOCATE
COLLECTION statement, you can reuse the collection variable.

References
See the ALLOCATE ROW and DEALLOCATE COLLECTION statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of collection data
types in Chapter 10, “Understanding Complex Data Types.” In the
INFORMIX-ESQL/C Programmer’s Manual, see the chapter that discusses
complex data types.
SQL Statements 1-21

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR
Use the ALLOCATE DESCRIPTOR statement to allocate memory for a system-
descriptor area.

Syntax

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a

system-descriptor area
Use single quotes. String must
represent the name of an unallo-
cated system-descriptor area.

Quoted String,
p. 1-1010

descriptor
variable

Host-variable name that
identifies a system-descriptor
area

Variable must contain the name
of an unallocated system-
descriptor area.

Name must conform
to language-specific
rules for variable
names.

occurrences The number of item descriptors
in the system-descriptor area

Value must be unsigned
INTEGER. Default value is 100.

Literal Number,
p. 1-997

occurrences
variable

Host variable that contains the
number of occurrences

Data type must be INTEGER or
SMALLINT.

Name must conform
to language-specific
rules for variable
names.

WITH MAX occurrences

occurrences
variable

descriptor
variable

' descriptor 'ALLOCATE
DESCRIPTOR

ESQL
+

1-22 Informix Guide to SQL: Syntax

ALLOCATE DESCRIPTOR
Usage
The ALLOCATE DESCRIPTOR statement creates a place in memory for a
system-descriptor area. The descriptor parameter or the descriptor variable
parameter identifies this area. A system-descriptor area holds information
that a DESCRIBE...USING SQL DESCRIPTOR statement obtains or it holds infor-
mation about the WHERE clause of a dynamically executed statement.

A DESCRIBE...USING SQL DESCRIPTOR statement also obtains information for
the stored functions. For more information about stored functions, see the
DESCRIBE statement on page 1-335 and Chapter 2, “SPL Statements.” ♦

A system-descriptor area contains one or more fields called item descriptors.
Each item descriptor holds a data value that the database server can receive
or send. The item descriptors also contain information about the data such as
type, length, scale, precision, and nullability. Initially, all fields in the item-
descriptor area are undefined.

The WITH MAX clause of ALLOCATE DESCRIPTOR sets the COUNT field to the
number of occurrences that you specified in the occurrences parameter or the
occurrences variable parameter. The DESCRIBE...USING SQL DESCRIPTOR
statement sets other fields in the system-descriptor area. For more infor-
mation, see “USING SQL DESCRIPTOR Clause” on page 1-338.

If the name that you assign to a system-descriptor area matches the name of
an existing system-descriptor area, the database server returns an error. If
you free the descriptor with the DEALLOCATE DESCRIPTOR statement, you
can reuse the descriptor.

WITH MAX Clause

You can use the optional WITH MAX clause to indicate the number of item
descriptors you need. Either the occurrences parameter or the occurrences
variable parameter specifies the number of item descriptors that you want in
the system-descriptor area. This number must be greater than zero. When
you do not specify the WITH MAX clause, the database server uses a default
value of 100 for the occurrences parameter.

SPL
SQL Statements 1-23

ALLOCATE DESCRIPTOR
The following examples show the ALLOCATE DESCRIPTOR statement that
includes the WITH MAX clause. The first line uses an embedded variable
name to identify the system-descriptor area and the desired number of item
descriptors. The second line uses a quoted string to identify the system-
descriptor area and an unsigned integer to specify the desired number of
item descriptors.

EXEC SQL allocate descriptor :descname with max :occ;

EXEC SQL allocate descriptor 'desc1' with max 3;

References
See the DEALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH,
GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR statements in
this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of system-descriptor
areas in Chapter 5.
1-24 Informix Guide to SQL: Syntax

ALLOCATE ROW
ALLOCATE ROW
Use the ALLOCATE ROW statement to allocate memory for an
INFORMIX-ESQL/C row variable.

Syntax

Usage
The ALLOCATE ROW statement creates a place in memory for data in the row
variable that variable name identifies. To create a row variable, perform the
following steps in your ESQL/C program:

1. Declare the row variable.

The row variable can be a typed or untyped row variable.

2. Allocate memory for the row variable with the ALLOCATE ROW
statement.

3. Populate the row variable with field values.

Select the elements of an existing row-type column into a row
variable with the SELECT statement (with no Collection Derived
Table clause).

Element Purpose Restrictions Syntax
variable name Variable name that identifies a

typed or untyped row variable
for which to allocate memory

Variable must contain the name
of an unallocated ESQL/C row
host variable.

Name must conform
to language-specific
rules for variable
names.

variable
name

ALLOCATE ROW

E/C
+

SQL Statements 1-25

ALLOCATE ROW
The following example shows how to allocate resources with the ALLOCATE
ROW statement for the typed row variable, a_row:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate row :a_row;
...
EXEC SQL deallocate row :a_row;

The ALLOCATE ROW statement sets SQLCODE (sqlca.sqlcode) to zero if the
memory allocation was successful and to a negative error code if the
allocation failed.

Tip: The ALLOCATE ROW statement allocates memory for an ESQL/C row variable
only. To allocate memory for ESQL/C collection variables, use the ALLOCATE
COLLECTION statement.

You must explicitly release memory with the DEALLOCATE ROW statement.
Once you free the row variable with the DEALLOCATE ROW statement, you
can reuse the row variable.

References
See the ALLOCATE COLLECTION and DEALLOCATE ROW statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of rows in Chapter 10.
In the INFORMIX-ESQL/C Programmer’s Manual, see the chapter that
discusses complex types.
1-26 Informix Guide to SQL: Syntax

ALTER FRAGMENT
ALTER FRAGMENT
Use the ALTER FRAGMENT statement to alter the fragmentation strategy of an
existing table or index or to fragment an existing nonfragmented table.

Important: You cannot use ALTER FRAGMENT on a typed table.

Syntax

Element Purpose Restrictions Syntax
surviving index The index on which you execute

the ALTER FRAGMENT statement
The index must exist at the time
you execute the statement. All
indexes are detached. You cannot
alter an index to become attached
or detached.

Index Name,
p. 1-980

surviving table The table on which you execute
the ALTER FRAGMENT statement

The table must exist at the time
you execute the statement.

Table Name,
p. 1-1044

ALTER FRAGMENT
ON

ADD
Clause
p. 1-43

DROP
Clause
p. 1-45

DETACH
Clause
p. 1-35

ATTACH
Clause
p. 1-30

TABLE

INDEX surviving index

surviving table

+
=+

DB

MODIFY
Clause
p. 1-46

=+

E/C
=+

SQLE

INIT
Clause
p. 1-36
SQL Statements 1-27

ALTER FRAGMENT
Usage
You can alter the fragmentation strategy of an existing table or index, or you
can create a fragmentation strategy for nonfragmented tables. Use the ALTER
FRAGMENT statement to tune your fragmentation strategy.

The clauses of the ALTER FRAGMENT statement let you perform the
following tasks.

You must have the Alter or the DBA privilege to change the fragmentation
strategy of a table. You must have the Index or the DBA privilege to alter the
fragmentation strategy of an index.

INIT and ATTACH are the only operations that you can perform for tables that
are not already fragmented.

You cannot use the ALTER FRAGMENT statement on a temporary table or a
view.

Clause Purpose

ATTACH Combines tables that contain identical table structures into a single
fragmented table.

DETACH Detaches a table fragment from a fragmentation strategy and
places it in a new table.

INIT Defines and initializes a new fragmentation strategy on a nonfrag-
mented table or index, or modifies an existing fragmentation
strategy. You can also use this clause to change the order of evalu-
ation of fragment expressions.

ADD Adds an additional fragment to an existing fragmentation list.

DROP Drops an existing fragment from a fragmentation list.

MODIFY Changes an existing fragmentation expression.
1-28 Informix Guide to SQL: Syntax

ALTER FRAGMENT
How Is the ALTER FRAGMENT Statement Executed?

If your database uses logging, the ALTER FRAGMENT statement is executed
within a single transaction. When the fragmentation strategy uses large
numbers of records, you might run out of log space or disk space. (The
database server requires extra disk space for the operation; it later frees the
disk space).

Making More Space

When you run out of log space or disk space, try one of the following
procedures to make more space available:

■ Turn off logging and turn it back on again at the end of the operation.
This procedure indirectly requires a backup of the root dbspace.

For more information about the ontape utility to start and stop
logging, see the INFORMIX-Universal Server Administrator’s Guide.

■ Split the operations into multiple ALTER FRAGMENT statements,
moving a smaller portion of records at each time.

For information about log-space requirements and disk-space requirements,
refer to the INFORMIX-Universal Server Administrator’s Guide. That guide also
contains detailed instructions about how to turn off logging.

Determining the Number of Rows in the Fragment

You can place as many rows into a fragment as the available space in the
dbspace allows. To find out how many rows are in a fragment, perform these
steps:

1. Run the UPDATE STATISTICS statement on the table. This step fills the
sysfragments system catalog table with the current table
information.

2. Query the sysfragments system catalog table to examine the npused
and nrows fields. The npused field gives you the number of data
pages used in the fragment, and the nrows field gives you the
number of rows in the fragment.
SQL Statements 1-29

ALTER FRAGMENT
ATTACH Clause

Important: Use the CREATE TABLE statement or the ALTER FRAGMENT INIT
statement to create fragmented tables.

Use the ATTACH clause to combine tables that contain identical table
structures into a fragmentation strategy. Transforming tables with identical
table structures into fragments in a single table allows the database server to
manage the fragmentation instead of the application managing the fragmen-
tation. The distribution scheme can be either round-robin or expression
based.

Element Purpose Restrictions Syntax
consumed table A nonfragmented table on

which you execute the ATTACH
clause

The table must exist at the time
you execute the statement. No
serial columns, referential
constraints, primary-key
constraints, or unique
constraints are allowed in the
table. The table can have check
constraints and not-null
constraints, but these constraints
are dropped after the ATTACH
clause is executed.

Table Name,
p. 1-1044

dbspace The dbspace name that specifies
where the consumed table
expression occurs in the
fragmentation list

The dbspace must exist at the
time you execute the statement.

Identifier, p. 1-962

 (1 of 2)

ATTACH
Clause

,

dbspace

ATTACH

BEFORE

AFTER

consumed table

surviving table

AS frag-expression

1

AS REMAINDER

,

AS frag-expression
1-30 Informix Guide to SQL: Syntax

ALTER FRAGMENT
Any tables that you attach must have been created previously in separate
dbspaces. You cannot attach the same table more than once. You cannot
attach a fragmented table to another fragmented table.

You must be the DBA or the owner of the tables that are involved to use the
ATTACH clause.

After the tables are attached, the consumed table that is specified on the
ATTACH clause no longer exists. The records that were in the consumed table
must be referenced through the surviving table that is specified in the ALTER
FRAGMENT ON TABLE statement.

Each table that is described in the ATTACH clause must be identical in
structure; that is, all column definitions must match. The number, names,
data types, and relative position of the columns must be identical. However,
you cannot attach tables that contain serial columns. In addition, indexes and
triggers on the surviving table survive the ATTACH, but indexes and triggers
on the consumed table are dropped. Triggers are not activated with the
ATTACH clause.

Tip: In Universal Server, all indexes are detached.

frag-expression An expression that defines a
fragment using a range, hash, or
arbitrary rule

The frag-expression element can
contain only columns from the
current table and only data
values from a single row. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in
frag-expression.

Condition, p. 1-831

surviving table The fragmented table that
survives the execution of ALTER
FRAGMENT

The table must exist at the time
you execute the statement. No
referential constraints, primary-
key constraints, unique
constraints, check constraints, or
not-null constraints are allowed
in the table.

Table Name,
p. 1-1044

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-31

ALTER FRAGMENT
Combining Identically Structured Nonfragmented Tables

To make a single, fragmented table from two or more nonfragmented tables,
the ATTACH clause must contain the surviving table as the first element of the
attach list. The attach list is the list of tables in the ATTACH clause. For
example, if you attach the tables cur_acct and new_acct, which were previ-
ously created in separate dbspaces, the surviving table cur_acct must be the
first element in the attach list. The following statement illustrates this rule:

ALTER FRAGMENT ON TABLE cur_acct ATTACH cur_acct, new_acct

If you want a new rowid column on the single fragmented table, attach all
tables first and then add the rowid with the ALTER TABLE statement.

Attaching a Nonfragmented Table to a Fragmented Table

To attach a nonfragmented table to an already fragmented table, the
nonfragmented table must have been created in a separate dbspace and must
have the same table structure as the fragmented table. The following example
shows how to attach a nonfragmented table, old_acct, which was previously
created in dbsp3, to a fragmented table, cur_acct:

ALTER FRAGMENT ON TABLE cur_acct ATTACH old_acct

BEFORE and AFTER Clauses

The BEFORE and AFTER clauses allow you to place a new fragment in a
dbspace either before or after an existing dbspace. Use the BEFORE and
AFTER clauses only when the distribution scheme is expression based (not
round-robin). Attaching a new fragment without an explicit BEFORE or
AFTER clause places the added fragment at the end of the fragmentation list.
You cannot attach a new fragment after the remainder fragment.
1-32 Informix Guide to SQL: Syntax

ALTER FRAGMENT
Using ATTACH to Fragment Tables: Round-Robin

The following example combines nonfragmented tables pen_types and
pen_makers into a single, fragmented table, pen_types. Table pen_types
resides in dbspace dbsp1, and table pen_makers resides in dbspace dbsp2.
Table structures are identical in each table.

ALTER FRAGMENT ON TABLE pen_types
ATTACH pen_types, pen_makers

After you execute the ATTACH clause, the database server fragments the table
pen_types round-robin into two dbspaces: the dbspace that contained
pen_types and the dbspace that contained pen_makers. Table pen_makers
is consumed, and no longer exists; all rows that were in table pen_makers are
now in table pen_types.

Using ATTACH to Fragment Tables: Fragment Expression

Consider the following example that combines tables cur_acct and new_acct
and uses an expression-based distribution scheme. Table cur_acct was origi-
nally created as a fragmented table and has fragments in dbspaces dbsp1 and
dbsp2. The first statement of the example shows that table cur_acct was
created with an expression-based distribution scheme. The second statement
of the example creates table new_acct in dbsp3 without a fragmentation
strategy. The third statement combines the tables cur_acct and new_acct.
Table structures (columns) are identical in each table.

CREATE TABLE cur_acct (a int) FRAGMENT BY EXPRESSION
a < 5 in dbsp1,
a >=5 and a < 10 in dbsp2;

CREATE TABLE new_acct (a int) IN dbsp3;

ALTER FRAGMENT ON TABLE cur_acct ATTACH new_acct AS a>=10;
SQL Statements 1-33

ALTER FRAGMENT
When you examine the sysfragments system catalog table after you have
altered the fragment, you see that table cur_acct is fragmented by expression
into three dbspaces. For additional information about the sysfragments
system catalog table, see Chapter 2 of the Informix Guide to SQL: Reference.

In addition to simple range rules, you can use the ATTACH clause to fragment
by expression with hash or arbitrary rules. For a discussion of all types of
expressions in an expression-based distribution scheme, see “FRAGMENT
BY Clause for Tables” on page 1-41.

Warning: When you specify a date value in a fragment expression, make sure to
specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the
distribution scheme and can produce unpredictable results. For more information on
the DBCENTURY environment variable, see the “Informix Guide to SQL:
Reference.”

What Happens to Columns That Contain Large Objects?

In every table that is named in the ATTACH clause, each column that contains
a large object must have the same storage type. For example, if a TEXT
column is in a blobspace, the same column in all tables must be in the same
blobspace. If the TEXT column is in the tblspace, the same column must be in
the tblspace in all tables.

What Happens to Indexes and Triggers?

Unless you create separate index fragments, the index fragmentation is the
same as the table fragmentation.

When you attach tables, any indexes or triggers that are defined on the
consumed table no longer exist, and all rows in the consumed table
(new_acct) are subject to the indexes and triggers that are defined in the
surviving table (cur_acct). No triggers are activated with the ATTACH clause,
but subsequent data manipulation operations on the “new” rows can fire
triggers.

At the end of the ATTACH operation, indexes on the surviving table that were
explicitly given a fragmentation strategy remain intact with that
fragmentation strategy.
1-34 Informix Guide to SQL: Syntax

ALTER FRAGMENT
DETACH Clause

Use the DETACH clause to detach a table fragment from a distribution scheme
and place the contents into a new nonfragmented table. For an explanation
of distribution schemes, see “FRAGMENT BY Clause for Tables” on
page 1-41.

The DETACH clause cannot be applied to a table if that table is the parent of
a referential constraint or if a rowid column is defined on the table.

The new table that results from the execution of the DETACH clause does not
inherit any indexes or constraints from the original table. Only the data
remains.

The following example shows the table cur_acct fragmented into two
dbspaces, dbsp1 and dbsp2:

ALTER FRAGMENT ON TABLE cur_acct DETACH dbsp2 accounts

Element Purpose Restrictions Syntax
dbspace-name The name of the dbspace that

contains the fragment to be
detached

The dbspace must exist when
you execute the statement.

Identifier, p. 1-962

new table The table that results after you
execute the ALTER FRAGMENT
statement

The table must not exist before
you execute the statement.

Table Name,
p. 1-1044

DETACH
Clause

DETACH dbspace-name new table
SQL Statements 1-35

ALTER FRAGMENT
This example detaches dbsp2 from the distribution scheme for cur_acct and
places the rows in a new table, accounts. Table accounts now has the same
structure (column names, number of columns, data types, and so on) as table
cur_acct, but the table accounts does not contain any indexes or constraints
from the table cur_acct. Both tables are now nonfragmented.

The following example shows a table that contains three fragments:

ALTER FRAGMENT ON TABLE bus_acct DETACH dbsp3 cli_acct

This statement detaches dbsp3 from the distribution scheme for bus_acct
and places the rows in a new table, cli_acct. Table cli_acct now has the same
structure (column names, number of columns, data types, and so on) as
bus_acct, but the table cli_acct does not contain any indexes or constraints
from the table bus_acct. Table cli_acct is a nonfragmented table, and table
bus_acct remains a fragmented table.

INIT Clause

Use the INIT clause to perform the following functions:

■ Change the fragmentation strategy on a single, fragmented table
including changing the order of evaluating fragment expressions

■ Define and initialize a new fragmentation strategy on a
nonfragmented table

■ Convert a fragmented table to a nonfragmented table
1-36 Informix Guide to SQL: Syntax

ALTER FRAGMENT
INIT
Clause

INIT FRAGMENT BY
Clause

for Tables
WITH ROWIDS

EXPRESSION

,

FRAGMENT BY
Clause

for Tables

,

dbspaceROUND ROBIN INFRAGMENT BY

frag-expression
IN dbspace

REMAINDER IN
remainder dbspace

,

dbspace ,

frag-expression
IN dbspace

,

FRAGMENT BY
Clause

for Indexes

FRAGMENT BY

REMAINDER IN
remainder dbspace,

IN dbspace

FRAGMENT BY
Clause

for Indexes

EXPRESSION

,
frag-expression

IN dbspace
frag-expression

IN dbspace ,
SQL Statements 1-37

ALTER FRAGMENT
The INIT clause allows you to fragment an existing table or index that is not
fragmented without redefining the table or index. With the INIT clause, you
can also convert an existing fragmentation strategy on a table or index to
another fragmentation strategy. Any existing fragmentation strategy is
discarded, and records are moved to fragments as defined in the new
fragmentation strategy. The INIT clause also allows you to convert a
fragmented table or index to a nonfragmented table or index.

Element Purpose Restrictions Syntax
dbspace The dbspace that contains the

fragmented information
The dbspace must exist at the
time you execute the statement.
When you use the FRAGMENT
BY clause, you must specify at
least two dbspaces. You can
specify a maximum of 2,048
dbspaces.

Identifier, p. 1-962

frag-expression An expression that defines a
fragment using a range, hash, or
arbitrary rule

If you specify a value for
remainder dbspace, you must
specify at least one fragment
expression. If you do not specify
a value for remainder dbspace,
you must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or aggre-
gates are allowed in
frag-expression.

Condition, p. 1-831,
and Expression,
p. 1-876

remainder
dbspace

The dbspace that contains data
that does not meet the condi-
tions defined in any fragment
expression

If you specify two or more
fragment expressions, remainder
dbspace is optional. If you
specify only one fragment
expression, remainder dbspace is
required. The dbspace that is
specified in remainder dbspace
must exist at the time you
execute the statement.

Identifier, p. 1-962
1-38 Informix Guide to SQL: Syntax

ALTER FRAGMENT
When you use the INIT clause to fragment an existing nonfragmented table,
all indexes on the table become fragmented in the same way as the table.

Changing an Existing Fragmentation Strategy

You can redefine a fragmentation strategy if you decide that your initial
strategy does not fulfill your needs. The following example shows the
statement that originally defined the fragmentation strategy on the table
account and then shows the ALTER FRAGMENT statement that redefines the
fragmentation strategy:

CREATE TABLE account (col1 int, col2 int)
FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2;

ALTER FRAGMENT ON TABLE account
INIT FRAGMENT BY EXPRESSION
MOD(col1, 3) = 0 in dbsp1,
MOD(col1, 3) = 1 in dbsp2,
MOD(col1, 3) = 2 in dbsp3;

When you want to redefine a fragmentation strategy, and any existing
dbspaces are full, you must fragment the table in different dbspaces than the
full dbspaces.

Fragmenting Unique and System Indexes

You can fragment unique indexes only if the table uses an expression-based
distribution scheme. The columns that are referenced in the fragment
expression must be indexed columns. If your ALTER FRAGMENT INIT
statement fails to meet either of these restrictions, the INIT fails, and work is
rolled back.

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if the indexes exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created. To fragment a system index, create
the fragmented index on the constraint columns, and then use the ALTER
TABLE statement to add the constraint.
SQL Statements 1-39

ALTER FRAGMENT
Converting a Fragmented Table to a Nonfragmented Table

You might decide that you no longer want a table to be fragmented. You can
use the INIT clause to convert a fragmented table to a nonfragmented table.
The following example shows the original fragmentation definition as well as
how to use the ALTER FRAGMENT statement to convert the table:

CREATE TABLE checks (col1 int, col2 int)
FRAGMENT BY ROUND ROBIN IN dbsp1, dbsp2, dbsp3;

ALTER FRAGMENT ON TABLE checks INIT IN dbsp1;

You must use the IN dbspace clause to place the table in a dbspace explicitly.

When you use the INIT clause to change a fragmented table to a
nonfragmented table (that is, to rid the table of any fragmentation strategy),
all indexes that are fragmented in the same way as the table become nonfrag-
mented indexes. System indexes are not affected by the use of the INIT clause
on the table.

Defining a Fragmentation Strategy on a Nonfragmented Table

You can use the INIT clause to define a fragmentation strategy on a
nonfragmented table. It does not matter whether the table was created with
a storage option. The following example shows the original table definition
as well as how to use the ALTER FRAGMENT statement to fragment the table:

CREATE TABLE balances (col1 int, col2 int) IN dbsp1;

ALTER FRAGMENT ON TABLE balances INIT
FRAGMENT BY EXPRESSION
col1 <= 500 IN dbsp1,
col1 > 500 and col1 <=1000 IN dbsp2,
REMAINDER IN dbsp3;
1-40 Informix Guide to SQL: Syntax

ALTER FRAGMENT
WITH ROWIDS Clause

Nonfragmented tables contain a pseudocolumn called the rowid column.
Fragmented tables do not contain this column unless it is explicitly created.

Use the WITH ROWIDS clause to add a new column called the rowid column.
the database server assigns a unique number to each row that remains stable
for the existence of the row. The database server creates an index that it uses
to find the physical location of the row.After you add the WITH ROWIDS
clause, each row contains an additional 4 bytes to store the rowid column.

You cannot use the WITH ROWIDS clause on typed tables.

Important: Informix recommends that you use primary keys, rather than the rowid
column, as an access method.

FRAGMENT BY Clause for Tables

Use the FRAGMENT BY clause for tables to define the distribution scheme,
which is either round-robin or expression based.

In a round-robin distribution scheme, specify at least two dbspaces where the
fragments are placed. As records are inserted into the table, they are placed
in the first available dbspace. the database server balances the load between
the specified dbspaces as you insert records and distributes the rows so that
the fragments always maintain approximately the same number of rows. In
this distribution scheme, the database server must scan all fragments when it
searches for a row.
SQL Statements 1-41

ALTER FRAGMENT
In an expression-based distribution scheme, each fragment expression in a
rule specifies a dbspace. The rule specifies how the database server deter-
mines the fragment into which a row is placed. Each fragment expression
within the rule isolates data and aids the database server in searching for
rows. You can specify one of the following rules:

■ Range rule

A range rule uses a range to specify which rows are placed in a
fragment, as the following example shows:

...
FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 and c1 < 200 IN dbsp2,
c1 >= 200 IN dbsp3;

■ Hash rule

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

...
FRAGMENT BY EXPRESSION
MOD(id_num, 3) = 0 IN dbsp1,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3;

■ Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

...
FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5;

FRAGMENT BY Clause for Indexes

Use the FRAGMENT BY clause for indexes to define the expression-based
distribution scheme. Like the FRAGMENT BY clause for tables, the
FRAGMENT BY clause for indexes supports range rules, hash rules, and
arbitrary rules. See “FRAGMENT BY Clause for Tables” on page 1-41 for an
explanation of these rules.
1-42 Informix Guide to SQL: Syntax

ALTER FRAGMENT
ADD Clause

Use the ADD clause to add another fragment to an existing fragmentation list.

Adding a New Dbspace to a Round-Robin Distribution Scheme

You can add more dbspaces to a round-robin distribution scheme. The
following example shows the original round-robin definition:

CREATE TABLE book (col1 INT, col2 title)
FRAGMENT BY ROUND ROBIN in dbsp1, dbsp4;

Element Purpose Restrictions Syntax
existing dbspace A dbspace name specified in an

existing fragmentation list
The dbspace must exist at the
time you execute the statement.

Identifier, p. 1-962

frag-expression The range, hash, or arbitrary
expression that defines the
added fragment

The frag-expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or aggre-
gates are allowed in
frag-expression.

Condition, p. 1-831,
and Expression,
p. 1-876

new dbspace The added dbspace in a round-
robin distribution scheme

The dbspace must exist at the
time you execute the statement.

Identifier, p. 1-962

ADD
Clause

ADD new dbspace

REMAINDER IN new dbspace

AFTER

BEFORE existing dbspace

frag-expression IN new dbspace
SQL Statements 1-43

ALTER FRAGMENT
To add another dbspace, use the ADD clause, as the following example
shows:

ALTER FRAGMENT ON TABLE book ADD dbsp3;

Adding Fragment Expressions

Adding a fragment expression to the fragmentation list in an expression-
based distribution scheme can shuffle records from some existing fragments
into the new fragment. When you add a new fragment into the middle of the
fragmentation list, all the data existing in fragments after the new one must
be re-evaluated. The following example shows the original expression
definition:

...
FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 and c1 < 200 IN dbsp2,
REMAINDER IN dbsp3;

If you want to add another fragment to the fragmentation list and have this
fragment hold rows between 200 and 300, use the following ALTER
FRAGMENT statement:

ALTER FRAGMENT ON TABLE news ADD
c1 >= 200 and c1 < 300 IN dbsp4;

Any rows that were formerly in the remainder fragment and that fit the
criteria c1 >=200 and c1 < 300 are moved to the new dbspace.

BEFORE and AFTER Clauses

The BEFORE and AFTER clauses allow you to place a new fragment in a
dbspace either before or after an existing dbspace. Use the BEFORE and
AFTER clauses only when the distribution scheme is expression based (not
round-robin). You cannot add a new fragment after the remainder fragment.
Adding a new fragment without an explicit BEFORE or AFTER clause places
the added fragment at the end of the fragmentation list. However, if the
fragmentation list contains a REMAINDER clause, the added fragment is
added before the remainder fragment (that is, the remainder remains the last
item on the fragment list).
1-44 Informix Guide to SQL: Syntax

ALTER FRAGMENT
REMAINDER Clause

You cannot add a remainder fragment when one already exists. When you
add a new fragment to the end of the fragmentation list, and a remainder
fragment exists, the records in the remainder fragment are retrieved and re-
evaluated. These records can be moved to the new fragment. The remainder
fragment always remains the last item in the fragment list.

DROP Clause

Use the DROP clause to drop an existing fragment from a fragmentation list.

You cannot drop one of the fragments when the table contains only two
fragments. You cannot drop a fragment in a table that is fragmented with an
expression-based distribution scheme if the fragment contains data that
cannot be moved to another fragment. If the distribution scheme contains a
REMAINDER clause, or if the expressions were constructed in an overlapping
manner, you can drop a fragment that contains data.

When you want to make a fragmented table nonfragmented, use either the
INIT or DETACH clause.

When you drop a fragment from a dbspace, the underlying dbspace is not
affected. Only the fragment data within that dbspace is affected. When you
drop a fragment all the records located in the fragment move to another
fragment. The destination fragment might not have enough space for the
additional records. When this happens, follow one of the procedures that are
listed in “Making More Space” on page 1-29 to increase your space, and retry
the procedure.

Element Purpose Restrictions Syntax
dbspace-name The name of the dbspace that

contains the dropped fragment
The dbspace must exist at the
time you execute the statement.

Identifier, p. 1-962

DROP
Clause

DROP dbspace-name
SQL Statements 1-45

ALTER FRAGMENT
The following examples show how to drop a fragment from a fragmentation
list. The first line shows how to drop an index fragment, and the second line
shows how to drop a table fragment.

ALTER FRAGMENT ON INDEX cust_indx DROP dbsp2;

ALTER FRAGMENT ON TABLE customer DROP dbsp1;

MODIFY Clause

Use the MODIFY clause to change an existing fragment expression on an
existing dbspace. You can also use the MODIFY clause to move a fragment
expression from one dbspace to a different dbspace.

Element Purpose Restrictions Syntax
frag-expression The modified range, hash, or

arbitrary expression
The fragment expression can
contain only columns from the
current table and only data
values from a single row. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in
frag-expression.

Condition, p. 1-831,
and Expression,
p. 1-876

mod-dbspace The modified dbspace The dbspace must exist when
you execute the statement.

Identifier, p. 1-962

new-dbspace The dbspace that contains the
modified information

The dbspace must exist when
you execute the statement.

Identifier, p. 1-962

MODIFY
Clause

mod-dbspace TOMODIFY

REMAINDER IN new-dbspace

frag-expression IN new-dbspace

1

,

1-46 Informix Guide to SQL: Syntax

ALTER FRAGMENT
General Usage

When you use the MODIFY clause, the underlying dbspaces are not affected.
Only the fragment data within the dbspaces is affected.

You cannot change a REMAINDER fragment into a nonremainder fragment if
records within the REMAINDER fragment do not pass the new expression.

Changing the Expression in an Existing Dbspace

When you use the MODIFY clause to change an expression without changing
the dbspace storage for the expression, you must use the same name for the
mod dbspace and the new dbspace.

The following example shows how to use the MODIFY clause to change an
existing expression:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbsp1 to acct_num < 65 IN dbsp1

Moving an Expression from One Dbspace to Another

When you use the MODIFY clause to move an expression from one dbspace
to another, mod-dbspace is the name of the dbspace where the expression was
previously located, and new-dbspace is the new location for the expression.

The following example shows how to use the MODIFY clause to move an
expression from one dbspace to another:

ALTER FRAGMENT ON TABLE cust_acct
MODIFY dbsp1 to acct_num < 35 in dbsp2

In this example, the distribution scheme for the cust_acct table is modified so
that all row items in the column acct_num that are less than 35 are now
contained in the dbspace dbsp2. These items were formerly contained in the
dbspace dbsp1.
SQL Statements 1-47

ALTER FRAGMENT
Changing the Expression and Moving It to a New Dbspace

When you use the MODIFY clause to change the expression and move it to a
new dbspace, change both the expression name and the dbspace name.

References
See the CREATE TABLE, CREATE INDEX, ALTER TABLE statements in this
manual. Also see the Condition, Data Type, Expression, and Identifier
segments.

For a task-oriented discussion of each clause in the ALTER FRAGMENT
statement, see Chapter 9 of the Informix Guide to SQL: Tutorial.
1-48 Informix Guide to SQL: Syntax

ALTER INDEX
ALTER INDEX
Use the ALTER INDEX statement to put the data in a table in the order of an
existing index or to release an index from the clustering attribute.

Syntax

Usage
The ALTER INDEX statement works only on indexes that are created with the
CREATE INDEX statement; it does not affect constraints that are created with
the CREATE TABLE statement.

You cannot alter the index of a temporary table.

TO CLUSTER Option

The TO CLUSTER option causes the rows in the physical table to reorder in the
indexed order.

The following example shows how you can use the ALTER INDEX TO
CLUSTER statement to order the rows in the orders table physically. The
CREATE INDEX statement creates an index on the customer_num column of
the table. Then the ALTER INDEX statement causes the physical ordering of
the rows.

CREATE INDEX ix_cust ON orders (customer_num);

ALTER INDEX ix_cust TO CLUSTER;

NOT

Index Name
p. 1-980

TOALTER INDEX CLUSTER

E/C

DB

+

SQLE
SQL Statements 1-49

ALTER INDEX
Reordering causes rewriting the entire file. This process can take a long time,
and it requires sufficient disk space to maintain two copies of the table.

While a table is clustering, the table is locked IN EXCLUSIVE MODE. When
another process is using the table to which index name belongs, the database
server cannot execute the ALTER INDEX statement with the TO CLUSTER
option; it returns an error unless lock mode is set to WAIT. (When lock mode
is set to WAIT, the database server retries the ALTER INDEX statement.)

Over time, if you modify the table, you can expect the benefit of an earlier
cluster to disappear because rows are added in space-available order, not
sequentially. You can the table to regain performance by issuing another
ALTER INDEX TO CLUSTER statement on the clustered index. You do not need
to drop a clustered index before you issue another ALTER INDEX TO CLUSTER
statement on a currently clustered index.

TO NOT CLUSTER Option

The NOT option drops the cluster attribute on the index name without
affecting the physical table. Because only one clustered index per table can
exist, you must use the NOT option to release the cluster attribute from one
index before you assign it to another. The following statements illustrate how
to remove clustering from one index and how a second index physically
reclusters the table:

CREATE UNIQUE INDEX ix_ord
ON orders (order_num);

CREATE CLUSTER INDEX ix_cust
ON orders (customer_num);

.

.

.

ALTER INDEX ix_cust TO NOT CLUSTER;

ALTER INDEX ix_ord TO CLUSTER;

The first two statements create indexes for the orders table and cluster the
physical table in ascending order on the customer_num column. The last two
statements recluster the physical table in ascending order on the order_num
column.
1-50 Informix Guide to SQL: Syntax

ALTER INDEX
References
See the CREATE INDEX and CREATE TABLE statements in this chapter.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
clustered indexes.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause in
Chapter 4. Also see the discussion of creating a database and tables in
Chapter 9.

See the SET statement in this manual for information on object modes.
SQL Statements 1-51

ALTER TABLE
ALTER TABLE
Use the ALTER TABLE statement to modify both typed and untyped tables.

You can add, modify, or drop the constraints that are placed on a column or
composite list of columns or change the extent size. You can change an
untyped table to a typed table or drop the type from a typed table.

For untyped tables, you can also add, drop, or modify a column from a table,
and add or drop a rowid column for a fragmented table.

You cannot alter a temporary table.

Syntax

Usage
To use the ALTER TABLE statement, you must meet one of the following
conditions:

■ You must have the DBA privilege on the database where the table
resides.

■ You must own the table.

■ You must have the Alter privilege on the specified table and the
Resource privilege on the database where the table resides.

Synonym
Name

p. 1-1042

Table Name
p. 1-1044

ALTER TABLE Alter Clause
for Untyped Tables

p. 1-54

+

E/C

DB

SQLE

Alter Clause
for Typed Tables

p. 1-86
1-52 Informix Guide to SQL: Syntax

ALTER TABLE
In addition to the basic privileges required for altering a table, you need the
following privileges for specific operations:

■ To add or drop a type, you must have the Usage privilege on the
type.

■ To drop a constraint in a database, you must have the DBA privilege
or be the owner of the constraint. If you are the owner of the
constraint but not the owner of the table, you must have Alter
privilege on the specified table. You do not need the References
privilege to drop a constraint.

■ To add a referential constraint to an untyped table, you must have
the DBA or References privilege on either the referenced columns or
the referenced table.

When you add any kind of constraint, the name of the constraint must be
unique within the database.

When you add any kind of constraint, the owner.name combination (the
combination of the owner name and constraint name) must be unique within
the database. ♦

Altering a table on which a view depends might invalidate the view.

Restrictions for Violations and Diagnostics Tables

Keep the following considerations in mind when you use the ALTER TABLE
statement in connection with violations and diagnostics tables:

■ You cannot add, drop, or modify a column if the table that contains
the column has violations and diagnostics tables associated with it.

■ You cannot alter a violations or diagnostics table.

■ You cannot add a constraint to a violations or diagnostics table.

See the START VIOLATIONS TABLE statement on page 1-744 for further
information on violations and diagnostics tables.

ANSI
SQL Statements 1-53

ALTER TABLE
Alter Clause for Untyped Tables
The database server performs the actions in the Alter Clause in the order that
you specify. If any of the actions fails, the entire operation is cancelled.

DROP Clause
p. 1-71

MODIFY Clause
p. 1-74

LOCK MODE
Clause p. 1-84

MODIFY NEXT SIZE
Clause p. 1-84

DROP CONSTRAINT
Clause p. 1-82

ADD CONSTRAINT
Clause p. 1-78

ADD Clause
p. 1-55

1

,

1

ADD TYPE
Clause p.1-83

Alter Clause
for Untyped Tables

ROWIDS Clause
p. 1-85

1

1-54 Informix Guide to SQL: Syntax

ALTER TABLE
ADD Clause
Use the ADD clause to add a column to an existing untyped table. You cannot
add a SERIAL or SERIAL8 column to a table if the table contains data.

The ADD clause appears in the Alter Clause for Untyped Table clause on
page 1-54.

Element Purpose Restrictions Syntax
column name The name of a column before

which the new column is to be
placed

The column must already exist
in the table.

Identifier, p. 1-962

new column
name

The name of the column that
you are adding

This name must not be used for
any existing columns in the
table. You cannot add a SERIAL
or SERIAL8 column if the table
contains data.

Identifier, p. 1-962

,

New Column
Clause

New Column
Clause

()

ADD

New Column
Clause

column
nameBEFORE

new
column
name

Data Type
p. 1-855

DEFAULT
Clause
p. 1-58 Column-

Constraint
Definition
p. 1-61

ADD Clause
SQL Statements 1-55

ALTER TABLE
Algorithms for Adding Columns to Tables

INFORMIX-Universal Server uses the following two algorithms for adding
columns to tables:

■ If you execute an ALTER TABLE statement that adds a column or list
of columns to the end of a table, the database server uses the in-place
alter algorithm. This algorithm allows the database server to alter the
table definition without making the table unavailable to users for
longer than the time it takes to update the table definition.
Furthermore, the physical addition of the new columns to the table
definition occurs essentially in place as rows are updated, without
requiring a second copy of the table to be created.

■ If you execute an ALTER TABLE statement that does not add a column
or list of columns to the end of a table, the database server uses a
slower algorithm. When it uses this slower algorithm, the database
server performs the alter operation by placing an exclusive lock on
the table while it copies the table to be altered to a new table that
contains the new table definition. After the copy operation is
complete, the database server drops the older version of the table.

Tip: To add a column to the end of a table, omit the BEFORE option from the ADD
clause. When you do not specify a column before which the new column is to be
added, the database server adds the new column to the end of the table by default.
1-56 Informix Guide to SQL: Syntax

ALTER TABLE
Scope of the In-Place Alter Algorithm

The database server uses the in-place alter algorithm if you specify the ADD
clause without the BEFORE option and if you specify any clauses other than
the following:

■ The DROP clause

■ A MODIFY clause that changes the data type of a column or changes
the number of characters in a character column

Benefits of the In-Place Alter Algorithm

The in-place alter algorithm lets you alter tables in place instead of creating a
new table with the latest table definition and copying rows from the original
table to the new table. The in-place alter method reduces the space that is
required for altering tables and also increases the availability of the tables
that are being altered.

The database server uses the slower algorithm for altering tables whenever
your ALTER TABLE statement does not match the conditions for using the in-
place alter algorithm. The database server uses the slower algorithm under
the following conditions:

■ The database server uses the slower algorithm if you specify an ADD
clause with the BEFORE option.

■ The database server uses the slower algorithm if you specify an ADD
clause without the BEFORE option, but you also specify one of the
following clauses:

❑ The DROP clause

❑ A MODIFY clause that changes the data type of a column or
changes the number of characters in a character column
SQL Statements 1-57

ALTER TABLE
DEFAULT Clause

You can specify a default value that the database server inserts into the
column when you do not specify an explicit value. When a default is not
specified, and the column allows nulls, the default is NULL. When you
designate NULL as the default value for a column, you cannot place a not-null
constraint on the column.

You cannot place a default on SERIAL or SERIAL8 columns.

When the altered table already has rows in it, the new column contains the
default value for all existing rows.

The DEFAULT clause appears in the ADD clause on page 1-55.

Element Purpose Restrictions Syntax
literal A literal term that defines alpha

or numeric constant characters
to be used as the default value
for the column

Term must be appropriate type
for the column. See “Literal
Terms” on page 1-59.

Constant Expres-
sions, p. 1-887

DEFAULT
Clause

DEFAULT literal

NULL

CURRENT
p. 1-892

DATETIME
Field Qualifier

p. 1-893

USER
p. 1-890

TODAY
p. 1-891

SITENAME
p. 1-890

DBSERVERNAME
p. 1-890
1-58 Informix Guide to SQL: Syntax

ALTER TABLE
Literal Terms

You can designate literal terms as default values. Use a literal term to define
alpha or numeric constant characters. To use a literal term as a default value,
you must adhere to the rules in the following table.

Characters must be enclosed in quotation marks. Date literals must be
formatted in accordance with the DBDATE environment variable. When
DBDATE is not set, the format mm/dd/yyyy is assumed.

Opaque data types support only string literals for default values. The default
value must be specified at the column level and not at the table level.

For information on using a literal INTERVAL, see the Literal INTERVAL
segment on page 1-994. For more information on using a literal DATETIME,
see the Literal DATETIME segment on page 1-991.

Use a Literal With Columns of Data Type

INTEGER INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
SMALLFLOAT, INT8

DECIMAL DECIMAL, MONEY, FLOAT, SMALLFLOAT

CHARACTER CHAR, VARCHAR, NCHAR, NVARCHAR,
CHARACTER VARYING, DATE

INTERVAL INTERVAL

DATETIME DATETIME

CHARACTER Opaque data types
SQL Statements 1-59

ALTER TABLE
Data-Type Requirements

The following table indicates the data type requirements for columns that
specify the CURRENT, DBSERVERNAME, SITENAME, TODAY, or USER
functions as the default value.

You cannot designate a server-defined function (that is, CURRENT, USER,
TODAY, SITENAME or DBSERVERNAME) as the default value for opaque or
distinct data types.

Example of a Literal Default Value

The following example adds a column to the items table. In items, the new
column item_weight has a literal default value:

ALTER TABLE items
ADD item_weight DECIMAL (6, 2) DEFAULT 2.00
BEFORE total_price

In this example, each existing row in the items table has a default value of
2.00 for the item_weight column.

Function Name Data Type Requirements

CURRENT DATETIME column with matching qualifier

DBSERVERNAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

SITENAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

TODAY DATE column

USER CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long
1-60 Informix Guide to SQL: Syntax

ALTER TABLE
Column-Constraint Definition

When you do not indicate a default value for a column, the default is null
unless you place a not-null constraint on the column. In this case, if the not-
null constraint is used, no default value exists for the column, and the column
does not allow nulls. When the table contains data, however, you cannot
specify a not-null constraint when you add a column (unless both the not-
null constraint and a default value other than null are specified).

You cannot specify a unique or primary-key constraint on a new column if
the table contains data. However, in the case of a unique constraint, the table
can contain a single row of data. When you want to add a column with a
primary-key constraint, the table must be empty when you issue the ALTER
TABLE statement.

Constraint-
Mode

Definition
p. 1-62

UNIQUE

PRIMARY
KEY

REFERENCES
Clause
p. 1-65

CHECK
Clause
p. 1-70

Constraint-
Mode

Definition
p. 1-62

+

Column-
Constraint
Definition

+

NOT
NULL

+

DISTINCT
SQL Statements 1-61

ALTER TABLE
The following rules apply when you place unique or primary-key constraints
on existing columns:

■ When you place a unique or primary-key constraint on a column or
set of columns, and a unique index already exists on that column or
set of columns, the constraint shares the index. However, if the
existing index allows duplicates, the database server returns an error.
You must then drop the existing index before you add the constraint.

■ When you place a unique or primary-key constraint on a column or
set of columns, and a referential constraint already exists on that
column or set of columns, the duplicate index is upgraded to unique
(if possible), and the index is shared.

You cannot have a unique constraint on a BYTE or TEXT column, nor can you
place referential or check constraints on these types of columns. A check
constraint on a BYTE or TEXT column can check only for IS NULL, IS NOT
NULL, or LENGTH.

The Column-Constraint Definition appears in the New Column clause on
page 1-55.

Constraint-Mode Definition

CONSTRAINT

FILTERING

DISABLED

WITH
ERROR

Constraint-Mode
Definition

Constraint
Name

p. 1-850
ENABLED

WITHOUT
ERROR
1-62 Informix Guide to SQL: Syntax

ALTER TABLE
You can use the Constraint-Mode Definition option for the following
purposes:

■ To assign a name to a constraint on a column

■ To set a constraint to one of the following object modes: disabled,
enabled, or filtering

The Constraint-Mode Definition appears in the Column-Constraint
Definition on page 1-61.

Description of Constraint Modes

You can set constraints to the following modes: disabled, enabled, or filtering.
These modes are described in the following table.

Constraint
Mode Effect

disabled A constraint that is created in disabled mode is not enforced during
insert, delete, and update operations.

enabled A constraint that is created in enabled mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement fails.

filtering A constraint that is created in filtering mode is enforced during
insert, delete, and update operations. If a target row causes a
violation of the constraint, the statement continues processing, but
the bad row is written to the violations table that is associated with
the target table. Diagnostic information about the constraint
violation is written to the diagnostics table that is associated with
the target table.
SQL Statements 1-63

ALTER TABLE
If you chose the filtering mode, you can specify the WITHOUT ERROR options.
The following table describes these options.

Using Constraint Modes

You must observe the following rules when you use constraint modes:

■ If you do not specify the object mode of a column-level or table-level
constraint explicitly, the default mode is enabled.

■ If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering mode constraint, the default error option is WITHOUT
ERROR.

■ When you add a constraint to a table and specify the disabled object
mode for the constraint, your ALTER TABLE statement succeeds even
if existing rows in the table violate the constraint.

■ When you add a column-level or table-level constraint to a table and
specify the enabled or filtering object mode for the constraint, your
ALTER TABLE statement succeeds if no existing rows in the table
violate the new constraint. However, if any existing rows in the table
violate the constraint, your ALTER TABLE statement fails and returns
an error.

■ When you add a column-level or table-level constraint to a table in
the enabled or filtering object mode, and existing rows in the table
violate the constraint, erroneous rows in the base table are not
filtered to the violations table. Thus, you cannot use a violations table
to detect the erroneous rows in the base table.

Error Option Effect

WITHOUT
ERROR

When a filtering mode constraint is violated during an insert,
delete, or update operation, no integrity-violation error is returned
to the user.

WITH ERROR When a filtering mode constraint is violated during an insert,
delete, or update operation, an integrity-violation error is returned
to the user.
1-64 Informix Guide to SQL: Syntax

ALTER TABLE
REFERENCES Clause

The REFERENCES clause appears in the Column-Constraint Definition on
page 1-61.

Element Purpose Restrictions Syntax
column name A referenced column or set of

columns in the referenced table.
If the referenced table is
different from the referencing
table, the default is the primary-
key column. If the referenced
table is the same as the refer-
encing table, there is no default.

You must observe restrictions
on the number of columns you
can specify, the data type of the
columns, and the existing
constraints on the columns. See
“Restrictions on the REFER-
ENCES Clause” on page 1-66.

Identifier, p. 1-962

table name The name of the referenced table The referenced table can be the
same table as the referencing
table, or it can be a different
table in the same database.

Table Name,
p. 1-1044

REFERENCES
Clause

()

,

column
name

REFERENCES

ON DELETE
CASCADE

table name

+

SQL Statements 1-65

ALTER TABLE
Restrictions on the REFERENCES Clause

Observe the following restrictions on the referenced column (the column or
set of columns that you specify in the column name variable).

The following restrictions apply to the number of columns that you can
specify in the column name variable:

■ The number of referenced columns in the referenced table must
match the number of referencing columns in the referencing table.

■ If you are using the REFERENCES clause within the ADD or MODIFY
clauses, you can specify only one column in the column name
variable.

■ If you are using the REFERENCES clause within the ADD
CONSTRAINT clause, you can specify one column or multiple
columns in the column name variable.

■ The maximum number of columns and the total length of columns
vary with the database server:

You can specify a maximum of 16 column names. The total length of
all the columns cannot exceed 390 bytes.

The data type of each referenced column must be identical to the data type of
the corresponding referencing column. The only exception is that a
referencing column must be INTEGER or INT8 if the referenced column is
SERIAL or SERIAL8.

The referenced column or set of columns must be a unique or primary-key
column. That is, the referenced column in the referenced table must already
have a unique or primary-key constraint placed upon it.

Using the REFERENCES Clause in ALTER TABLE

Use the REFERENCES clause to reference a column or set of columns in
another table or the same table. When you are using the ADD or MODIFY
clause, you can reference a single column. When you are using the ADD
CONSTRAINT clause, you can reference a single column or a set of columns.

The table that is referenced in the REFERENCES clause must reside in the same
database as the altered table.
1-66 Informix Guide to SQL: Syntax

ALTER TABLE
A referential constraint establishes the relationship between columns in two
tables or within the same table. The relationship between the columns is
commonly called a parent-child relationship. For every entry in the child
(referencing) columns, a matching entry must exist in the parent (referenced)
columns.

The referenced column (parent or primary-key) must be a column that is a
unique or primary-key constraint. When you specify a column in the
REFERENCES clause that does not meet this criterion, the database server
returns an error.

The referencing column (child or foreign key) that you specify in the Add
Column clause can contain null or duplicate values, but every value (that is,
all foreign-key columns that contain non-null values) in the referencing
columns must match a value in the referenced column.

Relationship Between Referencing and Referenced Columns

A referential constraint has a one-to-one relationship between referencing
and referenced columns. If the primary key is a set of columns, the foreign
key also must be a set of columns that corresponds to the primary key. The
following example creates a new column in the cust_calls table, ref_order.
The ref_order column is a foreign key that references the order_num column
in the orders table.

ALTER TABLE cust_calls
ADD ref_order INTEGER
REFERENCES orders (order_num)
BEFORE user_id

When you reference a primary key in another table, you do not have to
explicitly state the primary-key columns in that table. Referenced tables that
do not specify the referenced column default to the primary-key column. In
the previous example, because order_num is the primary key in the orders
table, you do not have to reference that column explicitly.

When you place a referential constraint on a column or set of columns, and a
duplicate or unique index already exists on that column or set of columns, the
index is shared.
SQL Statements 1-67

ALTER TABLE
The data types of the referencing and referenced column must be identical,
unless the primary-key column is SERIAL or SERIAL8 data type. When you
add a column that references a SERIAL of SERIAL8 column, the column that
you add must be an INTEGER or an INT8 column.

Locks Held During Creation of a Referential Constraint

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released after you finish with the ALTER TABLE
statement or at the end of a transaction (if you are altering a table in a
database with transactions, and you are using transactions).

Using ON DELETE CASCADE

Cascading deletes allow you to specify whether you want rows deleted in the
child table when rows are deleted in the parent table. Normally, you cannot
delete data in the parent table if child tables are associated with it. You can
specify that you want the rows in the child table deleted with ON DELETE
CASCADE. With ON DELETE CASCADE (or cascading deletes), when you
delete a row in the parent table, any rows that are associated with that row
(foreign keys) in a child table are also deleted. The principal advantage to the
cascading-deletes feature is that it allows you to reduce the quantity of SQL
statements you need to perform delete actions.

For example, the stock table contains the stock_num column as a primary
key. The catalog table refers to the stock_num column as a foreign key. The
following ALTER TABLE statements drop an existing foreign-key constraint
(without cascading delete) and add a new constraint that specifies cascading
deletes:

ALTER TABLE catalog DROP CONSTRAINT aa

ALTER TABLE catalog ADD CONSTRAINT
(FOREIGN KEY (stock_num, manu_code) REFERENCES stock
ON DELETE CASCADE CONSTRAINT ab)
1-68 Informix Guide to SQL: Syntax

ALTER TABLE
With cascading deletes specified on the child table, in addition to deleting a
stock item from the stock table, the delete cascades to the catalog table that is
associated with the stock_num foreign key. Of course, this cascading delete
works only if the stock_num that you are deleting has not been ordered;
otherwise, the constraint from the items table would disallow the cascading
delete. For more information, see “What Happens to Multiple Child Tables?”.

You specify cascading deletes with the REFERENCES clause on the ADD
CONSTRAINT clause. You need only the References privilege to indicate
cascading deletes. You do not need the Delete privilege to specify cascading
deletes in tables; however, you do need the Delete privilege on tables that are
referenced in the DELETE statement. After you indicate cascading deletes,
when you delete a row from a parent table, Universal Server deletes any
associated matching rows from the child table.

Use the ADD CONSTRAINT clause to add a REFERENCES clause with the ON
DELETE CASCADE constraint.

What Happens to Multiple Child Tables?

When you have a parent table with two child tables, one with cascading
deletes specified and the other without cascading deletes, and you attempt to
delete a row from the parent table that applies to both child tables, the delete
statement fails, and no rows are deleted from either the parent or child tables.

In the previous example, the stock table is also parent to the items table.
However, you do not need to add the cascading-delete clause to the items
table if you are planning to delete only unordered items. The items table is
used only for ordered items.

Locking and Logging

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables. You must turn logging on when you
perform the deletes. When logging is turned off in a database, even tempo-
rarily, deletes do not cascade. This restriction applies because you have no
way to roll back actions if logging is turned off. For example, if a parent row
is deleted, and the system crashes before the child rows are deleted, the
database would have dangling child records. Such records would violate
referential integrity. However, when logging is turned back on, subsequent
deletes cascade.
SQL Statements 1-69

ALTER TABLE
Restriction on Cascading Deletes

Cascading deletes can be used for most deletes except correlated subqueries.
In correlated subqueries, the subquery (or inner SELECT) is correlated when
the value it produces depends on a value produced by the outer SELECT
statement that contains it. If you have implemented cascading deletes, you
cannot write deletes that use a child table in the correlated subquery. You
receive an error when you attempt to delete from a query that contains such
a correlated subquery.

ON DELETE CASCADE appears in the REFERENCES clause on page 1-65.

CHECK Clause

A check constraint designates a condition that must be met before data can be
inserted into a column. If a row evaluates to false for any check constraint
that is defined on a table during an insert or update, the database server
returns an error.

Check constraints are defined using search conditions. The search condition
cannot contain the following items: subqueries, aggregates, host variables,
rowids, or stored procedure calls. In addition, the search condition cannot
contain the following functions: the CURRENT, USER, SITENAME,
DBSERVERNAME, or TODAY functions.

You cannot create check constraints for columns across tables. When you are
using the ADD or MODIFY clause, the check constraint cannot depend upon
values in other columns of the same table. The following example adds a new
column, unit_price, to the items table and includes a check constraint that
ensures that the entered value is greater than 0:

ALTER TABLE items
ADD (unit_price MONEY (6,2) CHECK (unit_price > 0))

Condition
p. 1-831

CHECK ()

CHECK
Clause
1-70 Informix Guide to SQL: Syntax

ALTER TABLE
To create a constraint that checks values in more than one column, use the
ADD CONSTRAINT clause. The following example builds a constraint on the
column that was added in the previous example. The check constraint now
spans two columns in the table.

ALTER TABLE items ADD CONSTRAINT
CHECK (unit_price < total_price)

The CHECK clause appears in the Column-Constraint Definition on
page 1-61.

BEFORE Option

Use the BEFORE option of the ADD clause to specify the column before which
a new column or list of columns is to be added. The column that you specify
in the BEFORE option must be an existing column in the table.

If you do not include the BEFORE option in the ADD clause, the database
server adds the new column or list of columns to the end of the table
definition by default.

In the following example, to add the item_weight column before the
total_price column, include the BEFORE option in the ADD clause:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL

BEFORE total_price)

In the following example, to add the item_weight column to the end of the
table, omit the BEFORE option from the ADD clause:

ALTER TABLE items
ADD (item_weight DECIMAL(6,2) NOT NULL)

The BEFORE option appears in the ADD clause on page 1-55.

DROP Clause
SQL Statements 1-71

ALTER TABLE
Use the DROP clause to drop one or more columns from a table.

The DROP clause appears in the Alter Clause for Untyped Tables on
page 1-54.

Element Purpose Restrictions Syntax
column name The name of the column that

you want to drop
The column must already exist
in the table. If the column is
referenced in a fragment
expression, it cannot be
dropped.

Identifier, p. 1-962

,

column name

column nameDROP

()

DROP
Clause
1-72 Informix Guide to SQL: Syntax

ALTER TABLE
How Dropping a Column Affects Constraints

When you drop a column, all constraints placed on that column are dropped,
as the following list describes:

■ All single-column constraints are dropped.

■ All referential constraints that reference the column are dropped.

■ All check constraints that reference the column are dropped.

■ If the column is part of a multiple-column unique or primary-key
constraint, the constraints placed on the multiple columns are also
dropped. This action, in turn, triggers the dropping of all referential
constraints that reference the multiple columns.

Because any constraints that are associated with a column are dropped when
the column is dropped, the structure of other tables might also be altered
when you use this clause. For example, if the dropped column is a unique or
primary key that is referenced in other tables, those referential constraints
also are dropped. Therefore the structure of those other tables is also altered.

How Dropping a Column Affects Triggers

When you drop a column that occurs in the triggering column list of an
UPDATE trigger, the column is dropped from the triggering column list. If the
column is the only member of the triggering column list, the trigger is
dropped from the table. See the CREATE TRIGGER statement on page 1-255
for more information on triggering columns in an UPDATE trigger.

How Dropping a Column Affects Views

When you alter a table by dropping a column, views that depend on the
column are not modified. However, if you attempt to use the view, you
receive an error message indicating that the column was not found.

Views are not dropped because you can change the order of columns in a
table by dropping a column and then adding a new column with the same
name. Views based on that table continue to work. They retain their original
sequence of columns.
SQL Statements 1-73

ALTER TABLE
MODIFY Clause
Use the MODIFY clause to change the data type of a column and the length of
a character column, to add or change the default value for a column, and to
allow or disallow nulls in a column.

You cannot modify a column whose data type is a collection type. You cannot
modify a column type to be a collection type or a row type.

When you modify a column, all attributes previously associated with that
column (that is, default value, single-column check constraint, or referential
constraint) are dropped. When you want certain attributes of the column to
remain, such as PRIMARY KEY, you must respecify those attributes. For
example, if you are changing the data type of an existing column, quantity,
to SMALLINT, and you want to keep the default value (in this case, 1) and
non-null attributes for that column, you can issue the following ALTER TABLE
statement:

ALTER TABLE items
MODIFY (quantity SMALLINT DEFAULT '1' NOT NULL)

Element Purpose Restrictions Syntax
column name The name of the column that you

want to modify
The column must already exist
in the table.

Identifier, p. 1-962

,

Modify Column
Clause

()

MODIFY

Modify Column
Clause

 column
name Data Type

p. 1-855 DEFAULT
Clause
p. 1-58

Column-Constraint
Definition
p. 1-61

Modify Column
Clause

MODIFY
Clause
1-74 Informix Guide to SQL: Syntax

ALTER TABLE
Tip: Both attributes are specified again in the MODIFY clause.

When you modify a column that has column constraints associated with it,
the following constraints are dropped:

■ All single-column constraints are dropped.

■ All referential constraints that reference the column are dropped.

■ If the modified column is part of a multiple-column unique or
primary-key constraint, all referential constraints that reference the
multiple columns also are dropped.

For example, if you modify a column that has a unique constraint, the unique
constraint is dropped. If this column was referenced by columns in other
tables, those referential constraints are also dropped. In addition, if the
column is part of a multiple-column unique or primary-key constraint, the
multiple-column constraints are not dropped, but any referential constraints
placed on the column by other tables are dropped. For example, a column is
part of a multiple-column primary-key constraint. This primary key is refer-
enced by foreign keys in two other tables. When this column is modified, the
multiple-column primary-key constraint is not dropped, but the referential
constraints placed on it by the two other tables are dropped.

If you modify a column that appears in the triggering column list of an
UPDATE trigger, the trigger is unchanged.

The MODIFY clause appears in the Alter clause for Untyped Tables on
page 1-54.

Altering Large-Object Characteristics

You cannot use the ALTER TABLE statement to modify the characteristics of a
smart large object column. To modify a smart-large-object column, you must
use one of the following:

■ The ifx_lo_alter() function in ESQL/C

For more information, refer to the INFORMIX-ESQL/C Programmer’s
Manual.

■ The DataBlade API function mi_lo_alter() in external functions

For more information, refer to the DataBlade API Programmer’s
Manual.
SQL Statements 1-75

ALTER TABLE
Altering the Next Serial Number

You can use the MODIFY clause to reset the next value of a SERIAL or SERIAL8
column. You cannot set the next value below the current maximum value in
the column because that action can cause the database server to generate
duplicate numbers. However, you can set the next value to any value higher
than the current maximum, which creates gaps in the sequence.

Altering the Structure of Tables

When you use the MODIFY clause, you can also alter the structure of other
tables. If the modified column is referenced by other tables, those referential
constraints are dropped. You must add those constraints to the referencing
tables again, using the ALTER TABLE statement.

When you change the data type of an existing column, all data is converted
to the new data type, including numbers to characters and characters to
numbers (if the characters represent numbers). The following statement
changes the data type of the quantity column:

ALTER TABLE items MODIFY (quantity CHAR(6))

When a unique or primary-key constraint exists, however, conversion takes
place only if it does not violate the constraint. If a data-type conversion
would result in duplicate values (by changing FLOAT to SMALLFLOAT, for
example, or by truncating CHAR values), the ALTER TABLE statement fails.

Modifying Tables for Null Values

You can modify an existing column that formerly permitted nulls to disallow
nulls, provided that the column contains no null values. To do this, specify
MODIFY with the same column name and data type and the NOT NULL
keywords. The NOT NULL keywords create a not-null constraint on the
column.

You can modify an existing column that did not permit nulls to permit nulls.
To do this, specify MODIFY with the column name and the existing data type,
and omit the NOT NULL keywords. The omission of the NOT NULL keywords
drops the not-null constraint on the column. However, if a unique index
exists on the column, you can remove it using the DROP INDEX statement.
1-76 Informix Guide to SQL: Syntax

ALTER TABLE
An alternative method of permitting nulls in an existing column that did not
permit nulls is to use the DROP CONSTRAINT clause to drop the not-null
constraint on the column.

Adding a Constraint When Existing Rows Violate the Constraint

If you use the MODIFY clause to add a constraint in the enabled mode and
receive an error message because existing rows would violate the constraint,
you can take the following steps to add the constraint successfully:

1. Add the constraint in the disabled mode.

Issue the ALTER TABLE statement again, but this time specify the
DISABLED keyword in the MODIFY clause.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue a SET statement to switch the object mode of the constraint to
the enabled mode.

When you issue this statement, existing rows in the target table that
violate the constraint are duplicated in the violations table; however,
you receive an integrity-violation error message, and the constraint
remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table.

You might need to join the violations and diagnostics tables to get all
the necessary information.

5. Take corrective action on the rows in the target table that violate the
constraint.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled constraint to the enabled
mode.

This time the constraint is enabled, and no integrity-violation error
message is returned because all rows in the target table now satisfy
the new constraint.
SQL Statements 1-77

ALTER TABLE
ADD CONSTRAINT Clause

Use the ALTER TABLE statement with the ADD CONSTRAINT keywords to
specify a constraint on a new or existing column or on a set of columns. For
example, to add a unique constraint to the fname and lname columns of the
customer table, use the following statement:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname)

To name the constraint, change the preceding statement, as the following
example shows:

ALTER TABLE customer
ADD CONSTRAINT UNIQUE (lname, fname) CONSTRAINT u_cust

When you do not provide a constraint name, the database server provides
one. You can find the name of the constraint in the sysconstraints system
catalog table. For more information about the sysconstraints system catalog
table, refer to Chapter 2 of the Informix Guide to SQL: Reference.

The ADD CONSTRAINT clause appears in the Alter Clause for Untyped Tables
on page 1-54 and the Alter Clause for Typed Tables on page 1-86.

,

Table-Level
Constraint
Definition
p. 1-79

()

ADD CONSTRAINT

ADD CONSTRAINT
Clause

Table-Level
Constraint
Definition
p. 1-79
1-78 Informix Guide to SQL: Syntax

ALTER TABLE
Table-Level Constraint Definition

Use the Table-Level Constraint Definition option to add a table-level
constraint. You can define a table-level constraint on one column or a set of
columns. You can assign a name to the constraint and set its object mode by
means of the Constraint Mode Definitions option. See page 1-62 for further
information.

The Table-Level Constraint Definition clause appears in the Add Constraints
clause on page 1-78.

Element Purpose Restrictions Syntax

column name The name of the column or col-
umns on which the constraint is
placed

The maximum number of col-
umns is 16, and the total length
of all the columns cannot exceed
390 bytes.

Identifier, p. 1-962

UNIQUE

FOREIGN KEY
REFERENCES

Clause
p. 1-65

CHECK
Clause
p. 1-70

column
name

)(

Table-Level
Constraint Definition

PRIMARY
KEY ,

+

Constraint-Mode
Definitions

p. 1-62

+

DISTINCT

column
name

)(

,

SQL Statements 1-79

ALTER TABLE
Adding a Unique Constraint

You must follow certain rules when you add a unique constraint.

The column or columns can contain only unique values.

When you place a unique constraint on a column or set of columns, and a
unique index already exists on that column or set of columns, the constraint
shares the index. However, if the existing index allows duplicates, the
database server returns an error. You must then drop the existing index
before adding the unique constraint.

When you add a unique constraint, the name of the constraint must be
unique within the database.

When you add a unique constraint, the owner.name combination (the combi-
nation of the owner name and constraint name) must be unique within the
database. ♦

A composite list can include no more than 16 column names. The total length
of all the columns cannot exceed 390 bytes.

Adding a Primary-Key or Unique Constraint

You must follow certain rules when you add a unique or primary-key
constraint.

When you place a unique or primary-key constraint on a column or set of
columns, and a unique index already exists on that column or set of columns,
the constraint shares the index. However, if the existing index allows dupli-
cates, the database server returns an error. You must then drop the existing
index before adding the constraint.

When you place a unique or primary-key constraint on a column or set of
columns, and a referential constraint already exists on that column or set of
columns, the duplicate index is upgraded to unique (if possible) and the
index is shared.

ANSI
1-80 Informix Guide to SQL: Syntax

ALTER TABLE
When you place a referential constraint on a column or set of columns, and a
referential constraint already exists on that column or set of columns, the
duplicate index is upgraded to unique (if possible), and the index is shared.

When you add a unique or primary-key constraint, the name of the
constraint must be unique within the database.

When you add a unique or primary-key constraint, the owner.name combi-
nation (the combination of the owner name and constraint name) must be
unique within the database. ♦

Privileges Required for Adding Constraints

When you own the table or have the Alter privilege on the table, you can
create a unique, primary-key, or check constraint on the table and specify
yourself as the owner of the constraint. To add a referential constraint, you
must have the References privilege on either the referenced columns or the
referenced table. When you have the DBA privilege, you can create
constraints for other users.

Recovery from Constraint Violations

If you use the ADD CONSTRAINT clause to add a table-level constraint in the
enabled mode and receive an error message because existing rows would
violate the constraint, you can follow a procedure to add the constraint
successfully. See “Adding a Constraint When Existing Rows Violate the
Constraint” on page 1-77.

ANSI
SQL Statements 1-81

ALTER TABLE
DROP CONSTRAINT Clause

Use the DROP CONSTRAINT clause to drop any type of constraint, including
not-null constraints.

To drop an existing constraint, specify the DROP CONSTRAINT keywords and
the name of the constraint. The following statement is an example of
dropping a constraint:

ALTER TABLE manufact DROP CONSTRAINT con_name

If a constraint name is not specified when the constraint is created, the
database server generates the name. You can query the sysconstraints system
catalog table for the names (including the owner) of constraints. For example,
to find the name of the constraint placed on the items table, you can issue the
following statement:

SELECT constrname FROM sysconstraints
WHERE tabid = (SELECT tabid FROM systables

WHERE tabname = 'items')

When you drop a unique or primary-key constraint that has a corresponding
foreign key, the referential constraints is dropped. For example, if you drop
the primary-key constraint on the order_num column in the orders table and
order_num exists in the items table as a foreign key, that referential
relationship is also dropped.

The DROP CONSTRAINT clause appears in the Alter Clause for Untyped
Tables on page 1-54.

,

()

DROP CONSTRAINT

Constraint
Name

p. 1-850

Constraint
Name

p. 1-850

DROP CONSTRAINT
Clause
1-82 Informix Guide to SQL: Syntax

ALTER TABLE
ADD TYPE Clause
Use the ALTER TABLE command to change an untyped table into a typed
table. When you specify ADD TYPE, you assign a named row type to the table.

Use the ADD TYPE clause to convert an untyped table to a typed table of the
named row type.

You cannot combine the ADD TYPE clause with any clause that changes the
structure of the table. That is, you cannot use an ADD, DROP, or MODIFY
clause in the same statement as the ADD TYPE clause.

Tip: To change the data type of a column within an untyped table, use the MODIFY
clause.

When you add a named row type to a table, be sure that:

■ the type already exists.

■ the fields in the named row type match the column types in the table.

Important: You must have the Usage privilege to add a type to a table.

The ADD TYPE clause appears in the Alter Clause for Untyped Tables on
page 1-54.

Element Purpose Restrictions Syntax
row type name The name of the row type being

added to the table
The field types of this row type
must match the column types of
the table.

You cannot add a type to a
fragmented table that has
rowids.

Data Type, p. 1-855

ADD TYPE
Clause

ADD TYPE row type name
SQL Statements 1-83

ALTER TABLE
MODIFY NEXTSIZE Clause

Use the MODIFY NEXT SIZE clause to change the size of new extents. If you
want to specify an extent size of 32 kilobytes, use a statement such as the one
in the following example:

ALTER TABLE customer MODIFY NEXT SIZE 32

The size of existing extents is not changed.

The MODIFY NEXT SIZE clause appears in the Alter Clause for Untyped
Tables on page 1-54.

LOCK MODE Clause

Element Purpose Restrictions Syntax
kbytes The length in kilobytes that you

want to assign for the next
extent for this table

The minimum length is four
times the disk page size on your
system. For example, if you
have a 2-kilobyte page system,
the minimum length is
8 kilobytes. The maximum
length is equal to the chunk size.

Expression, p. 1-876

MODIFY NEXT SIZE
Clause

kbytesMODIFY NEXT SIZE

LOCK MODE
Clause

LOCK MODE PAGE

ROW

()
1-84 Informix Guide to SQL: Syntax

ALTER TABLE
U se the LOCK MODE keywords to change the locking mode of a table. The
default lock mode is PAGE; it is set if the table is created without using the
LOCK MODE clause. You must use the LOCK MODE clause to change from
page to row locking, as the following example shows:

ALTER TABLE items LOCK MODE (ROW)

The LOCK MODE clause appears in the Alter Clause for Untyped Tables on
page 1-54.

ROWIDS Clause
Use the ROWIDS clause to add or remove rowids from a column in a
fragmented table. By default, fragmented tables do not contain the hidden
rowid column.

Use ADD ROWIDS to add a new column called rowid for use with fragmented
tables. For each row, the database server assigns a unique number that
remains stable for the life of the row. The database server creates an index that
it uses when search to find the physical location of the row. After you add the
rowid column, each row contains an additional 4 bytes to store the rowid
value.

You can use DROP ROWIDS to drop a rowid column only if you created the
rowid column with the CREATE TABLE or ALTER FRAGMENT statements on
fragmented tables. You cannot drop the rowid columns of a nonfragmented
table.

Tip: Use the ADD ROWIDS clause only on fragmented tables. In nonfragmented
tables, the rowid column remains unchanged. Informix recommends that you use
primary keys as an access method rather than exploiting the rowid column.

The ROWIDS clause appears in the Alter Clause for Untyped Tables on
page 1-54.

ROWIDS
Clause

ROWIDSADD

DROP
SQL Statements 1-85

ALTER TABLE
For additional information about the rowid column, refer to the
INFORMIX-Universal Server Administrator’s Guide.

Alter Clause for Typed Tables
The database server performs the actions in the Alter Clause in the order that
you specified. If any of the actions fails, the entire operation is cancelled.

The Alter Clause for Typed Tables appears in the ALTER TABLE syntax on
page 1-52.

Altering Subtables and Supertables

The following considerations apply to tables that are part of inheritance
hierarchies:

■ For subtables, ADD CONSTRAINT and DROP CONSTRAINT are not
allowed on inherited constraints.

■ For supertables, ADD CONSTRAINT and DROP CONSTRAINT
propagate to all subtables.

LOCK MODE
Clause p. 1-84

DROP CONSTRAINT
Clause, p. 1-82

1

,

1

1

Alter Clause
for Typed Tables

DROP TYPE

MODIFY NEXT SIZE kilobytes

ADD CONSTRAINT
Clause, p. 1-78
1-86 Informix Guide to SQL: Syntax

ALTER TABLE
DROP TYPE Clause

Use DROP TYPE to drop the type from a table. DROP TYPE changes a typed
table to an untyped table. You must drop the type from a typed table before
you can modify, drop, or change the data type of a column in the table.

If a table is part of a table hierarchy, you cannot drop its type unless it is the
last subtype in the hierarchy. That is, you can only drop a type from a table if
that table has no subtables. When you drop the type of a subtable, it is
automatically removed from the hierarchy. The table rows are deleted from
all indexes defined by its supertables.

MODIFY NEXT SIZE Clause

Use the MODIFY NEXT SIZE clause to change the size of new extents. If you
want to specify an extent size of 32 kilobytes, use a statement such as the one
in the following example:

ALTER TABLE customer MODIFY NEXT SIZE 32

The size of existing extents is not changed.

References
See the CREATE TABLE, DROP TABLE, and LOCK TABLE statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause in
Chapter 4. Also see the discussion of creating a database and tables in
Chapter 9.

See the SET statement in this manual for information on object modes.
SQL Statements 1-87

BEGIN WORK
BEGIN WORK
Use the BEGIN WORK statement to start a transaction (a sequence of database
operations that the COMMIT WORK or ROLLBACK WORK statement
terminates).

Syntax

 Usage
The following code fragment shows how you might place statements within
a transaction:

BEGIN WORK
LOCK TABLE stock
UPDATE stock SET unit_price = unit_price * 1.10

WHERE manu_code = 'KAR'
DELETE FROM stock WHERE description = 'baseball bat'
INSERT INTO manufact (manu_code, manu_name, lead_time)

VALUES ('LYM', 'LYMAN', 14)
COMMIT WORK

Each row that an UPDATE, DELETE, or INSERT statement affects during a
transaction is locked and remains locked throughout the transaction. A trans-
action that contains many such statements or that contains statements
affecting many rows can exceed the limits that your operating system or the
INFORMIX-Universal Server configuration imposes on the maximum number
of simultaneous locks. If no other user is accessing the table, you can avoid
locking limits and reduce locking overhead by locking the table with the
LOCK TABLE statement after you begin the transaction. Like other locks, this
table lock is released when the transaction terminates.

+

E/C

DB

SQLE BEGIN

WORK
1-88 Informix Guide to SQL: Syntax

BEGIN WORK
You can issue the BEGIN WORK statement only if a transaction is not in
progress. If you issue a BEGIN WORK statement while you are in a
transaction, the database server returns an error.

 If you use the BEGIN WORK statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. These statements prevent the program from looping if the
ROLLBACK WORK statement encounters an error or a warning. ♦

With ANSI-Compliant Databases
 The BEGIN WORK statement is not needed because transactions are implicit.
A warning is generated if you use a BEGIN WORK statement immediately
after one of the following statements:

■ DATABASE

■ COMMIT WORK

■ CREATE DATABASE

■ ROLLBACK WORK

An error is generated if you use a BEGIN WORK statement after any other
statement. ♦

References
See the COMMIT WORK and ROLLBACK WORK statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of transactions and
locking in Chapter 4 and Chapter 7, respectively.

ESQL

ANSI
SQL Statements 1-89

CLOSE
CLOSE
Use the CLOSE statement to close a cursor in the following situations:

■ You no longer need to refer to the rows that a select or function cursor
produced.

■ You want to flush and close an insert cursor.

■ You no longer need to access a collection variable.

Syntax

Usage
The CLOSE statement deallocates resources that have been allocated to a
cursor when it was opened with the OPEN statement. Closing a cursor makes
the cursor unusable for any statements except OPEN or FREE and releases
resources that the database server had allocated to the cursor. A CLOSE
statement treats a cursor that is associated with an INSERT statement (an
insert cursor) differently than one that is associated with a SELECT statement
(a select cursor) or an EXECUTE FUNCTION statement (a function cursor).

Element Purpose Restrictions Syntax
cursor id The name of the cursor to be

closed
The DECLARE statement must
have previously declared the
cursor.

Identifier, p. 1-962

CLOSE cursor id

+

E/C
1-90 Informix Guide to SQL: Syntax

CLOSE
You can close a cursor that was never opened or that has already been closed.
No action is taken in these cases.

You get an error if you close a cursor that was not open. No other action
occurs. ♦

Closing a Select or Function Cursor
When cursor id is associated with a SELECT statement (select cursor) or an
EXECUTE FUNCTION statement (function cursor), the CLOSE statement
terminates the SELECT or EXECUTE PROCEDURE statement. The database
server releases all resources that it might have allocated to the active set of
rows, for example, a temporary table that it used to hold an ordered set. The
database server also releases any locks that it might have held on rows that
were selected through the cursor. If a transaction contains the CLOSE
statement, the database server does not release the locks until you execute
COMMIT WORK or ROLLBACK WORK.

After you close a select or function cursor, you cannot execute a FETCH
statement that names that cursor until you have reopened it.

Closing an Insert Cursor
When cursor id is associated with an INSERT statement (insert cursor), the
CLOSE statement writes any remaining buffered rows into the database. The
number of rows that were successfully inserted into the database is returned
in the third element of the sqlerrd array in the sqlca structure
(sqlca.sqlerrd[2]).For information on using SQLERRD to count the total
number of rows that were inserted, see the PUT statement on page 1-552.

he SQLCODE field of the sqlca structure (sqlca.sqlcode) indicates the result
of the CLOSE statement for an insert cursor. If all buffered rows are success-
fully inserted, the database server sets SQLCODE to zero. If an error is
encountered, the database server sets SQLCODE to a negative error message
number.

ANSI
SQL Statements 1-91

CLOSE
When SQLCODE is zero, the row buffer space is released, and the cursor is
closed; that is, you cannot execute a PUT or FLUSH statement that names the
cursor until you reopen it.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

If the insert is not successful, the number of successfully inserted rows is
stored in sqlerrd. Any buffered rows that follow the last successfully inserted
row are discarded. Because the CLOSE statement failed in this case, the cursor
is not closed. A second CLOSE statement can be successful because no
buffered rows exist. A subsequent OPEN statement should also be successful
because the OPEN statement performs a successful implicit close. For
example, a CLOSE statement can fail if insufficient disk space prevents some
of the rows from being inserted.

Closing a Collection Cursor
You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. (For more information, see the DECLARE
statement on page 1-300.) To close a collection cursor, use the CLOSE
statement. The CLOSE statement deallocates resources that have been
allocated for the collection cursor.

For more information on the use of OPEN with a collection cursor, see the
following sections in the FETCH statement: “Fetching From a Collection
Cursor” on page 1-419 and “Inserting into a Collection Cursor” on
page 1-560.

Using End of Transaction to Close a Cursor
The COMMIT WORK and ROLLBACK WORK statements close all cursors
except hold cursors (those that are declared with the WITH HOLD option of
DECLARE). It is better to close all cursors explicitly, however. For select or
function cursors, this action simply makes the intent of the program clear. It
also helps to avoid a logic error if the WITH HOLD clause is later added to the
declaration of a cursor.
1-92 Informix Guide to SQL: Syntax

CLOSE
For an insert cursor, it is important to use the CLOSE statement explicitly so
that you can test the error code. Following the COMMIT WORK statement,
SQLCODE reflects the result of the COMMIT statement, not the result of
closing cursors. If you use a COMMIT WORK statement without first using a
CLOSE statement, and if an error occurs while the last buffered rows are being
written to the database, the transaction is still committed. For the use of insert
cursors and the WITH HOLD clause, see the DECLARE statement on
page 1-300.

References
See the CLOSE, DECLARE and FREE statements in this manual for general
information about cursors. See the PUT and FLUSH statements in this manual
for information about insert cursors. See the FETCH statement in this manual
for information about select and function cursors.

In the Informix Guide to SQL: Tutorial, see the discussion of cursors in
Chapter 5.
SQL Statements 1-93

CLOSE DATABASE
CLOSE DATABASE
Use the CLOSE DATABASE statement to close the current database.

Syntax

Usage
Following the CLOSE DATABASE statement, you can use only the DATABASE,
CREATE DATABASE, and DROP DATABASE statements. A DISCONNECT
statement can also follow a CLOSE DATABASE statement, but only if an
explicit connection existed before you issue the CLOSE DATABASE statement.
A CONNECT statement can follow a CLOSE DATABASE statement without
any restrictions.

Issue the CLOSE DATABASE statement before you drop the current database.

If your database has transactions, and if you have started a transaction, you
must issue a COMMIT WORK statement before you use the CLOSE DATABASE
statement.

The following example shows how to use the CLOSE DATABASE statement to
drop the current database:

DATABASE stores7
.
.
.
CLOSE DATABASE
DROP DATABASE stores7

CLOSE DATABASE

+

E/C

DB

SQLE
1-94 Informix Guide to SQL: Syntax

CLOSE DATABASE
The CLOSE DATABASE statement cannot appear in a multistatement PREPARE
operation.

If you use the CLOSE DATABASE statement within a routine called by a
WHENEVER statement, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. This action prevents the program from looping if the ROLLBACK
WORK statement encounters an error or a warning.

When you issue the CLOSE DATABASE statement, declared cursors are no
longer valid. You must redeclare any cursors that you want to use. ♦

References
See the CONNECT, DATABASE, CREATE DATABASE, DISCONNECT, and DROP
DATABASE statements in this manual.

ESQL
SQL Statements 1-95

1-96 Informix Guide to SQL: Syntax

COMMIT WORK
COMMIT WORK
Use the COMMIT WORK statement to commit all modifications made to the
database from the beginning of a transaction.

Syntax

Usage
Use the COMMIT WORK statement when you are sure you want to keep
changes that are made to the database from the beginning of a transaction.
Use the COMMIT WORK statement only at the end of a multistatement
operation.

The COMMIT WORK statement releases all row and table locks.

The COMMIT WORK statement closes all open cursors except those declared
with hold. ♦

Issuing COMMIT WORK in a Database That Is Not ANSI Compliant

In a database that is not ANSI compliant, you must issue a COMMIT WORK
statement at the end of a transaction if you initiated the transaction with a
BEGIN WORK statement. If you fail to issue a COMMIT WORK statement in
this case, the database server rolls back the modifications to the database that
the transaction made.

If you are using a database that is not ANSI compliant, and you do not issue
a BEGIN WORK statement, the database server executes each statement
within its own transaction. These single-statement transactions do not
require either a BEGIN WORK statement or a COMMIT WORK statement.

E/C

DB

SQLE COMMIT

WORK

ESQL

COMMIT WORK
Issuing COMMIT WORK in an ANSI-Compliant Database

In an ANSI-compliant database, you do not need to mark the beginning of a
transaction. An implicit transaction is always in effect. You only need to mark
the end of each transaction. A new transaction starts automatically after each
COMMIT WORK or ROLLBACK WORK statement.

You must issue an explicit COMMIT WORK statement to mark the end of each
transaction. If you fail to do so, the database server rolls back the modifica-
tions to the database that the transaction made. ♦

References
See the BEGIN WORK, ROLLBACK WORK, and DECLARE statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of transactions in
Chapter 4.

ANSI
SQL Statements 1-97

CONNECT
CONNECT
Use the CONNECT statement to connect to a database environment.

Syntax

Element Purpose Restrictions Syntax
connection
name

Quoted string that assigns a
name to the connection

If your application makes
multiple connections to the same
database environment, you must
specify a unique connection
name for each connection.

Quoted String,
p. 1-1010

conn_nm
variable

Host variable that holds the
value of connection name

Variable must be a fixed-length
character data type.

Variable name must
conform to
language-specific
rules for variable
names.

connection
name

AS

conn_nm
variableAS

WITH CONCURRENT TRANSACTION

Database
Environment

p. 1-103

CONNECT TO

DEFAULT

USER
Clause
p. 1-106

E/CE/C

'
'

E/C

+

E/C

DB

SQLE
1-98 Informix Guide to SQL: Syntax

CONNECT
Usage
The CONNECT statement connects an application to a database environment.
The database environment can be a database, a database server, or a database
and a database server. If the application successfully connects to the specified
database environment, the connection becomes the current connection for
the application. SQL statements fail if no current connection exists between an
application and a database server. If you specify a database name, the
database server opens the database.You cannot use the CONNECT statement
in a PREPARE statement.

An application can connect to several database environments at the same
time, and it can establish multiple connections to the same database
environment, provided each connection has a unique connection name. The
only restriction on this is that an application can establish only one
connection to each local server that uses the shared-memory connection
mechanism. To find out whether a local server uses the shared memory
connection mechanism or the local loopback connection mechanism,
examine the $INFORMIXDIR/etc/sqlhosts file. (See the INFORMIX-Universal
Server Administrator’s Guide for more information.)

Only one connection is current at any time; other connections are dormant.
The application cannot interact with a database through a dormant
connection. When an application establishes a new connection, that
connection becomes current, and the previous current transaction becomes
dormant. You can make a dormant connection current with the SET
CONNECTION statement. See “SET CONNECTION” on page 1-682.

Privileges for Executing the CONNECT Statement

The current user, or PUBLIC, must have the Connect database privilege on the
database specified in the CONNECT statement.

The user who executes the CONNECT statement cannot have the same user
name as an existing role in the database.

For information on using the USER clause to specify an alternate user name
when the CONNECT statement connects to a database server on a remote
host, see “USER Clause” on page 1-106.
SQL Statements 1-99

CONNECT
Connection Identifiers

The optional connection name is a unique identifier that an application can use
to refer to a connection in subsequent SET CONNECTION and DISCONNECT
statements. If the application does not provide connection name (or a conn_nm
host variable), it can refer to the connection using the database environment.
If the application makes more than one connection to the same database
environment, however, each connection must have a unique connection
name.

After you associate a connection name with a connection, you can refer to the
connection using only that connection name.

The value of connection name is case sensitive.

Connection Context

Each connection encompasses a set of information that is called the connection
context. The connection context includes the name of the current user, the
information that the database environment associates with this name, and
information on the state of the connection (such as whether an active trans-
action is associated with the connection). The connection context is saved
when an application becomes dormant, and this context is restored when the
application becomes current again. (For more information on dormant
connections, see “Making a Dormant Connection the Current Connection”
on page 1-683.)

DEFAULT Option

Use the DEFAULT option to request a connection to a default database server,
called a default connection. The default database server can be local or remote.
To designate the default database server, set its name in the environment
variable INFORMIXSERVER. This form of the CONNECT statement does not
open a database.

If you select the DEFAULT option for the CONNECT statement, you must use
the DATABASE statement, the CREATE DATABASE statement, or the START
DATABASE statement to open or create a database in the default database
environment.
1-100 Informix Guide to SQL: Syntax

CONNECT
Implicit Connection with DATABASE Statements

If you do not execute a CONNECT statement in your application, the first SQL
statement must be one of the following database statements (or a single
statement PREPARE for one of the following statements):

■ DATABASE

■ CREATE DATABASE

■ DROP DATABASE

If one of these database statements is the first SQL statement in an application,
the statement establishes a connection to a server, which is known as an
implicit connection. If the database statement specifies only a database name,
the database server name is obtained from the DBPATH environment
variable. This situation is described in “Locating the Database” on
page 1-105.

An application that makes an implicit connection can establish other
connections explicitly (using the CONNECT statement) but cannot establish
another implicit connection unless the original implicit connection is discon-
nected. An application can terminate an implicit connection using the
DISCONNECT statement.

After any implicit connection is made, that connection is considered to be the
default connection, regardless of whether the server is the default specified
by the INFORMIXSERVER environment variable. This default allows the
application to refer to the implicit connection if additional explicit connec-
tions are made, because the implicit connection does not have an identifier.
For example, if you establish an implicit connection followed by an explicit
connection, you can make the implicit connection current by issuing the SET
CONNECTION DEFAULT statement. This means, however, that once you
establish an implicit connection, you cannot use the CONNECT DEFAULT
command because the implicit connection is considered to be the default
connection.

The database statements can always be used to open a database or create a
new database on the current database server.
SQL Statements 1-101

CONNECT
WITH CONCURRENT TRANSACTION Option

The WITH CONCURRENT TRANSACTION clause lets you switch to a different
connection while a transaction is active in the current connection. If the
current connection was not established using the WITH CONCURRENT
TRANSACTION clause, you cannot switch to a different connection if a trans-
action is active. The CONNECT or SET CONNECTION statement fails,
returning an error, and the transaction in the current connection continues to
be active. In this case, the application must commit or roll back the active
transaction in the current connection before it switches to a different
connection.

The WITH CONCURRENT TRANSACTION clause supports the concept of
multiple concurrent transactions, where each connection can have its own
transaction and the COMMIT WORK and ROLLBACK WORK statements affect
only the current connection.The WITH CONCURRENT TRANSACTION clause
does not support global transactions in which a single transaction spans
databases over multiple connections. The COMMIT WORK and ROLLBACK
WORK statements do not act on databases across multiple connections.

The following example illustrates how to use the WITH CONCURRRENT
TRANSACTION clause:

main()
{
EXEC SQL connect to 'a@srv1' as 'A';
EXEC SQL connect to 'b@srv2' as 'B' with concurrent transaction;
EXEC SQL connect to 'c@srv3' as 'C' with concurrent transaction;

/*
Execute SQL statements in connection 'C' , starting a
transaction

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'

/*
Execute SQL statements starting a transaction in 'B'.
Now there are two active transactions, one each in 'B'
and 'C'.

*/

EXEC SQL set connection 'A'; -- switch to connection 'A'

/*
Execute SQL statements starting a transaction in 'A'.
Now there are three active transactions, one each in 'A',
'B' and 'C'.

*/

EXEC SQL set connection 'C'; -- ERROR, transaction active in 'A'
1-102 Informix Guide to SQL: Syntax

CONNECT
/*
SET CONNECTION 'C' fails (current connection is still 'A')
The transaction in 'A' must be committed/rolled back since
connection 'A' was started without the CONCURRENT TRANSACTION
clause.

*/

EXEC SQL commit work;-- commit tx in current connection ('A')

/*
Now, there are two active transactions, in 'B' and in 'C',
which must be committed/rolled back separately

*/

EXEC SQL set connection 'B'; -- switch to connection 'B'
EXEC SQL commit work; -- commit tx in current connection ('B')

EXEC SQL set connection 'C'; -- go back to connection 'C'
EXEC SQL commit work; -- commit tx in current connection ('C')

EXEC SQL disconnect all;
}

Warning: When an application uses the WITH CONCURRENT TRANSACTION
clause to establish multiple connections to the same database environment, a deadlock
condition can occur. A deadlock condition occurs when one transaction obtains a lock
on a table, and a concurrent transaction tries to obtain a lock on the same table,
resulting in the application waiting for itself to release the lock.

Database Environment

'dbname'

db_env variable

Database
Environment

'dbname@dbservername'

'@dbservername'

ESQL
SQL Statements 1-103

CONNECT
Element Purpose Restrictions Syntax
db_env variable Host variable that contains a

value representing a database
environment

Variable must be a fixed-length
character data type. The value
stored in this host variable must
have one of the database-
environment formats listed in
the syntax diagram.

Variable name must
conform to
language-specific
rules for variable
names.

dbname Quoted string that identifies the
name of the database to which a
connection is made

Specified database must already
exist. If you previously set the
DELIMIDENT environment
variable, surrounding quotes
must be single. If the
DELIMIDENT environment
variable has not been previously
set, surrounding quotes can be
single or double.

Quoted String,
p. 1-1010

dbservername Quoted string that identifies the
name of the database server to
which a connection is made

Specified database server must
match the name of a server in the
sqlhosts file. If you previously
set the DELIMIDENT
environment variable,
surrounding quotes must be
single. If the DELIMIDENT
environment variable has not
been previously set,
surrounding quotes can be
single or double.

Quoted String,
p. 1-1010

dbname@
dbservername

Quoted string that identifies the
name of the database and
database server to which a
connection is made

Specified database must already
exist. Specified database server
must match the name of a server
in the sqlhosts file. If you previ-
ously set the DELIMIDENT
environment variable,
surrounding quotes must be
single. If the DELIMIDENT
environment variable has not
been previously set,
surrounding quotes can be
single or double.

Quoted String,
p. 1-1010
1-104 Informix Guide to SQL: Syntax

CONNECT
Specifying the Database Environment

Using the options shown in the syntax diagram, you can specify either a
server and a database, a database server only, or a database only.

Specifying a Database Server Only

The @dbservername option establishes a connection to the named database
server only; it does not open a database. When you use this option, you must
subsequently use the DATABASE or CREATE DATABASE statement (or a
PREPARE statement for one of these statements and an EXECUTE statement)
to open a database.

Specifying a Database Only

The dbname option establishes connections to the default server or to another
database server in the DBPATH environment variable. It also locates and
opens the named database. The same is true of the db_env variable option if it
specifies only a database name. See “Locating the Database” for the order in
which an application connects to different database servers to locate a
database.

Locating the Database

How a database is located and opened depends on whether you specify a
database server name in the database environment expression

Database Server and Database Specified

If you specify both a database server and a database in the CONNECT
statement, your application connects to the database server, which locates
and opens the database. For the Universal Server database server, it uses
parameters that are specified in the ONCONFIG configuration file to locate the
database.

If the database server that you specify is not on-line, you get an error.
SQL Statements 1-105

CONNECT
Only Database Specified

If you specify only a database in your CONNECT statement, not a database
server, the application obtains the name of a database server from the
DBPATH environment variable. The database server in the
INFORMIXSERVER environment variable is always added in front of the
DBPATH value specified by the user. Set environment variables as the
following example shows:

setenv INFORMIXSERVER srvA
setenv DBPATH //srvB://srvC

The resulting DBPATH used by your application is shown in the following
example:

//srvA://srvB://srvC

The application first establishes a connection to the database server specified
by INFORMIXSERVER. For the Universal Server database server, it uses
parameters that are specified in the configuration file to locate the database.

If the database does not reside on the default database server, or if the default
database server is not on-line, the application connects to the next database
server in DBPATH. In the previous example, this server would be srvB.

If a directory in DBPATH is an NFS-mounted directory, it is expanded to
contain the host name of the NFS computer and the complete pathname of the
directory on the NFS host. In this case, the host name must be listed in your
sqlhosts file as a dbservername, and an sqlexecd daemon must be running
on the NFS host.

USER Clause

USER
Clause

user identifierUSER

user_id
variable

USING auth variable' '
1-106 Informix Guide to SQL: Syntax

CONNECT
The User clause specifies information that is used to determine whether the
application can access the target computer when the CONNECT statement
connects to the database server on a remote host. Subsequent to the
CONNECT statement, all database operations on the remote host use the
specified user name.

The connection is rejected if the following conditions occur:

■ The specified user lacks the privileges to access the database named
in the database environment.

■ The specified user does not have the required permissions to connect
to the remote host.

■ You supply a USER clause but do not include the USING auth variable
phrase.

In compliance with the X/Open specification for the CONNECT statement, the
ESQL/C preprocessor allows a CONNECT statement that has a USER clause
without the USING auth variable phrase. The connection is rejected at runtime
by Informix database servers, however, if the auth variable is not present. ♦

Element Purpose Restrictions Syntax
auth variable Host variable that holds the

valid password for the login
name specified in user identifier
or user_id variable

Variable must be a fixed-length
character data type. The
password stored in this variable
must exist in the /etc/passwd
file. If the application connects to
a remote database server, the
password must exist in this file
on both the local and remote
database servers.

Variable name must
conform to
language-specific
rules for variable
names.

user_id variable The name of an ESQL/C host
variable that holds the value of
user identifier

Variable must be a fixed-length
character data type. The login
name stored in this variable is
subject to the same restrictions
as the user identifier variable.

Variable name must
conform to
language-specific
rules for variable
names.

user identifier Quoted string that is a valid
login name for the application

Specified login name must exist
in the /etc/passwd file. If the
application connects to a remote
server, the login name must exist
in this file on both the local and
remote database servers.

Quoted String,
p. 1-1010

X/O

ESQL
SQL Statements 1-107

CONNECT
 If you do not supply the USER clause, the connection is attempted using the
default user ID. The default Informix user ID is the login name of the user
running the application. In this case, network permissions are obtained using
the standard UNIX authorization procedures (for example, checking the
/etc/hosts.equiv file).

Connecting to INFORMIX-OnLine Dynamic Server Before
Version 6.0
The CONNECT statement syntax described in this chapter is valid for a
Version 6.0 or later application connecting to database servers earlier than
Version 6.0. As with Version 6.0 or later database servers, an implicit
connection can be made to a database server earlier than Version 6.0,
provided that no existing implicit connections exist and no implicit connec-
tions have been previously terminated.

Connections to pre-Version 6.0 OnLine database servers differ from
connections to Version 6.0 or later OnLine and Universal Server in the
following respects:

■ The CLOSE DATABASE statement causes a connection to a pre-
Version 6.0 database server to be dropped. The same statement,
applied to a connection to a Version 6.0 or later database server,
causes the database to close, but the connection remains.

■ If an application makes a connection to a pre-Version 6.0 database
server without using the WITH CONCURRENT TRANSACTION
clause, you must close the database (effectively dropping the
connection) before you switch to a different connection. Otherwise,
Version 6.0 and later OnLine and Universal Server return error
message -1800.

References
See the DISCONNECT, SET CONNECTION, DATABASE, START DATABASE, and
CREATE DATABASE statements in this manual.

For information on the contents of the sqlhosts file, refer to the
INFORMIX-Universal Server Administrator’s Guide.
1-108 Informix Guide to SQL: Syntax

CREATE CAST
CREATE CAST
Use the CREATE CAST statement to register a cast that converts data from one
data type to another.

Syntax

Element Purpose Restrictions Syntax
source data type The data type to be converted The type must exist in the

database at the time the cast is
registered. Either the source data
type or the target data type, but
not both, can be a built-in type.
Neither type can be a distinct
type of the other. The type
cannot be a collection data type.

Data Type, p. 1-855

 (1 of 2)

CREATE
source
data
type

target
data
type

(CAST

WITH

AS

IMPLICIT

EXPLICIT

function
name

+

E/C

DB

SQLE

)

SQL Statements 1-109

CREATE CAST
Usage
A cast is a mechanism that the database server uses to convert one data type
to another. The database server uses casts to perform the following tasks:

■ To compare two values in the WHERE clause of a SELECT, UPDATE, or
DELETE statement

■ To pass values as arguments to a user-defined routines

■ To return values from user-defined routines

To create a cast, you must have the necessary privileges on both the source
data type and the target data type. All users have permission to use the built-in
data types. However, to create a cast to or from an opaque type, distinct type,
or named row type requires the Usage privilege on that type.

The CREATE CAST statement registers a cast in the syscasts system catalog
table. For more information on syscasts, see the chapter on system catalog
tables in the Informix Guide to SQL: Reference.

target data type The data type that results from
the conversion

The type must exist in the
database at the time the cast is
registered. Either the source data
type or the target data type, but
not both, can be a built-in type.
Neither type can be a distinct
type of the other. The type
cannot be a collection data type.

Data Type, p. 1-855

function name The name of the function that
you register to implement the
cast

See “WITH Clause” on
page 1-113.

Function Name,
p. 1-959

Element Purpose Restrictions Syntax

 (2 of 2)
1-110 Informix Guide to SQL: Syntax

CREATE CAST
Source and Target Data Types
The CREATE CAST statement defines a cast that converts a source data type to
a target data type. Both the source data type and target data type must exist in the
database when you execute the CREATE CAST statement to register the cast.
The source data type and the target data type have the following restrictions:

■ Either the source data type or the target data type, but not both, can be
a built-in type.

■ Neither the source data type nor the target data type can be a distinct
type of the other.

■ Neither the source data type nor the target data type can be a collection
data type.

Explicit and Implicit Casts
To process queries with multiple data types often requires casts that convert
data from one data type to another. You can use the CREATE CAST statement
to create the following kinds of casts:

■ Use the CREATE EXPLICIT CAST statement to define an explicit cast.

■ Use the CREATE IMPLICIT CAST statement to define an implicit cast.

Explicit Casts

An explicit cast is a cast that you must specifically invoke, with either the
CAST AS keywords or with the cast operator (::). The database server does not
automatically invoke an explicit cast to resolve data type conversions. The
EXPLICIT keyword is optional; by default, the CREATE CAST statement
creates an explicit cast.

The following CREATE CAST statement defines an explicit cast from the
rate_of_return opaque data type to the percent distinct data type:

CREATE EXPLICIT CAST (rate_of_return AS percent)
WITH rate_to_prcnt
SQL Statements 1-111

CREATE CAST
The following SELECT statement explicitly invokes this explicit cast in its
WHERE clause to compare the bond_rate column (of type rate_of_return) to
the yyy column (of type percent):

SELECT bond_rate FROM bond
WHERE bond_rate::percent > 15

Implicit Casts

The database server invokes system-defined casts to convert from one built-
in data type to another built-in type that is not directly substitutable. For
example, the database server performs conversion of a character type such as
CHAR to a numeric type such as INTEGER through a system-defined cast.

An implicit cast is a cast that the database server can invoke automatically
when it encounters data types that cannot be compared with system-defined
casts. This type of cast enables the database server to handle automatically
conversions between other data types.

To define an implicit cast, specify the IMPLICIT keyword in the CREATE CAST
statement. For example, the following CREATE CAST statement specifies that
the database server should automatically use the prcnt_to_char() function
when it needs to convert from the CHAR data type to a distinct data type,
percent:

CREATE IMPLICIT CAST (CHAR AS percent) WITH prcnt_to_char

This cast only provides the database server with the ability to automatically
convert from the CHAR data type to percent. For the database server to
convert from percent to CHAR, you need to define another implicit cast, as
follows:

CREATE IMPLICIT CAST (percent AS CHAR) WITH char_to_prcnt

The database server would automatically invoke the char_to_prcnt()
function to evaluate the WHERE clause of the following SELECT statement:

SELECT commission FROM sales_rep
WHERE commission > "25%"

Users can also invoke implicit casts explicitly. For more information on how
to explicitly invoke a casting function, see “Explicit Casts” on page 1-111.
1-112 Informix Guide to SQL: Syntax

CREATE CAST
When a system-defined cast does not exist for conversion between data
types, you can create user-defined casts to make the necessary conversion.
Universal Server supports the following types of casts:

WITH Clause
The WITH clause of the CREATE CAST statement specifies the name of the
user-defined function to invoke to perform the cast. This function is called
the casting function. You must specify a function name unless the source data
type and the target data type have identical representations. Two data types
have identical representations when the following conditions are met:

■ Both data types have the same length and alignment

■ Both data types are passed by reference or both are passed by value.

The casting function must be registered in the same database as the cast at the
time the cast is invoked, but need not exist when the cast is created. The
CREATE CAST statement does not check permissions on the specified function
name, or even verify that the casting function exists. Each time a user invokes
the cast explicitly or implicitly, the database server verifies that the user has
Execute privilege on the casting function.

References
See the CREATE FUNCTION statement in this manual for information about
registering the functions that are used to implement casts. See the CREATE
DISTINCT TYPE, CREATE OPAQUE TYPE, and CREATE ROW TYPE statements
in this manual for information about creating new data types. See the DROP
CAST statement in this manual for information about removing a cast from a
database.

See the Data Types segment in this manual and Chapter 2 in the Informix
Guide to SQL: Reference for more information about data types, casting, and
conversion.

In the Informix Guide to SQL: Tutorial, see Chapter 13 for examples that show
how to create and use casts.
SQL Statements 1-113

CREATE DATABASE
CREATE DATABASE
Use the CREATE DATABASE statement to create a new database.

Syntax

Element Purpose Restrictions Syntax
dbspace The name of the dbspace where

you want to store the data for
this database; default is the root
dbspace

The dbspace must already exist. Identifier, p.1-962

pathname The full pathname, including the
file name, for the log file

You cannot specify an existing
file.

The pathname and
filename must
conform to the
conventions of your
operating system.

Log Clause

Log Clause

BUFFERED

LOG

LOG MODE ANSI

WITH

IN dbspace

CREATE
DATABASE

Database
Name

p. 1-852

+

E/C

DB

SQLE
1-114 Informix Guide to SQL: Syntax

CREATE DATABASE
Usage
The database that you create becomes the current database.

The database name that you use must be unique within the database server
environment in which you are working. The database server creates the
system catalog tables that contain the data dictionary, which describes the
structure of the database in the dbspace. If you do not specify the dbspace,
The database server creates the system catalog tables in the root dbspace.

When you create a database, you alone have access to it. The database
remains inaccessible to other users until you, as DBA, grant database privi-
leges. For information on granting database privileges, see the GRANT
statement on page 1-458.

The following statement creates the vehicles database in the root dbspace:

CREATE DATABASE vehicles

The following statement creates the vehicles database in the research
dbspace:

CREATE DATABASE vehicles IN research

In SQL APIs, the CREATE DATABASE statement cannot appear in a
multistatement PREPARE operation. ♦

ANSI-Compliant Databases
You have the option of creating an ANSI-compliant database. ANSI-compliant
databases differ from databases that are not ANSI compliant in the following
ways:

■ All statements are automatically contained in transactions. All
databases on the database server use unbuffered logging.

■ Owner-naming is enforced. You must use the owner name when you
refer to each table, view, synonym, index, or constraint unless you
are the owner.

ESQL

ANSI
SQL Statements 1-115

CREATE DATABASE
■ For databases on the database server, the default isolation level
available is Repeatable Read.

■ Default privileges on objects differ from those in databases that are
not ANSI compliant. Users do not receive the PUBLIC privilege to
tables and synonyms by default.

Other slight differences exist between databases that are ANSI compliant and
those that are not. These differences are noted as appropriate with the related
SQL statement. ♦

Logging on INFORMIX-Universal Server
In the event of a failure, INFORMIX-Universal Server uses the log to re-create
all committed transactions in your database.

If you do not specify the WITH LOG clause, you cannot use transactions or the
statements that are associated with databases that have logging (BEGIN
WORK, COMMIT WORK, ROLLBACK WORK, SET LOG, and SET ISOLATION).

Designating Buffered Logging

The following example creates a database that uses a buffered log:

CREATE DATABASE vehicles WITH BUFFERED LOG

If you use a buffered log, you marginally enhance the performance of logging
at the risk of not being able to re-create the last few transactions after a failure.
(See the discussion of buffered logging in Chapter 9 of the Informix Guide to
SQL: Tutorial.)

An ANSI-compliant database does not use buffered logging. ♦ANSI
1-116 Informix Guide to SQL: Syntax

CREATE DATABASE
Designating an ANSI-Compliant INFORMIX-Universal Server Database

The following example creates an ANSI-compliant database:

CREATE DATABASE employees WITH LOG MODE ANSI

Creating an ANSI-compliant database does not mean that you receive ANSI
warnings when you run the database. You must use the -ansi flag or the
DBANSIWARN environment variable to receive warnings.

For additional information about -ansi and DBANSIWARN, see Chapter 3 in
the Informix Guide to SQL: Reference.

References
See the CLOSE DATABASE, CONNECT TO, DATABASE, DROP DATABASE, and
START DATABASE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating a database
in Chapter 9.
SQL Statements 1-117

CREATE DISTINCT TYPE
CREATE DISTINCT TYPE
Use the CREATE DISTINCT TYPE statement to create a new distinct type. A
distinct type is a data type based on a built-in type or an existing opaque type,
a named row type, or another distinct type. Distinct types are strongly typed.
Although the distinct type has the same physical representation as data of its
source type, the two types cannot be compared without an explicit cast from
one type to the other.

Syntax

Element Purpose Restrictions Syntax
distinct type The name of the new data type In an ANSI-compliant database,

the combination of the owner
and data type must be unique
within the database. In a
database that is not ANSI
compliant, the name of the data
type must be unique within the
database.

Data Type, p. 1-855

source type The name of an existing data
type on which the new type is
based

The type must be either a built-
in type or a type created with the
CREATE DISTINCT TYPE, CREATE
OPAQUE TYPE, or CREATE ROW
TYPE statement.

Data Type, p. 1-855

CREATE DISTINCT TYPE distinct
type

source
type

AS

+

E/C

DB

SQLE
1-118 Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE
Usage
To create a distinct type in a database, you must have the Resource privilege.
Any user with the Resource privilege can create a distinct type from one of
the built-in data types, which are owned by user informix.

Important: You cannot create a distinct type on the SERIAL or SERIAL8 data type.

To create a distinct type from an opaque type, a named row type, or another
distinct type, you must be the owner of the type or have the Usage privilege
on the type.

Once a distinct type is defined, only the type owner and the DBA can use it.
The owner of the type can grant other users the Usage privilege on the type.

A distinct type has the same storage structure as its source type.The
following statement creates the distinct type birthday, based on the built-in
data type, DATE:

CREATE DISTINCT TYPE birthday AS DATE

INFORMIX-Universal Server uses the same storage method for the distinct
type as it does for the source type of the distinct type. However, a distinct
type and its source type cannot be compared in an operation unless one type
is explicitly cast to the other type.

Support Functions and Casts
When you create a distinct type, Universal Server automatically defines two
explicit casts:

■ A cast from the distinct type to its source type

■ A cast from the source type to the distinct type

Because the two types have the same representation (the same length and
alignment), no support functions are required to implement the casts.
SQL Statements 1-119

CREATE DISTINCT TYPE
You can create an implicit cast between a distinct type and its source type.
However, to create an implicit cast, you must first drop the default explicit
cast between the distinct type and its source type.

All support functions and casts that are defined on the source type can be
used on the distinct type. However, casts and functions that are defined on
the distinct type are not available to the source type.

Manipulating Distinct Types
When you manipulate data of the distinct type and its source type, you must
explicitly cast one type to the other. This means that to insert or update a
column of one type with values of the other type, you must explicitly cast the
data to be inserted or updated. In addition, you cannot use a relational
operator to add, subtract, multiply, divide, compare, or otherwise manip-
ulate two values, one of the source type and one of the distinct type.

For example, suppose you create a distinct type, dist_type, that is based on
the NUMERIC data type. You then create a table with two columns, one of
type dist_type and one of type NUMERIC.

CREATE DISTINCT TYPE dist_type AS NUMERIC;
CREATE TABLE t(col1 dist_type, col2 NUMERIC);

To directly compare the distinct type and its source type or assign a value of
the source type to a column of the distinct type, you must cast one type to the
other, as the following examples show:

INSERT INTO tab (col1) VALUES (3.5::dist_type);

SELECT col1, col2
FROM t WHERE (col1::NUMERIC) > col2;

SELECT col1, col2, (col1 + col2::dist_type) sum_col
FROM tab;
1-120 Informix Guide to SQL: Syntax

CREATE DISTINCT TYPE
References
For information and examples that show how to use and cast distinct types,
see Chapter 13 of the Informix Guide to SQL: Tutorial.

See the CREATE OPAQUE TYPE and CREATE ROW TYPE statements in this
manual for information about how to create opaque types and row types.

See the CREATE FUNCTION statement in this manual for information about
registering support functions for a type. See the CREATE CAST statement in
this manual for information about registering these functions as casts.

For information about how to remove opaque types and row types from a
database, see the DROP TYPE and DROP ROW TYPE statements in this manual.

For information about how to create a table that references a data type, see
the CREATE TABLE statement in this manual.

For information about built-in data types, user-defined types, and named
row types, see the Data Types segment in this manual.
SQL Statements 1-121

CREATE FUNCTION
CREATE FUNCTION
Use the CREATE FUNCTION statement to register an external function or to
write and register an SPL function.

Syntax

CREATE FUNCTION

DBA

Function
Name

p. 1-959

()
Function

Parameter
List, p. 1-1028

Return
Clause

p. 1-1020

SPECIFIC Specific
Name

p. 1-1034
WITH

EXT

SPL
Statement

Block
p. 1-1037

External
Routine

Reference
p. 1-956

SPL

EXT

END
FUNCTION

END
FUNCTION

DOCUMENT

WITH LISTING IN 'pathname'

;

SPL

()

,

Function
Modifier

p. 1-1022

;
,

Quoted
String

p. 1-1010

+

E/C

DB

SQLE
1-122 Informix Guide to SQL: Syntax

CREATE FUNCTION
Usage
A function is a user-defined routine that can accept arguments and returns
one or more values. INFORMIX-Universal Server supports functions written
in the following languages:

■ Stored Procedure Language (SPL functions)

An SPL function can return one or more values.

■ One of the external languages (such as C) that INFORMIX-Universal
Server supports (External functions)

An external function can return only one value.

The entire length of a CREATE FUNCTION statement must be less than 64
kilobytes. This length is the literal length of the statement, including blank
space and tabs.

Routines, Functions, and Procedures

The generic term routine includes both procedures and functions. A procedure
is a routine that can accept arguments but does not return any values. A
function is routine that can accept arguments and returns one or more values.
INFORMIX-Universal Server treats any routine that includes a Return clause
as a function.

Legacy Procedures

In earlier Informix products, the term stored procedure was used for both SPL
procedures and SPL functions. However, the database server distinguishes
between procedures and functions, even when they are written in SPL. When
you use CREATE FUNCTION to write an SPL routine, you create an SPL
function.

Element Purpose Restrictions Syntax
pathname The pathname to a file in which

compile-time warnings are
stored

The specified pathname must
exist on the computer where the
database resides.

The pathname and
filename must
conform to the
conventions of your
operating system.
SQL Statements 1-123

CREATE FUNCTION
SPL Functions

SPL functions are routines written in Stored Procedure Language (SPL) that
return one or more values.

Use one CREATE FUNCTION statement, with SQL and SPL statements
embedded between CREATE FUNCTION and END FUNCTION, to write and
register an SPL function. Unlike external functions, you do not need to write
the function and register it in separate steps.

SPL functions are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL function is
stored in the sysprocbody system catalog table. Other information about the
function is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see Chapter 1, “System Catalog,” in the Informix Guide to SQL:
Reference.

You must use the END FUNCTION keywords with an SPL function.

Place a semicolon after the Return clause or the Modifier clause, whichever
comes last. Place another semicolon at the end of the entire statement, after
the END FUNCTION, DOCUMENT, or WITH LISTING IN clause.

Examples

The following example creates a SPL function:

CREATE FUNCTION update_by_pct (pct INT, pid CHAR(10))
RETURNING INT;

DEFINE n INT;

UPDATE inventory SET price = price + price * (pct/100)
WHERE part_id = pid;

LET n = price;
RETURN price;

END FUNCTION
DOCUMENT "USAGE: Update a price by a percentage",

"Enter an integer percentage from 1 - 100",
"and a part id number"

WITH LISTING IN '/tmp/warn_file';

SPL
1-124 Informix Guide to SQL: Syntax

CREATE FUNCTION
For more information on writing SPL functions, see Chapter 14, “Creating
and Using SPL Routines,” in the Informix Guide to SQL: Tutorial. ♦

External Functions

External functions are functions you write in an external language that
INFORMIX-Universal Server supports. For this release, INFORMIX-Universal
Server supports external functions written in C. To create external functions,
follow these steps:

1. Write the function in an external language, such as C, that INFORMIX-
Universal Server supports.

2. Compile the function and store the compiled code in a shared library.

3. Register the function in the database server with the CREATE
FUNCTION statement.

When INFORMIX-Universal Server executes an external function, the
database server invokes the external object code.

The database server does not store the body of an external function directly
in the database, as it does for SPL functions. Instead, the database server
stores only a pathname to the compiled version of the function. You specify
this pathname in the External Routine Reference clause.

The database server does store information about an external function in
several system catalog tables, including sysprocbody and sysprocauth. For
more information on these system catalog tables, see Chapter 1, “System
Catalog,” in the Informix Guide to SQL: Reference.

With external functions, the END FUNCTION keywords are optional.

EXT
SQL Statements 1-125

CREATE FUNCTION
Example

The following example registers an external C function named equal() in the
database. This function takes two arguments of the type basetype1 and
returns a single value of type BOOLEAN. The external routine reference name
specifies the path to the C shared library where the function object code is
actually stored. This library contains a function basetype1_equal(), which is
invoked during execution of the equal() function.

CREATE FUNCTION equal (arg1 opaquetype1, arg2 opaquetype1)
RETURNING BOOLEAN;
EXTERNAL NAME
"/usr/lib/opaquetype1/lib/libbtype1.so(opaquetype1_equal)"
LANGUAGE C
END FUNCTION;

♦

DBA Option

The level of privilege necessary to execute a routine depends on whether the
routine is created with the DBA keyword.

If you create a function with the DBA option, it is known as a DBA-privileged
function. You need the DBA privilege to create or execute a DBA-privileged
function.

If you do not use the DBA option, the function is known as an owner-
privileged function. If the function is owner privileged, and if the database is
ANSI compliant, anyone can execute the function.

If you create an owner-privileged routine in a database that is not ANSI
compliant, the NODEFDAC environment variable prevents privileges on that
routine from being granted to PUBLIC. See the Informix Guide to SQL: Reference
for further information on the NODEFDAC environment variable.

Function Name

Because INFORMIX-Universal Server offers routine overloading, you can define
more than one function with the same name, but different parameter lists.
You might want to overload functions if you are defining a type hierarchy or
a system of distinct types or casts. When you overload functions, you can
create a function for each new data type that you define.
1-126 Informix Guide to SQL: Syntax

CREATE FUNCTION
The process of overloading routines and the routine resolution rules are
described briefly in “Routine Resolution” on page 1-130.

The syntax of the Function Name segment is described in “Function Name”
on page 1-959.

Parameter List

To define the parameters for an SPL function, specify a parameter name and
a data type for each parameter. For more information about defining param-
eters, see “Routine Parameter List” on page 1-1028. ♦

To define the parameters for an external routine, you can specify a name and
you must specify a data type for each parameter. For more information on the
syntax of the parameter list, see “Routine Parameter List” on page 1-1028. ♦

With both SPL functions and external functions, you can specify an OUT
parameter, so that the function can be used with a Statement Local Variable
in SQL statements. The OUT parameter is described in more detail in “Routine
Parameter List” on page 1-1028.

Return Clause

INFORMIX-Universal Server considers any routine that is created with a
Return clause to be a function. Informix recommends that you use the
CREATE FUNCTION statement, not CREATE PROCEDURE, to create functions.
For external routines, this rule is strictly enforced.

The syntax of the Return clause is described in “Return Clause” on
page 1-1020.

Specific Name

You can specify a specific name for an SPL procedure or an external
procedure. A specific name is a name that is unique in the database. A specific
name is useful because more than one procedure can have the same name
due to routine overloading.

The syntax of the specific name is described in “Specific Name” on
page 1-1034.

SPL

EXT
SQL Statements 1-127

CREATE FUNCTION
Function Modifier

When you write an SPL function, you can specify the modifier NOT VARIANT
with a WITH clause. Both modifiers apply to Boolean functions. The function
modifiers are described in “Routine Modifier” on page 1-1022.♦

In the CREATE FUNCTION statement, you can specify any of a list of function
modifiers with a WITH clause. For more information on the function
modifiers, see “Routine Modifier” on page 1-1022. ♦

Statement Block

In an SPL function, you must specify an SPL statement block instead of an
External Routine Reference clause. The syntax of the statement block is
described in “Statement Block” on page 1-1037. ♦

External Routine Reference

When you register an external function, you must specify an External
Routine Reference clause. The External Routine Reference clause specifies the
pathname to the procedure object code, which is stored in a shared library.
The External Routine Reference clause also specifies the name of the
language in which the procedure is written. For more information on the
External Routine Reference clause, see “External Routine Reference” on
page 1-956. ♦

DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the routine. The string is stored in the sysprocbody system
catalog table and is intended for the user of the routine.

To find the description of the SPL procedure update_by_pct, shown in “SPL
Functions” on page 1-124, enter a query such as the following:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = 'raise_prices'

-- look for procedure named raise_prices
AND b.datakey = 'D'-- want user document

ORDER BY b.seqno;

SPL

EXT

SPL

EXT
1-128 Informix Guide to SQL: Syntax

CREATE FUNCTION
The preceding query returns the following text:

USAGE: Update a price by a percentage
Enter an integer percentage from 1 - 100
and a part id number

An SPL routine, external routine, or application program can query the
system catalog tables to fetch the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE FUNCTION
statement, whether or not you use END FUNCTION. ♦

WITH LISTING IN Clause

The WITH LISTING IN option specifies a filename where compile-time
warnings are sent. This listing file is created on the database server when you
compile an SPL or external routine.

If you specify a filename but not a directory in the WITH LISTING IN clause,
INFORMIX-Universal Server uses the home directory on the database server
as the default directory. If you do not have a home directory on the server, the
file is created in the root directory.

If you do not use the WITH LISTING IN option, the compiler does not generate
a list of warnings.

Privileges Necessary for Using CREATE FUNCTION

You must have the Resource privilege on a database to create a function
within that database.

The owner of a privilege grants the Execution privilege for that function to
other users. If a function has a commutator function, any user who executes
the function must have Execute privilege on both the function and its
commutator. If a function has a negator function, any user who executes the
function must have Execute privilege on both the function and its negator.

EXT
SQL Statements 1-129

CREATE FUNCTION
Routine Resolution

In Universal Server, you can have more than one instance of a routine with
the same name but different parameter lists, as in the following situations:

■ You create a routine with the same name as a built-in function (such
as equal()) to process a new user-defined data type.

■ You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

■ You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit functions from their source types.

Routine resolution is the process of determining which instance of a function
to execute, given the name of a routine and a list of arguments. For more
information on routine resolution, refer to the Extending
INFORMIX-Universal Server: User-Defined Routines manual.

PREPARE Statement

You can use a CREATE FUNCTION statement only within a PREPARE
statement. If you want to create a function for which the text is known at
compile time, you must put the text in a file and specify this file with the
CREATE FUNCTION FROM statement. For more information, see the CREATE
FUNCTION FROM statement on page 1-131. ♦

References
See the CREATE PROCEDURE, CREATE FUNCTION FROM, DROP FUNCTION,
DROP ROUTINE, GRANT, EXECUTE FUNCTION, PREPARE, UPDATE
STATISTICS, and REVOKE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating and using
SPL routines in Chapter 14.

In the Extending INFORMIX-Universal Server: User-Defined Routines manual,
see the discussion of how to create and use external functions.

E/C
1-130 Informix Guide to SQL: Syntax

CREATE FUNCTION FROM
CREATE FUNCTION FROM
Use the CREATE FUNCTION FROM statement to create a new function. The
actual text of the CREATE FUNCTION statement resides in a separate file.

Syntax

Element Purpose Restrictions Syntax
filename The pathname and filename of

the file that contains the full text
of a CREATE FUNCTION
statement. The default
pathname is the current
directory.

The specified file must exist. The pathname and
filename must
conform to the
conventions of your
operating system.

variable name The name of a program variable
that holds the value of filename

The file that is specified in the
program variable must exist.

The name must
conform to
language-specific
rules for variable
names.

ESQL

' filename'

variable
name

CREATE FUNCTION FROM

+

SQL Statements 1-131

CREATE FUNCTION FROM
Usage
An INFORMIX-ESQL/C program cannot directly create a stored function or an
external function. That is, it cannot contain the CREATE FUNCTION
statement. However, you can create these functions within an ESQL/C
program with the following steps:

■ Create a source file with the CREATE FUNCTION statement.

■ Use the CREATE FUNCTION FROM statement to send the contents of
this source file to the database server for execution.

For example, suppose that the following CREATE FUNCTION statement is in
a separate file, called del_ord.sql:

CREATE FUNCTION delete_order(p_order_num int)
RETURNING int, int,;
DEFINE item_count int;
SELECT count(*) INTO item_count FROM items

WHERE order_num = p_order_num;
DELETE FROM orders

WHERE order_num = p_order_num;
RETURN p_order_num, item_count;

END FUNCTION;

In the ESQL/C program, you can create the delete_order() stored function
with the following CREATE FUNCTION FROM statement:

EXEC SQL create function from 'del_ord.sql';

The filename that you provide is relative. If you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE FUNCTION FROM
actually contains a CREATE FUNCTION statement. However, to improve readability
of the code, Informix recommends that you match these two statements. If you are not
sure whether the routine is a function or a procedure, use the CREATE ROUTINE
FROM statement in the ESQL/C program.
1-132 Informix Guide to SQL: Syntax

CREATE FUNCTION FROM
References
See the CREATE FUNCTION, CREATE PROCEDURE, CREATE PROCEDURE
FROM, and CREATE ROUTINE FROM statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating and using
stored functions in Chapter 14.
SQL Statements 1-133

1-134 Informix Guide to SQL: Syntax

CREATE INDEX
CREATE INDEX
Use the CREATE INDEX statement to create a new index for one or more
columns in a table, a functional value on one or more columns, and,
optionally, to cluster the physical table in the order of the index.

When more than one columns or functions are listed, the concatenation of the
set of columns is treated as a single composite column for indexing. The
indexes can be fragmented into separate dbspaces. You can create a unique
or duplicate index, and you can set the object mode of either type of index.

Syntax

IN dbspace

FRAGMENT
BY

EXPRESSION
Clause
p. 1-155

INDEXCREATE
Index

Definition
p. 1-137

CLUSTER

FILLFACTOR percent

UNIQUE

DISTINCT

Object Modes
for Unique

Indexes
p. 1-158

Object Modes
for Duplicate

Indexes
p. 1-162

+

E/C

DB

SQLE

CREATE INDEX
Usage
A secondary access method (sometimes referred to as an index access method) is
a set of server functions that build, access, and manipulate an index structure
such as a B-tree, R-tree, or an index structure that a DataBlade module
provides. Typically, a secondary access method speeds up the retrieval of
data.

Use CREATE INDEX to create the following types of indexes:

■ Column index

■ Functional index

You can create a functional index on the resulting values of a function
on one or more columns. For more information, see “Function Speci-
fication” on page 1-141.

When you issue the CREATE INDEX statement, the table is locked in exclusive
mode. If another process is using the table, the database server cannot
execute the CREATE INDEX statement and returns an error.

For the different secondary access methods that Universal Server provides,
see “USING Clause” on page 1-148.

Element Purpose Restrictions Syntax

dbspace The name of the dbspace in
which you want to place the
index

The dbspace must exist at the
time you execute the statement.

Identifier, p. 1-962

percent The percentage of each index
page that is filled by index data
when the index is created. The
default value is 90.

Value must be in the range 1 to
100. Fillfactor does not apply to
an R-tree secondary access
method.

Literal Number,
p. 1-997
SQL Statements 1-135

CREATE INDEX
UNIQUE and DISTINCT Options
The following example creates a unique index:

CREATE UNIQUE INDEX c_num_ix ON customer (customer_num)

A unique index prevents duplicates in the customer_num column. A column
with a unique index can have, at most, one null value. The DISTINCT
keyword is a synonym for the keyword UNIQUE, so the following statement
would accomplish the same task:

CREATE DISTINCT INDEX c_num_ix ON customer (customer_num)

The index in either example is maintained in ascending order, which is the
default order.

If you do not specify the UNIQUE or DISTINCT keywords in a CREATE INDEX
statement, a duplicate index is created. A duplicate index allows duplicate
values in the indexed column.

You can also prevent duplicates in a column or set of columns by creating a
unique constraint with the CREATE TABLE or ALTER TABLE statement. See the
CREATE TABLE or ALTER TABLE statements for more information on creating
unique constraints.

How Unique and Referential Constraints Affect Indexes
The database server creates internal B-tree indexes for unique and referential
constraints. If a unique or referential constraint is added after the table is
created, the user-created indexes are used, if appropriate. An appropriate
index is one that indexes the same columns that are used in the referential or
unique constraint. If an appropriate index is not available, a nonfragmented
index is created in the database dbspace.

CLUSTER Option
Use the CLUSTER option to reorder the physical table in the order designated
by the index. The CREATE CLUSTER INDEX statement fails if a CLUSTER index
already exists.

CREATE CLUSTER INDEX c_clust_ix ON customer (zipcode)
1-136 Informix Guide to SQL: Syntax

CREATE INDEX
This statement creates an index on the customer table that orders the table
physically by zip code.

If the CLUSTER option is specified in addition to fragments on an index, the
data is clustered only within the context of the fragment and not globally
across the entire table.

Warning: Some secondary access methods (such as R-tree) do not support clustering.
Before you specify CLUSTER for your index, be sure that it uses an access method that
supports clustering.

Index Definition
Use the Index Definition portion of the CREATE INDEX statement to give a
name to the index, to specify the table on which the index is created, the value
or values to use for the index key, and, optionally, the secondary access
method.

Synonym
Name

p. 1-1042

Index
Definition

ON

,

(
Index
Name

p. 1-980
table name

USING)(

,

Index Key
Specification

p. 1-139
)

Index
Parameter
p. 1-149

secondary
access
method
SQL Statements 1-137

CREATE INDEX
Element Purpose Restrictions Syntax
table name The name of the table on which

the index is created
The table must exist. The table
can be a regular database table
or a temporary table.
This table cannot be an external
table.

Table Name,
p. 1-1044

secondary
access method

The name of the secondary
access method used with the
index you are creating.

The access method can be a B-
tree, R-tree, or an access method
that has been defined by a
DataBlade module. The access
method must be a valid access
method in the sysams system
catalog table. The default
secondary access method is B-
tree.

If the access method is B-tree,
you can create only one index for
each unique combination of
ascending and descending
columnar or functional keys
with operator classes. This
restriction does not apply to
other secondary access methods.

Identifier,
p. 1-962
1-138 Informix Guide to SQL: Syntax

CREATE INDEX
Index Key Specification
Use the Index Key Specification clause of the CREATE INDEX statement to
specify the key value for the index, an operator class, and whether the index
will be sorted in ascending or descending order.

Element Purpose Restrictions Syntax

column name The name of the
column or columns
that you want to
index

You must observe restrictions on the location
of the columns, the maximum number of
columns, the total width of the columns,
existing constraints on the columns, and the
number of indexes allowed on the same
columns. See “Restrictions on the Column
Name Variable in CREATE INDEX” on
page 1-140.

Identifier, p. 1-962

operator class The operator class
associated with this
column or function
of the index

If you specify a secondary access method in
the USING clause that does not have a default
operator class, you must specify an operator
class here.
If you use an alternative access method, and if
the access method has a default operator class,
you can omit the operator class here.
If you do not specify an operator class and the
secondary access method does not have a
default operator class, the database server
returns an error.

Identifier, p. 1-962

Index Key
Specification

column name

DESC

ASC

operator class
Function

Specification
p. 1-141
SQL Statements 1-139

CREATE INDEX
The index key value can be one of the following values:

■ One or more columns that contain built-in data types

■ One or more columns that contain user-defined data types

■ One or more values that a user-defined function returns (referred to
as a functional index)

■ A combination of columns and functions

Restrictions on the Column Name Variable in CREATE INDEX

Observe the following restrictions when you specify the column name
variable:

■ All the columns you specify must exist and must belong to the same
table—the table being indexed.

■ You cannot create an index on a column that belongs to an external
table.

■ The column you specify cannot be a column whose data type is a
collection.

■ The maximum number of arguments (columns) you can specify is 16.
See “Composite Indexes” on page 1-150.

■ You cannot add an ascending index to a column or column list that
already has a unique constraint on it. See “ASC and DESC
Keywords” on page 1-142.

■ The number of indexes you can create on the same column or same
sequence of columns is restricted. See “Number of Indexes Allowed”
on page 1-151.
1-140 Informix Guide to SQL: Syntax

CREATE INDEX
Function Specification
This clause specifies the user-defined function whose return value is the key
for a functional index.

You can create an index on an external function or an SPL function. You can
also create functional indexes within an SPL routine.

A functional index can be a B-tree index or a user-defined index type
provided by a DataBlade module.

Functional indexes are indexed on the value returned by the specified
function rather than on the value of a column.

For example, the following statement creates a functional index on table
zones using the value returned by the function Area() as the key:

CREATE INDEX zone_func_ind ON zones (Area(length,width));

Element Purpose Restrictions Syntax

function name The name of the
function used as a key
to this index

This must be a non-variant function.

The return type of the function cannot be BYTE or
TEXT.

You cannot create an index on built-in algebraic,
exponential, log, or hex functions.

Function
Name,
p. 1-959

column name The name of the
column or columns on
which the function acts

See “Restrictions on the Column Name Variable
in CREATE INDEX” on page 1-140.

Identifier,
p. 1-962

Function
Specification

function name

,

column
name

)(
SQL Statements 1-141

CREATE INDEX
Operator Class
An operator class is the set of operators that Universal Server associates with
a secondary access method for query optimization and building the index.

Specify an operator class when you create an index if you have one of the
following situations:

■ There is no default operator class for the secondary access method.
For example, some of the DataBlade modules do not provide a
default operator class.

■ You want to use an operator class that is different from the default
operator class that the secondary access method provides.

For more information, see “Default Operator Classes” on page 1-176. The
following CREATE INDEX statement creates a B-tree index on the cust_tab
table that uses the abs_btree_ops operator class for the cust_num key:

CREATE INDEX c_num1_ix ON cust_tab (cust_num abs_btree_ops);

ASC and DESC Keywords
Use the ASC option to specify an index that is maintained in ascending order.
The ASC option is the default ordering scheme. Use the DESC option to
specify an index that is maintained in descending order. When a column or
list of columns is defined as unique in a CREATE TABLE or ALTER TABLE
statement, the database server implements that UNIQUE CONSTRAINT by
creating a unique ascending index. Thus, you cannot use the CREATE INDEX
statement to add an ascending index to a column or column list that is
already defined as unique.

The ASC and DESC options can be used with B-trees only.
1-142 Informix Guide to SQL: Syntax

CREATE INDEX
You can create a descending index on such columns, and you can include
such columns in composite ascending indexes in different combinations. For
example, the following sequence of statements is allowed:

CREATE TABLE customer (
customer_num SERIAL(101) UNIQUE,
fname CHAR(15),
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)

)

CREATE INDEX cathtmp ON customer (customer_num DESC)
CREATE INDEX c_temp2 ON customer (customer_num, zipcode)

Bidirectional Traversal of Indexes

When you create an index on a column but do not specify the ASC or DESC
keywords, the database server stores the key values in ascending order by
default. If you specify the ASC keyword, the database server stores the key
values in ascending order. If you specify the DESC keyword, the database
server stores the key values in descending order.

Ascending order means that the key values are stored in order from the
smallest key to the largest key. For example, if you create an ascending index
on the lname column of the customer table, last names are stored in the index
in the following order: Albertson, Beatty, Currie.

Descending order means that the key values are stored in order from the
largest key to the smallest key. For example, if you create a descending index
on the lname column of the customer table, last names are stored in the index
in the following order: Currie, Beatty, Albertson.

However, the bidirectional traversal capability of the database server lets you
create just one index on a column and use that index for queries that specify
sorting of results in either ascending or descending order of the sort column.
SQL Statements 1-143

CREATE INDEX
Example of Bidirectional Traversal of an Index

An example can help to illustrate the bidirectional traversal of indexes by the
database server. Suppose that you want to enter the following two queries:

SELECT lname, fname FROM customer ORDER BY lname ASC;
SELECT lname, fname FROM customer ORDER BY lname DESC;

When you specify the ORDER BY clause in SELECT statements such as these,
you can improve the performance of the queries by creating an index on the
ORDER BY column. Because of the bidirectional traversal capability of the
database server, you only need to create a single index on the lname column.

For example, you can create an ascending index on the lname column with
the following statement:

CREATE INDEX lname_bothways ON customer (lname ASC)

The database server will use the ascending index lname_bothways to sort
the results of the first query in ascending order and to sort the results of the
second query in descending order.

In the first query, you want to sort the results in ascending order. So the
database server traverses the pages of the lname_bothways index from left
to right and retrieves key values from the smallest key to the largest key. The
query result is as follows.

Traversing the index from left to right means that the database server starts
at the leftmost leaf node of the index and continues to the rightmost leaf node
of the index.

lname fname
Albertson Frank
Beatty Lana
Currie Philip
. . .
Vector Raymond
Wallack Jason
Watson George
1-144 Informix Guide to SQL: Syntax

CREATE INDEX
In the second query, you want to sort the results in descending order. So the
database server traverses the pages of the lname_bothways index from right
to left and retrieves key values from the largest key to the smallest key. The
query result is as follows.

Traversing the index from right to left means that the database server starts
at the rightmost leaf node of the index and continues to the leftmost leaf node
of the index. For an explanation of leaf nodes in indexes, see the
INFORMIX-Universal Server Administrator’s Guide.

Choosing an Ascending or Descending Index

In the preceding example, you created an ascending index on the lname
column of the customer table by specifying the ASC keyword in the CREATE
INDEX statement. Then the database server used this index to sort the results
of the first query in ascending order of lname values and to sort the results of
the second query in descending order of lname values. However, you could
have achieved exactly the same results if you had created the index as a
descending index.

For example, the following statement creates a descending index that the
database server can use to process both queries:

CREATE INDEX lname_bothways2 ON customer (lname DESC)

The resulting lname_bothways2 index stores the key values of the lname
column in descending order, from the largest key to the smallest key. When
the database server processes the first query, it traverses the index from right
to left to perform an ascending sort of the results. When the database server
processes the second query, it traverses the index from left to right to perform
a descending sort of the results.

lname fname
Watson George
Wallack Jason
Vector Raymond
. . .
Currie Philip
Beatty Lana
Albertson Frank
SQL Statements 1-145

CREATE INDEX
So it does not matter whether you create a single-column index as an
ascending or descending index. Whichever storage order you choose for an
index, the database server can traverse that index in ascending or descending
order when it processes queries.

Use of the ASC and DESC Keywords in Composite Indexes

If you want to place an index on a single column of a table, you do not need
to specify the ASC or DESC keywords because the database server can
traverse the index in either ascending or descending order. The database
server will create the index in ascending order by default, but the database
server can traverse this index in either ascending or descending order when
it uses the index in a query.

However, if you create a composite index on a table, the ASC and DESC
keywords might be required. For example, if you want to enter a SELECT
statement whose ORDER BY clause sorts on multiple columns and sorts each
column in a different order, and you want to use an index for this query, you
need to create a composite index that corresponds to the ORDER BY columns.

For example, suppose that you want to enter the following query:

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code ASC, unit_price DESC

This query sorts first in ascending order by the value of the manu_code
column and then in descending order by the value of the unit_price column.
To use an index for this query, you need to issue a CREATE INDEX statement
that corresponds to the requirements of the ORDER BY clause. For example,
you can enter either of following statements to create the index:

CREATE INDEX stock_idx1 ON stock
(manu_code ASC, unit_price DESC);

CREATE INDEX stock_idx2 ON stock
(manu_code DESC, unit_price ASC);
1-146 Informix Guide to SQL: Syntax

CREATE INDEX
Now, when you execute the query, the database server uses the index that
you created (either stock_idx1 or stock_idx2) to sort the query results in
ascending order by the value of the manu_code column and then in
descending order by the value of the unit_price column. If you created the
stock_idx1 index, the database server traverses the index from left to right
when it executes the query. If you created the stock_idx2 index, the database
server traverses the index from right to left when it executes the query.

Regardless of which index you created, the query result is as follows.

stock_num manu_code description unit_price

8 ANZ volleyball $840.00

205 ANZ 3 golf balls $312.00

110 ANZ helmet $244.00

304 ANZ watch $170.00

301 ANZ running shoes $95.00

310 ANZ kick board $84.00

201 ANZ golf shoes $75.00

313 ANZ swim cap $60.00

6 ANZ tennis ball $48.00

9 ANZ volleyball net $20.00

5 ANZ tennis racquet $19.80

309 HRO ear drops $40.00

302 HRO ice pack $4.50

. . .

113 SHM 18-spd, assmbld $685.90

1 SMT baseball gloves $450.00

6 SMT tennis ball $36.00

5 SMT tennis racquet $25.00
SQL Statements 1-147

CREATE INDEX
The composite index that was used for this query (stock_idx1 or stock_idx2)
cannot be used for queries in which you specify the same sort direction for
the two columns in the ORDER BY clause. For example, suppose that you
want to enter the following queries:

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code ASC, unit_price ASC;

SELECT stock_num, manu_code, description, unit_price
FROM stock
ORDER BY manu_code DESC, unit_price DESC;

If you want to use a composite index to improve the performance of these
queries, you need to enter one of the following CREATE INDEX statements.
You can use either one of the created indexes (stock_idx3 or stock_idx4) to
improve the performance of the preceding queries.

CREATE INDEX stock_idx3 ON stock
(manu_code ASC, unit_price ASC);

CREATE INDEX stock_idx4 ON stock
(manu_code DESC, unit_price DESC);

USING Clause
Use the USING clause to specify the secondary access method to use for the
new index. A secondary access method is a set of routines that perform all of the
operations needed to make an index available to a server, such as create,
drop, insert, delete, update, and scan.

Universal Server provides the following secondary access methods:

■ The generic B-tree index is the built-in secondary access method.

A B-tree index is good for a query that retrieves a range of data
values. The database server implements this secondary access
method and registers it as btree in the system catalog tables of a
database.

■ The R-tree secondary access method is a registered secondary access
method.

An R-tree index is good for searches on multi-dimensional data (such
as box, circle, and so forth). The database server registers this
secondary access method as rtree in the system catalog tables of a
database.
1-148 Informix Guide to SQL: Syntax

CREATE INDEX
Important: To use an R-tree index, you must install a spatial DataBlade module such
as the 2D DataBlade module, Geodetic DataBlade, or any other 3rd party DataBlade
modules that implement the R-tree index. These DataBlade modules implement the
R-tree secondary access method.

DataBlade modules might provide other types of secondary access methods.
For more information on these other secondary access methods, refer to the
DataBlade user guides.

By default, the CREATE INDEX statement creates a generic B-tree index. If you
want to create an index with an secondary access method other than B-tree,
you must specify that name of the secondary access method in the USING
clause.

The following example assumes that the database implements the R-tree
index. It creates an R-tree index on the location column that contains a
opaque data type, point.

CREATE INDEX loc_ix ON TABLE emp (location)
USING rtree;

SELECT name FROM emp
WHERE location N_equator_equals point('500, 0');

The sample query has a filter on the location column.

Index Parameter
Some DataBlade modules provide indexes that require specific parameters
when you create them.

Index
Parameter

parameter
name

parameter
value=
SQL Statements 1-149

CREATE INDEX
Example of an Index with Parameters

The following CREATE INDEX statement creates an index that uses the
secondary access method fulltext, which takes two parameters:
WORD_SUPPORT and PHRASE_SUPPORT. It indexes a table t, which has two
columns: i, an integer column, and data, a TEXT column.

CREATE INDEX tx ON t(data)
USING fulltext (WORD SUPPORT=‘PATTERN’,
PHRASE_SUPPORT=’MAXIMUM’);

Composite Indexes
A composite index can have up to 16 key parts. An index key part is either a
table column or, if the index is a functional index, the result of a function on
one or more table columns. A composite index can have any of the following
as an index key:

■ One or more columns

■ One or more values that a user-defined function returns (referred to
as a functional index)

■ A combination of columns and user-defined functions

Element Purpose Restrictions Syntax

parameter name Name of the secondary access
method parameter used with
this index

The parameter name must be
one of the strings allowed for
this secondary access method.
For more information, refer to
the DataBlade module user
guide.

Quoted String,
p. 1-1010

parameter
value

Value of the specified parameter The parameter value must be
one of the quoted strings or
literal numbers allowed for this
secondary access method.

Quoted String,
p. 1-1010 or
Literal Number,
p. 1-997
1-150 Informix Guide to SQL: Syntax

CREATE INDEX
The following example creates a composite index using the stock_num and
manu_code columns of the stock table:

CREATE UNIQUE INDEX st_man_ix ON stock (stock_num, manu_code)

The index prevents any duplicates of a given combination of stock_num and
manu_code. The index is in ascending order by default.

The total width of all key parts in a single CREATE INDEX statement cannot
exceed 390 bytes. Place key parts in the composite index in the order from
most frequently used to least frequently used.

Number of Indexes Allowed
Restrictions exist on the number of indexes that you can create on the same
column or the same sequence of columns.

Restrictions on the Number of Indexes on a Single Column

You can create only one ascending index and one descending index on a
single column. For example, if you wanted to create all possible indexes on
the stock_num column of the stock table, you could create the following
indexes:

■ The stock_num_asc index on the stock_num column in ascending
order

■ The stock_num_desc index on the stock_num column in descending
order

Because of the bidirectional traversal capability of the database server, you
do not need to create both indexes in practice. You only need to create one of
the indexes. Both of these indexes would achieve exactly the same results for
an ascending or descending sort on the stock_num column. For further infor-
mation on the bidirectional traversal capability of the database server, see
“Bidirectional Traversal of Indexes” on page 1-143.
SQL Statements 1-151

CREATE INDEX
Restrictions on the Number of Indexes on a Sequence of Columns

You can create multiple indexes on a sequence of columns, provided that
each index has a unique combination of ascending and descending columns.
For example, to create all possible indexes on the stock_num and manu_code
columns of the stock table, you could create the following indexes:

■ The ix1 index on both columns in ascending order

■ The ix2 index on both columns in descending order

■ The ix3 index on stock_num in ascending order and on manu_code
in descending order

■ The ix4 index on stock_num in descending order and on manu_code
in ascending order

Because of the bidirectional-traversal capability of the database server, you
do not need to create these four indexes in practice. You only need to create
two indexes:

■ The ix1 and ix2 indexes achieve exactly the same results for sorts in
which the user specifies the same sort direction (ascending or
descending) for both columns. Therefore, you only need to create
one index of this pair.

■ The ix3 and ix4 indexes achieve exactly the same results for sorts in
which the user specifies different sort directions for the two columns
(ascending on the first column and descending on the second column
or vice versa). Therefore, you only need to create one index of this
pair.

For further information on the bidirectional-traversal capability of the
database server, see “Bidirectional Traversal of Indexes” on page 1-143.
1-152 Informix Guide to SQL: Syntax

CREATE INDEX
FILLFACTOR Clause
Use the FILLFACTOR clause to provide for expansion of a B-tree index at a
later date or to create compacted indexes. You provide a percent value
ranging from 1 to 100, inclusive. The default percent value is 90.

When the B-tree index is created, Universal Server initially fills only that
percentage of the nodes specified with the FILLFACTOR value. If you provide
a low percentage value, such as 50, you allow room for growth in your B-tree
index. The nodes of the B-tree index initially fill to a certain percentage and
contain space for inserts. The amount of available space depends on the
number of keys in each page as well as the percentage value. For example,
with a 50-percent FILLFACTOR value, the page would be half full and could
accommodate doubling in growth. A low percentage value can result in
faster inserts and can be used for indexes that you expect to grow.

If you provide a high percentage value, such as 99, your indexes are com-
pacted, and any new index inserts result in splitting nodes. The maximum
density is achieved with 100 percent. With a 100-percent FILLFACTOR value,
the index has no room available for growth; any additions to the index result
in splitting the nodes. A 99-percent FILLFACTOR value allows room for at
least one insertion per node. A high percentage value can result in faster
selects and can be used for indexes that you do not expect to grow or for
mostly read-only indexes.

The FILLFACTOR can also be set as a parameter in the ONCONFIG file. The
FILLFACTOR clause on the CREATE INDEX statement overrides the setting in
the ONCONFIG file.

For more information about the ONCONFIG file and the parameters you can
use with ONCONFIG, see the INFORMIX-Universal Server Administrator’s
Guide.
SQL Statements 1-153

CREATE INDEX
Indexes on Fragmented and Nonfragmented Tables
When you fragment a table and, at a later time, create an index for that table,
the index uses the same fragmentation strategy as the table unless you
specify otherwise with the FRAGMENT BY EXPRESSION clause or the IN
dbspace clause. Any changes to the table fragmentation result in a corre-
sponding change to the index fragmentation.

In Universal Server, all indexes are detached. When indexes are created with
a fragmentation strategy or a dbspace is specified in the IN dbspace clause, the
indexes are stored in separate dbspaces from the table. If there is no fragmen-
tation scheme and no dbspace is specified in the IN dbspace clause, the index
is created in the same dbspace as the table.

For information on the IN dbspace clause, see “IN dbspace Clause”. For infor-
mation on the FRAGMENT BY EXPRESSION clause, see page 1-155.

IN dbspace Clause
Use the IN dbspace clause to specify the dbspace where you want your index
to reside. With this clause, you create a detached index, even though the
index is not fragmented. The dbspace that you specify must already exist. If
you do not specify the IN dbspace clause, the index is created in the dbspace
where the table was created. In addition, if you do not specify the IN dbspace
clause, but the underlying table is fragmented, the index is created as a
detached index, subject to all the restrictions on fragmented indexes. See
page 1-155 for more information about fragmented indexes.

The IN dbspace clause allows you to isolate an index. For example, if the
customer table is created in the custdata dbspace, but you want to create an
index in a separate dbspace called custind, use the following statements:

CREATE TABLE customer
.
.
.
IN custdata EXTENT SIZE 16

CREATE INDEX idx_cust ON customer (customer_num)
IN custind
1-154 Informix Guide to SQL: Syntax

CREATE INDEX
FRAGMENT BY EXPRESSION Clause

Element Purpose Restrictions Syntax
dbspace The dbspace that will contain an

index fragment that
frag-expression defines

You must specify at least two
dbspaces. You can specify a
maximum of 2,048 dbspaces.
The dbspaces must exist at the
time you execute the statement.

Identifier, p. 1-962

frag-expression An expression that defines a
fragment where an index key is
to be stored using a range, hash,
or arbitrary rule

If you specify a value for
remainder dbspace, you must
specify at least one fragment
expression. If you do not specify
a value for remainder dbspace, you
must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. The columns
contained in a fragment
expression must be the same as
the indexed columns, or a subset
of the indexed columns. No
subqueries, stored procedures,
current date/time functions, or
aggregates are allowed in a
fragment expression.

Expression, p. 1-876,
and Condition,
p. 1-831

 (1 of 2)

FRAGMENT BY
EXPRESSION

Clause

FRAGMENT BY
EXPRESSION REMAINDER IN

remainder
dbspace,

frag-expression
IN dbspace

,

frag-expression
IN dbspace

,

SQL Statements 1-155

CREATE INDEX
You use the FRAGMENT BY EXPRESSION clause to define the expression-
based distribution scheme.

In an expression-based distribution scheme, each fragment expression in a rule
specifies a dbspace. Each fragment expression within the rule isolates data
and aids the database server in searching for index keys. You can specify one
of the following rules:

■ Range rule

A range rule specifies fragment expressions that use a range to
specify which index keys are placed in a fragment, as the following
example shows:

. . .
FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 and c1 < 200 IN dbsp2,
c1 >= 200 IN dbsp3;

■ Hash rule

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

.. . .
FRAGMENT BY EXPRESSION
MOD(id_num, 3) = 0 IN dbsp1,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3;

remainder
dbspace

The dbspace that contains index
keys that do not meet the condi-
tions defined in any fragment
expression

If you specify two or more
fragment expressions, remainder
dbspace is optional. If you specify
only one fragment expression,
remainder dbspace is required.
The dbspace specified in
remainder dbspace must exist at
the time you execute the
statement.

Identifier, p. 1-962
Element Purpose Restrictions Syntax

 (2 of 2)
1-156 Informix Guide to SQL: Syntax

CREATE INDEX
■ Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

. . .
FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5;

Warning: When you specify a date value in a fragment expression, make sure to spec-
ify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the dis-
tribution scheme and can produce unpredictable results. See the “Informix Guide to
SQL: Reference” for more information on the DBCENTURY environment variable.

Creating Index Fragments

When you fragment a table, all indexes for the table become fragmented the
same as the table, unless you specify a different fragmentation strategy.

Fragmentation of Unique Indexes

You can fragment unique indexes only with a table that uses an expression-
based distribution scheme. The columns referenced in the fragment
expression must be part of the indexed columns. If your CREATE INDEX
statement fails to meet either of these restrictions, the CREATE INDEX fails,
and work is rolled back.

Fragmentation of System Indexes

System indexes (such as those used in referential constraints and unique
constraints) utilize user indexes if they exist. If no user indexes can be
utilized, system indexes remain nonfragmented and are moved to the
dbspace where the database was created. To fragment a system index, create
the fragmented index on the constraint columns, and then add the constraint
using the ALTER TABLE statement.
SQL Statements 1-157

CREATE INDEX
Fragmentation of Indexes on Temporary Tables

You can create explicit temporary tables with the TEMP TABLE clause of the
CREATE TABLE statement or with the INTO TEMP clause of the SELECT
statement. If you specified more than one dbspace in the DBSPACETEMP
environment variable, but you did not specify an explicit fragmentation
strategy, the database server fragments the temporary table round-robin
across the dbspaces that DBSPACETEMP specifies.

If you then try to create a unique index on the temporary table, but you do
not specify a fragmentation strategy for the index, the index is not
fragmented in the same way as the table. You can fragment a unique index
only if the underlying table uses an expression-based distribution scheme,
but the temporary table is fragmented according to a round-robin distri-
bution scheme.

Instead of fragmenting the unique index on the temporary table, the database
server creates the index in the first dbspace that the DBSPACETEMP
environment variable specifies. To avoid this result, use the FRAGMENT BY
EXPRESSION clause to specify a fragmentation strategy for the index.

For more information on the DBSPACETEMP environment variable, see the
Informix Guide to SQL: Reference.

Object Modes for Unique Indexes

Object Modes for
Unique Indexes

ENABLED

DISABLED

WITHOUT
ERROR

WITH
ERROR

FILTERING
1-158 Informix Guide to SQL: Syntax

CREATE INDEX
You can set unique indexes in the following modes: disabled, enabled, and
filtering. The following list explains these modes.

If you specify filtering mode, you can also specify one of the following error
options.

Object Mode Effect

disabled A unique index created in disabled mode is not updated after
insert, delete, and update operations that modify the base table.
Because the contents of the disabled index are not up to date, the
optimizer does not use the index during the execution of queries.

enabled A unique index created in enabled mode is updated after insert,
delete, and update operations that modify the base table. Because
the contents of the enabled index are up to date, the optimizer uses
the index during the execution of queries. If an insert or update
operation causes a duplicate key value to be added to a unique
enabled index, the statement fails.

filtering A unique index created in filtering mode is updated after insert,
delete, and update operations that modify the base table. Because
the contents of the filtering mode index are up to date, the optimizer
uses the index during the execution of queries. If an insert or update
operation causes a duplicate key value to be added to a unique
index in filtering mode, the statement continues processing, but the
bad row is written to the violations table associated with the base
table. Diagnostic information about the unique-index violation is
written to the diagnostics table associated with the base table.

Error Option Effect

WITHOUT
ERROR

When a unique-index violation occurs during an insert or update
operation, no integrity-violation error is returned to the user. You
can specify this option only with the filtering-object mode.

WITH ERROR When a unique-index violation occurs during an insert or update
operation, an integrity-violation error is returned to the user. You
can specify this option only with the filtering-object mode.
SQL Statements 1-159

CREATE INDEX
Specifying Object Modes for Unique Indexes

You must observe the following rules when you specify object modes for
unique indexes in CREATE INDEX statements:

■ You can set a unique index to the enabled, disabled, or filtering
modes.

■ If you do not specify the object mode of a unique index explicitly, the
default mode is enabled.

■ If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering-mode unique index, the default error option is WITHOUT
ERROR.

■ When you add a new unique index to an existing base table and
specify the disabled object mode for the index, your CREATE INDEX
statement succeeds even if duplicate values in the indexed column
would cause a unique-index violation.

■ When you add a new unique index to an existing base table and
specify the enabled or filtering-object mode for the index, your
CREATE INDEX statement succeeds provided that no duplicate
values exist in the indexed column that would cause a unique-index
violation. However, if any duplicate values exist in the indexed
column, your CREATE INDEX statement fails and returns an error.

■ When you add a new unique index to an existing base table in the
enabled or filtering mode, and duplicate values exist in the indexed
column, erroneous rows in the base table are not filtered to the viola-
tions table. Thus, you cannot use a violations table to detect the
erroneous rows in the base table.
1-160 Informix Guide to SQL: Syntax

CREATE INDEX
Adding a Unique Index When Duplicate Values Exist in the Column

If you attempt to add a unique index in the enabled mode but receive an error
message because duplicate values are in the indexed column, take the
following steps to add the index successfully:

1. Add the index in the disabled mode. Issue the CREATE INDEX
statement again, but this time specify the DISABLED keyword.

2. Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

3. Issue a SET statement to switch the object mode of the index to the
enabled mode. When you issue this statement, existing rows in the
target table that violate the unique-index requirement are duplicated
in the violations table. However, you receive an integrity-violation
error message, and the index remains disabled.

4. Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that are duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.

5. Take corrective action on the rows in the target table that violate the
unique-index requirement.

6. After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled index to the enabled
mode. This time the index is enabled, and no integrity violation error
message is returned because all rows in the target table now satisfy
the new unique-index requirement.
SQL Statements 1-161

CREATE INDEX
Object Modes for Duplicate Indexes

If you create a duplicate index, you can set the object mode of the index to the
disabled or enabled mode. The following table explains these modes.

Specifying Object Modes for Duplicate Indexes

You must observe the following rules when you specify object modes for
duplicate indexes in CREATE INDEX statements:

■ You can set a duplicate index to the enabled or disabled mode, but
you cannot set a duplicate index to the filtering mode.

■ If you do not specify the object mode of a duplicate index explicitly,
the default mode is enabled.

Object Modes for
Duplicate Indexes

ENABLED

DISABLED

Object Mode Effect

disabled A duplicate index is created in disabled mode. The disabled index
is not updated after insert, delete, and update operations that
modify the base table. Because the contents of the disabled index
are not up to date, the optimizer does not use the index during the
execution of queries.

enabled A duplicate index is created in enabled mode. The enabled index is
updated after insert, delete, and update operations that modify the
base table. Because the contents of the enabled index are up to date,
the optimizer uses the index during the execution of queries. If an
insert or update operation causes a duplicate key value to be added
to a duplicate enabled index, the statement does not fail.
1-162 Informix Guide to SQL: Syntax

CREATE INDEX
How the Database Server Treats Disabled Indexes
Whether a disabled index is a unique or duplicate index, the database server
effectively ignores the index during data-manipulation operations.

When an index is disabled, the database server stops updating it and stops
using it during queries, but the catalog information about the disabled index
is retained. So you cannot create a new index on a column or set of columns
if a disabled index on that column or set of columns already exists.

Similarly, you cannot create an active (not disabled) unique, foreign-key, or
primary-key constraint on a column or set of columns if the indexes needed
by the active constraint exist and are disabled.

References
See the ALTER INDEX, CREATE OPCLASS, DROP INDEX, and CREATE TABLE
statements in this manual.

For a more detailed description of the different types of indexes, refer to
Chapter 3 of the INFORMIX-Universal Server Performance Guide. For infor-
mation about when to use the different types of indexes and other
performance issues with indexes, refer to Chapter 4 of the
INFORMIX-Universal Server Performance Guide.

For information about operator classes, refer to the CREATE OPCLASS
statement and the Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE INDEX statement, refer
to the Guide to GLS Functionality.

For information about the indexes provided by DataBlade modules, refer to
your DataBlade module user’s guide.
SQL Statements 1-163

CREATE OPAQUE TYPE
CREATE OPAQUE TYPE
Use the CREATE OPAQUE TYPE statement to create an opaque data type.

Syntax

Element Purpose Restrictions Syntax
type name The name of the new opaque

data type
The name you specify must
follow the conventions of SQL
identifiers. In an ANSI-compliant
database, the combination
owner.type must be unique
within the database. In a
database that is not ANSI
compliant, the type name must be
unique within the database.

Identifier, p. 1-962
Data Type, p .1-855

length The number of bytes needed by
the database server to store a
value of a fixed-length opaque
data type

The number must match the
positive integer reported when
the C language sizeof() directive
is applied to the type structure.

Literal Number,
p. 1-997

(CREATE OPAQUE TYPE type name)INTERNALLENGTH= length

VARIABLE

,

, Opaque-Type
Modifier
p. 1-166

+

E/C

DB

SQLE
1-164 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
Usage
The CREATE OPAQUE TYPE statement registers a new opaque data type in the
database. Universal Server stores information on extended data types,
including opaque types, in the sysxtdtypes system catalog table.

Naming an Opaque Data Type

The actual name of an opaque data type is an SQL identifier. When you create
an opaque data type, the type name must be unique within a database. The
type name cannot be the same as any distinct-type names or named row-type
names.

When you create an opaque data type in an ANSI-compliant database,
owner.type_name must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the opaque-type owner is stored in uppercase letters. ♦

Privileges on an Opaque Data Type

To create a new opaque type within a database, you must have the Resource
privilege on the database. The CREATE OPAQUE TYPE statement creates a
new opaque type with Usage privilege granted to the owner of the opaque
type and the DBA. To use the opaque data type in an SQL statement, you must
have Usage privilege. The owner can grant Usage privilege to other users
with the USAGE ON TYPE clause of the GRANT statement. For more infor-
mation, see the GRANT statement on page 1-458.

INTERNALLENGTH Modifier
The CREATE OPAQUE TYPE statement must indicate the name of the opaque
type and its internal length. The INTERNALLENGTH modifier specifies the
size of an opaque data type. The way you specify the internal length defines
whether the opaque data type is fixed length or varying length.

ANSI
SQL Statements 1-165

CREATE OPAQUE TYPE
Fixed-Length Opaque Data Types

A fixed-length opaque type has an internal structure that has a fixed size. To
create a fixed-length opaque data type, specify the size of the internal
structure, in bytes, for the INTERNALLENGTH modifier. The following
statement creates a fixed-length opaque type called fixlen_typ. The database
server allocates 8 bytes for this type.

CREATE OPAQUE TYPE fixlen_typ(INTERNALLENGTH=8, CANNOTHASH)

Varying-Length Opaque Data Types

A varying-length opaque data type has an internal structure whose size
might vary from one instance of the opaque type to another. For example, the
internal structure of an opaque type might hold the actual value of a string
up to a certain size but beyond this size it might use an LO-pointer to a CLOB
to hold the value.

To create a varying-length opaque data type, use the VARIABLE keyword for
the INTERNALLENGTH modifier. The following statement creates a variable-
length opaque type called varlen_typ:

CREATE OPAQUE TYPE varlen_typ(INTERNALLENGTH=VARIABLE,
MAXLEN=1024)

Opaque-Type Modifier

Opaque-Type
Modifier

ALIGNMENT=alignment

CANNOTHASH

MAXLEN=maximum length

PASSEDBYVALUE
1-166 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
Use modifiers to specify the following optional information:

■ MAXLEN specifies the maximum length for varying-length opaque
data types.

■ CANNOTHASH specifies that the database server cannot use a hash
function on the opaque type.

You must provide an appropriate hash function for the database
server to evaluate GROUP BY clauses on the type.

■ PASSEDBYVALUE specifies that an opaque type of four bytes or fewer
is passed by value.

By default, opaque types are passed to user-defined routines by
reference.

■ ALIGNMENT specifies the byte boundary on which the database
server aligns the opaque type.

Element Purpose Restrictions Syntax
maximum
length

For varying-length opaque
types, the maximum length in
bytes, to allocate for instances of
the type. Values that exceed this
length return errors.

The length must be a positive
integer less than or equal to 32K.
Do not specify for fixed-length
types. If maximum length is not
specified for a variable-length
type, the system default is 2
Kilobytes.

Literal Number,
p.1-997

alignment The byte boundary on which the
database server aligns the
opaque type when passing it to a
user-defined routine

The alignment must be 1, 2, 4, or
8, depending upon the C
definition of the opaque type
and the hardware and compiler
used to build the object file for
the type. If alignment is not
specified, the system default is 4
bytes.

Literal Number,
p.1-997
SQL Statements 1-167

CREATE OPAQUE TYPE
Defining an Opaque Data Type
To define the opaque data type to the database server, you must provide the
following information in the C language:

■ A data structure that serves as the internal storage of the opaque data
type

The internal storage details of the data type are hidden, or opaque.
Once you define a new opaque type, the database server can manip-
ulate it without knowledge of the C structure in which it is stored.

■ Support functions that allow the database server to interact with this
internal structure

The support functions tell the database server how to interact with
the internal structure of the type. These support functions must be
written in the C programming language.

■ Optional additional routines that can be called by other support
functions or by end users to operate on the opaque data type

Possible additional functions include operator functions and casts
that operate on the opaque data type. You can also write SQL
functions for an opaque data type; SQL functions can appear within
an SQL statement.

The following table summarizes the support functions for an opaque data
type.

Function Purpose When Invoked
input Converts the opaque data type from its external

LVARCHAR representation to its internal
representation.

When a client application sends a
character representation of the
opaque type in an INSERT, UPDATE,
or LOAD statement.

output Converts the opaque data type from its internal
representation to its external LVARCHAR
representation.

When the database server sends a
character representation of the
opaque type as a result of a SELECT or
FETCH statement.

 (1 of 3)
1-168 Informix Guide to SQL: Syntax

CREATE OPAQUE TYPE
receive Converts the opaque data type from its internal
representation on the client computer to its
internal representation on the server computer.
Provides platform-independent results regardless
of differences between client and server computer
types.

When a client application sends an
internal representation of the opaque
type in an INSERT, UPDATE, or LOAD
statement.

send Converts the opaque data type from its internal
representation on the server computer to its
internal representation on the client computer.
Provides platform-independent results regardless
of differences between client and database server
computer types.

When the database server sends an
internal representation of the opaque
type as a result of a SELECT or FETCH
statement.

import Performs any tasks need to convert from the
external (character) representation of an opaque
type to the internal representation for a bulk copy.

When DB-Access (LOAD) or the High
Performance Loader initiates a bulk
copy from a text file to a database.

export Performs any tasks need to convert from the
internal representation of an opaque type to the
external (character) representation for a bulk copy.

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a text
file.

importbinary Performs any tasks need to convert from the
internal representation of an opaque type on the
client computer to the internal representation on
the server computer for a bulk copy.

When DB-Access (LOAD) or the High
Performance Loader initiates a bulk
copy from a binary file to a database.

exportbinary Performs any tasks need to convert from the
internal representation of an opaque type on the
server computer to the internal representation on
the client computer for a bulk copy.

When DB-Access (UNLOAD) or the
High Performance Loader initiates a
bulk copy from a database to a binary
file.

assign() Does any processing required before storing the
opaque type to disk. This function must be named
assign().

When the database server executes
an INSERT, UPDATE, and LOAD
statement, before it stores the opaque
type to disk.

destroy() Does any processing necessary before removing a
row that contains the opaque type. This function
must be named destroy().

When the database server executes
the DELETE and DROP TABLE state-
ments, before it removes the opaque
type from disk.

Function Purpose When Invoked

 (2 of 3)
SQL Statements 1-169

CREATE OPAQUE TYPE
Once you write the necessary support functions for the opaque type, use the
CREATE FUNCTION statement to register these support functions in the same
database as the opaque type. Certain support functions convert other data
types to or from the new opaque type. After you create and register these
support functions, use the CREATE CAST statement to associate each function
with a particular cast. The cast must be registered in the same database as the
support function.

When you have written the necessary source code to define the opaque data
type, you then use the CREATE OPAQUE TYPE statement to register the
opaque type in the database.

References
See the CREATE CAST, CREATE DISTINCT TYPE, CREATE FUNCTION, CREATE
ROW TYPE, CREATE TABLE, and DROP TYPE statements in this manual.

For a summary of an opaque data type, see Chapter 2 of the Informix Guide to
SQL: Reference. For information on how to define an opaque data type, see the
Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE OPAQUE TYPE
statement, refer to the Guide to GLS Functionality.

lohandles() Returns a list of the LO-pointer structures
(pointers to smart large objects) in an opaque data
type.

Whenever the database server must
search opaque types for references to
smart large objects: when the
oncheck utility runs, when an
archive is performed.

compare() Compares two values of the opaque type and
returns an integer value to indicate whether the
first value is less than, equal to, or greater than the
second value.

When the database server encounters
an ORDER BY, UNIQUE, DISTINCT, or
UNION clause in a SELECT statement,
or when it executes the CREATE
INDEX statement to create a B-tree
index.

Function Purpose When Invoked

 (3 of 3)
1-170 Informix Guide to SQL: Syntax

CREATE OPCLASS
CREATE OPCLASS
Use the CREATE OPCLASS statement to create an operator class for a secondary
access method.

Syntax

Element Purpose Restrictions Syntax
opclass
name

Name of the operator class being
created

The operator class name must be
unique within the database.
In an ANSI-compliant database,
the combination
owner.opclassname must be
unique within the database.

Identifier, p. 1-962

sec_access
method
name

Name of the secondary access
method with which the specified
operator class is being associated

The secondary access method
must already exist and must be
registered in the sysams system
catalog table.

The database server provides the
B-tree and R-tree secondary
access method.

Identifier, p. 1-962

support-
function
name

Name of a support function
required by the specified
secondary access method

The support functions must be
listed in the order expected by
the specified access method.

Identifier, p. 1-962

opclass
name

CREATE
OPCLASS

FOR

,

sec_ access
method
name

STRATEGIES

,

E/C

DB

SQLE

+

Strategy
Specification

p. 1-174
() SUPPORT)(support-

function name
SQL Statements 1-171

CREATE OPCLASS
Usage
An operator class is the set of operators that Universal Server associates with
the sec_ access method name secondary access method for query optimization
and building the index. A secondary access method (sometimes referred to
as an index access method) is a set of server functions that build, access, and
manipulate an index structure such as a B-tree, R-tree, or an index structure
that a DataBlade module provides.

You define a new operator class when you want:

■ an index to use a different order for the data than the sequence
provided by the default operator class.

■ a set of operators that is different from any existing operator classes
that are associated with a particular secondary access method.

You must have the Resource privilege or be the DBA to create an operator
class. The actual name of an operator class is an SQL identifier. When you
create an operator class, opclass name must be unique within a database.

When you create an operator class in an ANSI-compliant database,
owner.opclass_name must be unique within the database.

The owner name is case sensitive. If you do not put quotes around the owner
name, the name of the operator-class owner is stored in uppercase letters. ♦

The following CREATE OPCLASS statement creates a new operator class
called abs_btree_ops for the btree secondary access method:

CREATE OPCLASS abs_btree_ops FOR btree
STRATEGIES (abs_lt, abs_lte, abs_eq, abs_gte,

abs_gt)
SUPPORT (abs_cmp)

For more information on the btree secondary access method, see “Default
Operator Classes” on page 1-176.

ANSI
1-172 Informix Guide to SQL: Syntax

CREATE OPCLASS
An operator class has two kinds of operator-class functions:

■ Strategy functions

Specify strategy functions of an operator class in the STRATEGY
clause of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS statement, the abs_btree_ops operator class has five
strategy functions.

■ Support functions

Specify support functions of an operator class in the SUPPORT clause
of the CREATE OPCLASS statement. In the preceding CREATE
OPCLASS statement, the abs_btree_ops operator class has one
support function.

STRATEGY Clause
Strategy functions are functions that end-users can invoke within an SQL
statement to operate on a data type. The query optimizer uses the strategy
functions to determine if a particular index can be used to process a query. If
an index exists on a column or user-defined function in a query, and the
qualifying operator in the query matches one of the strategy functions in the
Strategy Specification list, the optimizer considers using the index for the
query. For more information on query plans, see the INFORMIX-Universal
Server Performance Guide.

When you create a new operator class, you specify the strategy functions for
the secondary access method in the STRATEGY clause. The Strategy Specifi-
cation lists the name of each strategy function. List these functions in the
order that the secondary access method expects. For the specific order of
strategy operators for the default operator classes for a B-tree index and an
R-tree index, refer to the Extending INFORMIX-Universal Server: Data Types
manual.
SQL Statements 1-173

CREATE OPCLASS
Strategy Specification

The strategy_function name function is an external function. The CREATE
OPCLASS statement does not verify that a user-defined function of
strategy_function name exists. However, for the secondary access method to
use the strategy_function name function, this function must be:

■ compiled in a shared library.

■ registered in the database with the CREATE FUNCTION statement.

Element Purpose Restrictions Syntax
input data
type

Data type of the input argument
for the strategy function

This is the data type for which
you want to use a specific
secondary access method.
A strategy function takes two
input arguments and one
optional output argument.

Data Type, p. 1-855

output data
type

Data type of the optional output
argument for the strategy
function

This is an optional output
argument for side effect indexes.

Data Type, p. 1-855

strategy-
function name

The name of an strategy function
to associate with the specified
operator class

The operators must be listed in
the order expected by the
specified secondary access
method. For more information,
refer to the user’s guide of the
DataBlade module that provides
the secondary access method.

Identifier,1-962

Strategy Specification

,

output data
type

strategy-function
name

input data
type

2()
1-174 Informix Guide to SQL: Syntax

CREATE OPCLASS
You can optionally the signature of an strategy function in addition to its
name. A strategy function can only take two input parameters and an
optional output parameter. To specify the function signature, you specify:

■ an input data type for each of the two input parameter of the strategy
function, in the order that the strategy function uses them.

■ optionally, one output data type for an output parameter of the
strategy function.

You can specify user-defined data types as well as built-in types. If you do not
specify the function signature, the database server assumes that each strategy
function takes two arguments of the same data type and returns a boolean
value.

Side-Effect Indexes

Side-effect data is additional data that a strategy function returns when
Universal Server executes a query containing the strategy function. For
example, an image DataBlade module might use a fuzzy index to search
image data. The index ranks the images according to how closely they match
the search criteria. The database server returns the rank value as the side
effect data, along with the qualifying images.

SUPPORT Clause
Support functions are functions that the secondary access method uses inter-
nally to build and search the index. You specify the support functions for the
secondary access method in the SUPPORT clause of the CREATE OPCLASS
statement. You must list the names of the support functions in the order that
the secondary access method expects. For the specific order of support
operators for the default operator classes for a B-tree index and an R-tree
index, refer to “Default Operator Classes” on page 1-176.

The support_function name function is an external function. The CREATE
OPCLASS statement does not verify that a user-defined function of
support_function name exists. However, for the secondary access method to
use the support_function name function, this function must be:

■ compiled in a shared library.

■ registered in the database with the CREATE FUNCTION statement.
SQL Statements 1-175

CREATE OPCLASS
Default Operator Classes
Each secondary access method has a default operator class that is associated
with it. By default, the CREATE INDEX statement creates associates the default
operator class with an index. For example, the following CREATE INDEX
statement creates a B-tree index on the zipcode column and automatically
associates the default B-tree operator class with this column:

CREATE INDEX zip_ix ON customer(zipcode)

For each of the secondary access methods that Universal Server provides, it
provides a default operator class, as follows:

■ The default B-tree operator class is a built-in operator class.

The database server implements the operator-class functions for this
operator class and registers it as btree_ops in the system catalog
tables of a database.

■ The default R-tree operator class is a registered operator class.

The database server registers this operator class as rtree_ops in the
system catalog tables of a database. The database server does not
implement the operator-class functions for the default R-tree
operator class.

Important: To use an R-tree index, you must install a spatial DataBlade module such
as the Spatial DataBlade module, Geodetic DataBlade, or any other third-party
DataBlade module that implements the R-tree index. These DataBlade modules
implement the R-tree operator-class functions.

For information on the operator-class functions of these operator classes,
refer to the chapter on operator classes in the Extending INFORMIX-Universal
Server: Data Types manual.

DataBlade modules can provide other types of secondary access methods. If
a DataBlade module provides a secondary access method, it might also
provide a default operator class. For more information, refer to the DataBlade
user guides.
1-176 Informix Guide to SQL: Syntax

CREATE OPCLASS
References
See the CREATE FUNCTION and DROP OPCLASS statements in this manual.
For more information on how to specify a secondary access method or an
operator class for an index, see the CREATE INDEX statement in this manual.

For information on how to create and extend an operator class, see the
Extending INFORMIX-Universal Server: Data Types manual.

For information about the GLS aspects of the CREATE OPCLASS statement,
refer to the Guide to GLS Functionality.
SQL Statements 1-177

1-178 Informix Guide to SQL: Syntax

CREATE PROCEDURE
CREATE PROCEDURE
Use the CREATE PROCEDURE statement to register an external procedure or
to write and register an SPL procedure.

Syntax

CREATE PROCEDURE

DBA
SPL

Procedure
Name

p. 1-1004

Function
Name

p. 1-959

()

Procedure
Parameter

List, p. 1-1028

SPL

Return
Clause

p. 1-1020

SPECIFIC Specific
Name

p. 1-1034

EXT

WITH

EXT

SPL Statement
Block

p. 1-1037

External
Routine

Reference
p. 1-956

SPL

EXT

END
PROCEDURE

END
PROCEDURE

DOCUMENT

WITH LISTING IN 'pathname'

;

SPL

()

,

Procedure
Modifier

p. 1-1023

;
,

Quoted
String

p. 1-1010

+

E/C

DB

SQLE

CREATE PROCEDURE
Usage
A procedure is a user-defined routine that can accept arguments but does not
return a value. INFORMIX-Universal Server supports procedures written in
the following languages:

■ Stored Procedure Language (SPL procedures)

■ One of the external languages (such as C) that INFORMIX-Universal
Server supports (External procedures)

The entire length of a CREATE PROCEDURE statement must be less than 64
kilobytes. This length is the literal length of the statement, including blank
space and tabs.

Routines, Functions, and Procedures

In INFORMIX-Universal Server, routine is a generic term that includes both
procedures and functions. A procedure is a routine that can accept arguments
but does not return any values. A function is routine that can accept
arguments and returns one or more values. Universal Server treats any
routine that includes a Return clause as a function.

Element Purpose Restrictions Syntax
pathname The pathname to a file in which

compile-time warnings are
stored

The specified pathname must
exist on the computer where the
database resides.

The pathname and
filename must
conform to the
conventions of your
operating system.
SQL Statements 1-179

CREATE PROCEDURE
Legacy Procedures

In earlier Informix products, the term stored procedure was used for both SPL
procedures and SPL functions. As a result, you may have created functions
with CREATE PROCEDURE in the past. For backward compatibility with
earlier products, you can continue to create SPL functions with CREATE
PROCEDURE. However, with Universal Server, Informix recommends that
you use CREATE PROCEDURE only with procedures and CREATE FUNCTION
only with functions.

For more information on CREATE FUNCTION, see page 1-122. ♦

SPL Procedures

SPL procedures are routines written in Stored Procedure Language (SPL) that
do not return a value.

Use one CREATE PROCEDURE statement, with SQL and SPL statements
embedded between CREATE PROCEDURE and END PROCEDURE, to write
and register an SPL procedure. Unlike external procedures, you do not need
to write the procedure and register it in separate steps.

SPL procedures are parsed, optimized (as far as possible), and stored in the
system catalog tables in executable format. The body of an SPL procedure is
stored in the sysprocbody system catalog table. Other information about the
procedure is stored in other system catalog tables, including sysprocedures,
sysprocplan, and sysprocauth. For more information about these system
catalog tables, see Chapter 1, “System Catalog,” in the Informix Guide to SQL:
Reference.

You must use the END PROCEDURE keywords with an SPL procedure.

If you use a Return clause or a Specific Name clause, place a semicolon after
the clause immediately before the SPL statement block. If you do not use a
Return clause or a Specific Name clause, do not place a semicolon after the
CREATE PROCEDURE statement. Always place a semicolon at the end of the
entire statement, after the END PROCEDURE, DOCUMENT, or WITH LISTING
IN clause.

SPL

SPL
1-180 Informix Guide to SQL: Syntax

CREATE PROCEDURE
Example

The following example creates a SPL procedure:

CREATE PROCEDURE raise_prices (per_cent INT)

UPDATE stock SET unit_price =
unit_price + (unit_price * (per_cent/100));

END PROCEDURE
DOCUMENT "USAGE: EXECUTE PROCEDURE raise_prices(xxx)",
"xxx = percentage from 1 - 100 "
WITH LISTING IN '/tmp/warn_file';

For more information on writing SPL procedures, see Chapter 14, “Creating
and Using SPL Routines,” in the Informix Guide to SQL: Tutorial. ♦

External Procedures

External procedures are procedures you write in an external language that the
Universal Server supports. To create external procedures, follow these steps:

1. Write the procedure in an external language, such as C, that
Universal Server supports.

2. Compile the procedure and store the compiled code in a shared
library.

3. Register the procedure in the database server with the CREATE
PROCEDURE statement.

When Universal Server executes an external procedure, the database server
invokes the external object code.

Universal Server does not store the body of an external procedure directly in
the database, as it does for SPL procedures. Instead, the database server stores
only a pathname to the compiled version of the procedure. You specify this
pathname in the External Routine Reference clause.

The database server does store information about an external procedure in
several system catalog tables, including sysprocbody and sysprocauth. For
more information on these system catalog tables, see Chapter 1, “System
Catalog,” in the Informix Guide to SQL: Reference.

With external procedures, the END PROCEDURE keywords are optional.

EXT
SQL Statements 1-181

CREATE PROCEDURE
Example

The following example registers an external C procedure named
check_owner() in the database. This procedure takes one argument of the
type lvarchar. The external routine reference specifies the path to the C shared
library where the procedure object code is stored. This library contains a
function unix_owner(), which is invoked during execution of the
check_owner() procedure.

CREATE PROCEDURE check_owner (owner lvarchar)
EXTERNAL NAME "/usr/lib/ext_lib/genlib.so(unix_owner)"
LANGUAGE C
END PROCEDURE;

♦

Using the DBA Keyword

The level of privilege necessary to execute a routine depends on whether the
routine is created with the DBA keyword. The DBA keyword limits execution
of the procedure to those users who have the DBA privilege.

You need the DBA privilege to create a procedure using the DBA keyword.
You need the DBA privilege to execute a procedure that is created with the
DBA keyword.

If you do not use the DBA option, the procedure is known as an owner-privi-
leged procedure. If the procedure is owner privileged, and if the database is
ANSI compliant, anyone can execute the procedure.

If you create an owner-privileged routine in a database that is not
ANSI-compliant, the NODEFDAC environment variable prevents privileges
on that routine from being granted to PUBLIC. See the Informix Guide to SQL:
Reference for further information on the NODEFDAC environment variable.

Procedure Name

Because Universal Server offers routine overloading, you can define more than
one procedure with the same name but different parameter lists. You may
want to overload procedures if you are defining a type hierarchy or a system
of distinct types or casts. When you overload procedures, you can create a
procedure for the new data types you define.
1-182 Informix Guide to SQL: Syntax

CREATE PROCEDURE
The process of overloading routines and the routine resolution rules are
described briefly in “Routine Resolution” on page 1-186.

The syntax of the Procedure Name segment is described in “Procedure
Name” on page 1-1004.

Parameter List

To define the parameters for an SPL procedure, specify a parameter name and
a data type for each parameter. For more information about defining param-
eters, see “Routine Parameter List” on page 1-1028. ♦

To define the parameters for an external routine, you can specify a name, and
you must specify a data type for each parameter. For more information on the
syntax of the parameter list, see “Routine Parameter List” on page 1-1028. ♦

Return Clause

The database server considers any routine that is created with a Return clause
to be a function. Informix recommends that you use the CREATE FUNCTION
statement, not CREATE PROCEDURE, to create functions. For external
routines, this rule is strictly enforced.

The syntax of the Return clause is described in “Return Clause” on
page 1-1020.

In SPL, you can use CREATE PROCEDURE to write and register a routine that
returns one or more values (that is, a function). However, this feature is
offered only for backward compatibility with earlier Informix products.
Informix recommends that you do not use CREATE PROCEDURE to create
functions. ♦

You cannot specify a Return clause for an external procedure. An external
procedure does not return a value. ♦

SPL

EXT

SPL

EXT
SQL Statements 1-183

CREATE PROCEDURE
Specific Name

You can specify a specific name for an SPL procedure or an external
procedure. A specific name is a name that is unique in the database. A specific
name is useful, because due to routine overloading, more than one procedure
can have the same name.

The syntax of the Specific Name is described in “Specific Name” on
page 1-1034.

Procedure Modifier

When you write an SPL procedure, you cannot specify a procedure modifier
in the CREATE PROCEDURE statement. ♦

In the CREATE PROCEDURE statement, you can specify any of a list of
procedure modifiers with a WITH clause. For more information on the
procedure modifiers, see “Routine Modifier” on page 1-1022. ♦

Statement Block

In an SPL routine, you must specify an SPL statement block instead of an
external routine reference. The syntax of the statement block is described in
“Statement Block” on page 1-1037. ♦

External Routine Reference

When you register an external procedure, you must specify an External
Routine Reference clause. The External Routine Reference clause specifies the
pathname to the procedure object code, which is stored in a shared library.
The External Routine Reference Clause also specifies the name of the
language in which the procedure is written. For more information on the
External Routine Reference clause, see “External Routine Reference” on
page 1-956. ♦

SPL

EXT

SPL

EXT
1-184 Informix Guide to SQL: Syntax

CREATE PROCEDURE
DOCUMENT Clause

The quoted string in the DOCUMENT clause provides a synopsis and
description of the routine. The string is stored in the sysprocbody system
catalog table and is intended for the user of the routine.

To find the description of the SPL procedure raise_prices, shown in “SPL
Procedures” on page 1-180, enter a query such as the following:

SELECT data FROM sysprocbody b, sysprocedures p
WHERE b.procid = p.procid

--join between the two catalog tables
AND p.procname = 'raise_prices'

-- look for procedure named raise_prices
AND b.datakey = 'D'-- want user document

ORDER BY b.seqno;

The preceding query returns the following text:

USAGE: EXECUTE PROCEDURE raise_prices(xxx)
xxx = percentage from 1 - 100

An SPL routine, external routine, or application program can query the
system catalog tables to fetch the DOCUMENT clause and display it for a user.

You can use a DOCUMENT clause at the end of the CREATE PROCEDURE
statement, whether or not you use END PROCEDURE. ♦

WITH LISTING IN Clause

The WITH LISTING IN option specifies a filename where compile-time
warnings are sent. This listing file is created on the database server when you
compile an SPL or external routine.

If you specify a filename but not a directory in the WITH LISTING IN clause,
Universal Server uses the home directory on the database server as the
default directory. If you do not have a home directory on the server, the file
is created in the root directory.

If you do not use the WITH LISTING IN option, the compiler does not generate
a list of warnings.

EXT
SQL Statements 1-185

CREATE PROCEDURE
Privileges Necessary for Using CREATE PROCEDURE

You must have the Resource privilege on a database to create a procedure
within that database. The owner of a procedure grants the Execution
privilege to on that procedure to other users.

Routine Resolution

In Universal Server, you can have more than one instance of a routine with
the same name but different parameter lists, as in the following situations:

■ You create a routine with the same name as a built-in function (such
as equal()) to process a new user-defined data type.

■ You create type hierarchies, in which subtypes inherit data represen-
tation and functions from supertypes.

■ You create distinct types, which are data types that have the same
internal storage representation as an existing data type, but have
different names and cannot be compared to the source type without
casting. Distinct types inherit functions from their source types.

Routine resolution is the process of determining which instance of a function
to execute, given the name of a routine and a list of arguments. For more
information on routine resolution, refer to the Extending
INFORMIX-Universal Server: User-Defined Routines manual.

PREPARE Statement

You can use a CREATE PROCEDURE statement only within a PREPARE
statement. If you want to create a procedure for which the text is known at
compile time, you must put the text in a file and specify this file with the
CREATE PROCEDURE FROM statement. For more information, see the
CREATE PROCEDURE FROM statement on page 1-188. ♦

E/C
1-186 Informix Guide to SQL: Syntax

CREATE PROCEDURE
References
See the CREATE FUNCTION, CREATE PROCEDURE FROM, DROP FUNCTION,
DROP PROCEDURE, DROP ROUTINE, EXECUTE FUNCTION, EXECUTE
PROCEDURE, GRANT, PREPARE, UPDATE STATISTICS, and REVOKE state-
ments in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of how to create and
execute SPL routines on page 14-6.

In the Extending INFORMIX-Universal Server: User-Defined Routines manual,
see the discussion of how to create and use external procedures
SQL Statements 1-187

CREATE PROCEDURE FROM
CREATE PROCEDURE FROM
Use the CREATE PROCEDURE FROM statement to create a procedure. The
actual text of the CREATE PROCEDURE statement resides in a separate file.

Syntax

Element Purpose Restrictions Syntax
filename The pathname and filename of

the file that contains the full text
of a CREATE PROCEDURE
statement. The default
pathname is the current
directory.

The specified file must exist. The pathname and
filename must
conform to the
conventions of your
operating system.

variable name The name of a program variable
that holds the value of filename

The file that is specified in the
program variable must exist.

The name must
conform to
language-specific
rules for variable
names.

ESQL

'filename'

variable
name

CREATE PROCEDURE FROM

+

1-188 Informix Guide to SQL: Syntax

CREATE PROCEDURE FROM
Usage
An INFORMIX-ESQL/C program cannot directly create a stored procedure or
external procedure. That is, it cannot contain the CREATE PROCEDURE
statement. However, you can create these functions within an ESQL/C
program with the following steps:

1. Create a source file with the CREATE PROCEDURE statement.

2. Use the CREATE PROCEDURE FROM statement to send the contents of
this source file to the database server for execution.

For example, suppose that the following CREATE PROCEDURE statement is in
a separate file, called raise_pr.sql:

CREATE PROCEDURE raise_prices(per_cent int)
UPDATE stock -- increase by percentage;
SET unit_price = unit_price +

(unit_price * (per_cent / 100));
END PROCEDURE;

In the ESQL/C program, you can create the raise_prices() stored procedure
with the following CREATE PROCEDURE FROM statement:

EXEC SQL create procedure from 'raise_pr.sql';

The filename that you provide is relative; if you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

Important: The ESQL/C preprocessor does not process the contents of the file that you
specify. It just sends the contents to the database server for execution. Therefore, there
is no syntactic check that the file that you specify in CREATE PROCEDURE FROM
actually contains a CREATE PROCEDURE statement. However, to improve readabil-
ity of the code, Informix recommends that you match these two statements. If you are
not sure whether the routine is a function or a procedure, use the CREATE ROUTINE
FROM statement in the ESQL/C program.

References
See the CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE ROUTINE FROM statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of how to create and
use SPL procedures in Chapter 14.
SQL Statements 1-189

CREATE ROLE
CREATE ROLE
Use the CREATE ROLE statement to create a new role.

Syntax

Usage
The database administrator (DBA) uses the CREATE ROLE statement to create
a new role. A role can be considered as a classification, with privileges on
database objects granted to the role. The DBA can assign the privileges of a
related work task, such as engineer, to a role and then grant that role to users,
instead of granting the same set of privileges to every user.

Element Purpose Restrictions Syntax
role name Name assigned to a role created

by the DBA
Maximum number of characters
is 8.

Identifier, p. 1-962

A role name cannot be a user
name known to the database
server or the operating system of
the database server. A role name
cannot be in the username
column of the sysusers system
catalog table or in the grantor or
grantee columns of the
systabauth, syscolauth,
sysprocauth, sysfragauth, and
sysroleauth system catalog
tables.

CREATE ROLE role name

+

E/C

DB

SQLE
1-190 Informix Guide to SQL: Syntax

CREATE ROLE
After a role is created, the DBA can use the GRANT statement to grant the role
to users or to other roles. When a role is granted to a user, the user must use
the SET ROLE statement to enable the role. Only then can the user use the
privileges of the role.

The CREATE ROLE statement, when used with the GRANT and SET ROLE
statements, allows a DBA to create one set of privileges for a role and then
grant the role to many users, instead of granting the same set of privileges to
many users.

A role exists until it is dropped either by the DBA or by a user to whom the
role was granted with the WITH GRANT OPTION. Use the DROP ROLE
statement to drop a role.

To create the role engineer, enter the following statement:

CREATE ROLE engineer

References
See the DROP ROLE, GRANT, REVOKE, and SET ROLE statements in this
manual.
SQL Statements 1-191

CREATE ROUTINE FROM
CREATE ROUTINE FROM
Use the CREATE ROUTINE FROM statement to create a routine. The actual text
of the CREATE FUNCTION or CREATE PROCEDURE statement resides in a
separate file.

Syntax

Element Purpose Restrictions Syntax
filename The pathname and filename of

the file that contains the full text
of a CREATE PROCEDURE or
CREATE FUNCTION statement.
The default pathname is the
current directory.

The specified file must exist. The pathname and
filename must
conform to the
conventions of your
operating system.

variable name The name of a program variable
that holds the value of filename

The file that is specified in the
program variable must exist.

The name must
conform to
language-specific
rules for variable
names.

ESQL

'filename'

variable
name

CREATE ROUTINE FROM

+

1-192 Informix Guide to SQL: Syntax

CREATE ROUTINE FROM
Usage
An INFORMIX-ESQL/C program cannot directly define a routine. That is, it
cannot contain the CREATE FUNCTION or CREATE PROCEDURE statement.
However, you can create these functions within an ESQL/C program with the
following steps:

1. Create a source file with the CREATE FUNCTION or CREATE
PROCEDURE statement.

2. Use the CREATE ROUTINE FROM statement to send the contents of
this source file to the database server for execution.

The filename that you provide is relative. If you provide a simple filename (as
in the preceding example), the client application looks for the file in the
current directory.

If you know at compile time whether the routine in the file is a function or a
procedure, use the CREATE ROUTINE FROM statement in the ESQL/C
program. However, if you do know whether the routine is a function or
procedure, Informix recommends that you use the matching statement to
create the file:

■ The CREATE FUNCTION FROM to create stored or external functions

■ The CREATE PROCEDURE FROM to create stored or external
procedures

Use of the matching statements improves the readability of the code.

References
See the CREATE FUNCTION, CREATE FUNCTION FROM, CREATE
PROCEDURE, and CREATE PROCEDURE FROM statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating and using
stored procedures in Chapter 14.
SQL Statements 1-193

CREATE ROW TYPE
CREATE ROW TYPE
Use the CREATE ROW TYPE statement to create a named row type.

Syntax

CREATE
ROW TYPE

(

row type
name

+

E/C

DB

SQLE ,

Extended
Field Definition

p. 1-199
()

,

Extended
Field Definition

p. 1-199

UNDER supertype
name

)

1-194 Informix Guide to SQL: Syntax

CREATE ROW TYPE
Usage
The CREATE ROW TYPE statement creates a named row type. You can assign
a named row type to a table or view to create a typed table or typed view. You
can also assign a named row type to a column. Although you can assign a
row type to a table to define the structure of the table, row types are not the
same as table rows. Table rows consist of one or more columns; row types
consist of one or more fields, which are defined using the Extended Field
Definition syntax. For a full discussion of named row types and typed tables,
see Chapter 10, “Understanding Complex Data Types,” in the Informix Guide
to SQL: Tutorial.

Element Purpose Restrictions Syntax
row type name The name of the named row type

that you create. If you create a
named row type under an
existing supertype, this is the
name of the subtype.

The name you specify for the
named row type must follow the
conventions for SQL identifiers.
In an ANSI-compliant database,
the combination owner. type must
be unique within the database.
In a database that is not ANSI
compliant, the type name must
be unique within the database.
You must have the Resource
privilege to create a named row
type.

Identifier, p. 1-962

Data type, p. 1-855

supertype name The name of the supertype in an
inheritance hierarchy

The supertype must already
exist and must be a named row
type. The same restrictions
apply for the supertype name as
for the type name. In addition,
you must have the Under
privilege on this supertype to
create a subtype under it, and
the Resource privilege.

Identifier, p. 1-962

Data type, p. 1-855
SQL Statements 1-195

CREATE ROW TYPE
You can use a named row type anywhere you can use any other type. Named
row types are strongly typed. Any two named row types are not considered
equivalent even if they are structurally equivalent. Row types without names
are called unnamed row types. Any two unnamed row types are considered
equivalent if they are structurally equivalent. For more information on
named row types and unnamed row types, see the section “Complex Data
Type” on page 1-868 of this manual and Chapter 10, “Understanding
Complex Data Types” in the Informix Guide to SQL: Tutorial.

Privileges on Named Row Types
The following table indicates which privileges you must have to create a row
type.

To find out what privileges you have on a particular data type, check the
sysxtdtypes system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

See the reference pages for GRANT, beginning on page 1-458, for information
about the RESOURCE, UNDER, and ALL privileges.

Privileges on a typed table (a table that is assigned a named row type) are the
same as privileges on any table. Refer to the CREATE TABLE statement on
page 1-208 and the “Table-Level Privileges” section of the GRANT statement
on page 1-458.

To find out what privileges you have on a particular table, check the
systabauth system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

Task Privileges Required

Create a named row type The Resource privilege on the
database

Create a named row type as a subtype
under a supertype

The Under privilege on the supertype,
as well as the Resource privilege
1-196 Informix Guide to SQL: Syntax

CREATE ROW TYPE
Privileges on Named Row Type Columns

Privileges on named row type columns are the same as privileges on any
column. For more information, see the “Table-Level Privileges” section of the
GRANT statement on page 1-458.

To find out what privileges you have on a particular column, check the
syscolauth system catalog table. This table is described in Chapter 1 of the
Informix Guide to SQL: Reference.

Inheritance and Named Row Types
A named row type can belong to an inheritance hierarchy, as either a subtype
or a supertype. You use the UNDER clause in the CREATE ROW TYPE
statement to create a named row type as a subtype. The supertype must also
be a named row type.

When you create a named row type as a subtype, the subtype inherits the
following properties:

■ All fields of the supertype

■ All functions that are defined on the supertype

In addition, you can add new fields to the subtype that you create and define
functions on the subtype. The new fields and functions are specific to the
subtype alone.

You cannot substitute a row type in an inheritance hierarchy for its supertype
or its subtype. For example, suppose you define a type hierarchy in which
person_t is the supertype and employee_t is the subtype. If a column is of
type person_t, the column can only contain person_t data. It cannot contain
employee_t data. Likewise, if a column is of type employee_t, the column
can only contain employee_t data. It cannot contain person_t data.

Creating a Subtype

In most cases, you add new fields when you create a named row type as a
subtype of a another named row type (supertype). To create the fields of a
named row type, you use the field definition clause that is shown on
page 1-200.
SQL Statements 1-197

CREATE ROW TYPE
When you create a subtype, you must use the UNDER keyword to associate
the supertype with the named row type that you want to create. The
following statement creates the employee_t type under the person_t type:

CREATE ROW TYPE employee_t
(salary NUMERIC(10,2), bonus NUMERIC(10,2))
UNDER person_t;

The employee_t type inherits all the fields of person_t and has two
additional fields: salary and bonus. However, the person_t type is not
altered.

Tip: A subtype inherits all the fields and functions that are defined on the supertype
as well as any additional fields and routines that you define on the subtype.

Type Hierarchies

When you create a subtype, you create a type hierarchy. In a type hierarchy,
each subtype that you create inherits its properties from a single supertype.
If you create a named row type customer_t under person_t, customer_t
inherits all the fields and functions of person_t. If you create another named
row type, salesrep_t under customer_t, salesrep_t inherits all the fields and
functions of customer_t. More specifically, salesrep_t inherits all the fields
and functions that customer_t inherited from person_t as well as all the fields
and functions defined specifically for customer_t. For a full discussion of
type inheritance, refer to Chapter 10 of the Informix Guide to SQL: Tutorial.

Procedure for Creating a Subtype

Before you create a named row type as a subtype in an inheritance hierarchy,
do the following:

■ Verify that you are authorized to create new data types.

You must have the Resource privilege on the database. You can find
this information in the sysusers system catalog table.

■ Verify that the supertype exists.

You can find this information in the sysxtdtypes system catalog
table.
1-198 Informix Guide to SQL: Syntax

CREATE ROW TYPE
■ Verify that you are authorized to create subtypes to that supertype.

You must have the Under privilege on the supertype.You can find
this information in the sysusers system catalog table.

■ Verify that the name that you assign to the named row type is unique
within the schema.

To verify whether the name you want to assign to a new data type is
unique within the schema, check the sysxtdtypes system catalog
table. The name you want to use must not be the name of an existing
data type.

■ If you are defining fields for the row type, check that no duplicate
field names exist in both new and inherited fields.

Important: When you create a subtype, do not redefine fields that the subtype
inherited for its supertype. If you attempt to redefine these fields, the database server
returns an error.

Constraints on Named Row Types
You cannot apply constraints to named row types directly. Specify the
constraints for the tables that use named row types when you create or alter
the table.

Extended Field Definition
Use the extended field definition to define new fields in a named row type.

Each field has its own field definition, as described in the “Field Definition”
section.

Field Definition
p. 1-200

NOT NULL

Extended Field
Definition
SQL Statements 1-199

CREATE ROW TYPE
Important: The NOT NULL constraints that you specify on the fields of a named row
type also apply to corresponding columns of a table when the named row type is used
to create a typed table.

.

Field Definition
To define a field, you must specify a name and a data type for each field.

References
See the DROP ROW TYPE, CREATE TABLE, CREATE CAST, GRANT, and
REVOKE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of named row types
in Chapter 10, “Understanding Complex Data Types.” In the Informix Guide
to SQL: Reference, see Chapter 2, “Data Types.”

Element Purpose Restrictions Syntax
field name Name of a field in the row Name must be unique within the

row type and its supertype.
Identifier, p. 1-962

data type Data type of the field If a named row type is used to
define a column, the fields of the
row type cannot be the SERIAL,
SERIAL8, BYTE, or TEXT data
type. If a named row type is
assigned to a table, the fields of
the row type cannot be the
SERIAL or SERIAL8 data type.

Data type, p. 1-855

field name data type

Field
Definition
1-200 Informix Guide to SQL: Syntax

CREATE SCHEMA
CREATE SCHEMA
Use the CREATE SCHEMA statement to issue a block of CREATE and GRANT
statements as a unit. This statement allows you to specify an owner of your
choice for all objects that the CREATE SCHEMA statement creates.

Syntax

CREATE INDEX Statement
p. 1-134

CREATE VIEW Statement
p. 1-286

GRANT Statement
p. 1-458

user
name

CREATE SCHEMA
AUTHORIZATION

CREATE TABLE Statement
p. 1-208

CREATE TRIGGER Statement
p. 1-255

CREATE OPTICAL CLUSTER
Statement, see

INFORMIX-OnLine/Optical
User Manual

OP

DB

SQLE

CREATE OPAQUE TYPE
Statement
p. 1-164

CREATE DISTINCT TYPE
Statement
p. 1-118

CREATE CAST Statement
p. 1-109

CREATE ROW TYPE Statement
p. 1-194

CREATE SYNONYM Statement
p. 1-204

+

SQL Statements 1-201

CREATE SCHEMA
Usage
You cannot issue the CREATE SCHEMA statement until you create the affected
database.

Users with the Resource privilege can create a schema for themselves. In this
case, user name must be the name of the person with the Resource privilege
who is running the CREATE SCHEMA statement. Anyone with the DBA
privilege can also create a schema for someone else. In this case, user name can
identify a user other than the person who is running the CREATE SCHEMA
statement.

You can put CREATE and GRANT statements in any logical order within the
statement, as the following example shows. Statements are considered part
of the CREATE SCHEMA statement until a semicolon or an end-of-file symbol
is reached.

CREATE SCHEMA AUTHORIZATION sarah
CREATE TABLE mytable (mytime DATE, mytext TEXT)
GRANT SELECT, UPDATE, DELETE ON mytable TO rick
CREATE VIEW myview AS

SELECT * FROM mytable WHERE mytime > '12/31/1993'
CREATE INDEX idxtime ON mytable (mytime);

Element Purpose Restrictions Syntax
user name The name of the user who will

own the objects that the CREATE
SCHEMA statement creates

If the user who issues the
CREATE SCHEMA statement has
the Resource privilege, user name
must be the name of this user. If
the user who issues the CREATE
SCHEMA statement has the DBA
privilege, user name can be the
name of this user or another
user.

Identifier, p. 1-962
1-202 Informix Guide to SQL: Syntax

CREATE SCHEMA
Creating Objects Within CREATE SCHEMA
All objects that a CREATE SCHEMA statement creates are owned by user name,
even if you do not explicitly name each object. If you are the DBA, you can
create objects for another user. If you are not the DBA, and you try to create
an object for an owner other than yourself, you receive an error message.

Granting Privileges Within CREATE SCHEMA
You can only grant privileges with the CREATE SCHEMA statement; you
cannot revoke or drop privileges.

Creating Objects or Granting Privileges Outside CREATE
SCHEMA
If you create an object or use the GRANT statement outside a CREATE
SCHEMA statement, you receive warnings if you use the -ansi flag or set
DBANSIWARN.

References
See the CREATE INDEX, CREATE SYNONYM, CREATE TABLE, CREATE VIEW,
and GRANT statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of creating the
database in Chapter 9.
SQL Statements 1-203

CREATE SYNONYM
CREATE SYNONYM
Use the CREATE SYNONYM statement to provide an alternative name, called
a synonym, for a table or view.

Syntax

Usage
Users have the same privileges for a synonym that they have for the table to
which the synonym applies.

The synonym name must be unique; that is, the synonym name cannot be the
same as another database object, such as a table, view, or temporary table.

Once a synonym is created, it persists until the owner executes the DROP
SYNONYM statement. This property distinguishes a synonym from an alias
that you can use in the FROM clause of a SELECT statement. The alias persists
for the existence of the SELECT statement. If a synonym refers to a table or
view in the same database, the synonym is automatically dropped if you
drop the referenced table or view.

You cannot create a synonym for a synonym in the same database.

 The owner of the synonym (owner.synonym) qualifies the name of a synonym.
The identifier owner.synonym must be unique among all the synonyms, tables,
temporary tables, and views in the database. You must specify owner when
you refer to a synonym that another user owns. The following example
shows this convention:

CREATE SYNONYM emp FOR accting.employee

♦

View Name
p. 1-1047

+ CREATE SYNONYM FOR

PUBLIC

PRIVATE

Synonym
Name

p. 1-1042

Table Name
p. 1-1044

ANSI
1-204 Informix Guide to SQL: Syntax

CREATE SYNONYM
You can create a synonym for any table or view in any database on your
database server. Use the owner. convention if the table is part of an
ANSI-compliant database. The following example shows a synonym for a
table outside the current database. It assumes that you are working on the
same database server that contains the payables database.

CREATE SYNONYM mysum FOR payables:jean.summary

You can create a synonym for any table or view that exists on any networked
database server as well as on the database server that contains your current
database. The database server that holds the table must be on-line when you
create the synonym. In a network, INFORMIX-Universal Server verifies that
the object of the synonym exists when you create the synonym.

The following example shows how to create a synonym for an object that is
not in the current database:

CREATE SYNONYM mysum FOR payables@phoenix:jean.summary

The identifier mysum now refers to the table jean.summary, which is in the
payables database on the phoenix database server. Note that if the summary
table is dropped from the payables database, the mysum synonym is left
intact. Subsequent attempts to use mysum return the error Table not found.

PUBLIC and PRIVATE Synonyms
If you use the PUBLIC keyword (or no keyword at all), anyone who has access
to the database can use your synonym. If a synonym is public, a user does not
need to know the name of the owner of the synonym. Any synonym in a
database that is not ANSI compliant and was created before Version 5.0 of the
database server is a public synonym.

Synonyms are always private. If you use the PUBLIC or PRIVATE keywords,
you receive a syntax error. ♦

If you use the PRIVATE keyword, the synonym can be used only by the owner
of the synonym or if the owner’s name is specified explicitly with the
synonym. More than one private synonym with the same name can exist in
the same database. However, a different user must own each synonym with
that name.

ANSI
SQL Statements 1-205

CREATE SYNONYM
You can own only one synonym with a given name; you cannot create both
private and public synonyms with the same name. For example, the
following code generates an error:

CREATE SYNONYM our_custs FOR customer;
CREATE PRIVATE SYNONYM our_custs FOR cust_calls;-- ERROR!!!

Synonyms with the Same Name

If you own a private synonym, and a public synonym exists with the same
name, when you use the synonym by its unqualified name, the private
synonym is used.

If you use DROP SYNONYM with a synonym, and multiple synonyms exist
with the same name, the private synonym is dropped. If you issue the DROP
SYNONYM statement again, the public synonym is dropped.

Chaining Synonyms
If you create a synonym for a table that is not in the current database, and this
table is dropped, the synonym stays in place. You can create a new synonym
for the dropped table, with the name of the dropped table as the synonym
name, which points to another external or remote table. In this way, you can
move a table to a new location and chain synonyms together so that the
original synonyms remain valid. (You can chain as many as 16 synonyms in
this manner.)

The following steps chain two synonyms together for the customer table,
which will ultimately reside on the zoo database server (the CREATE TABLE
statements are not complete):

1. In the stores7 database on the database server that is called training,
issue the following statement:

CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores7@training:customer
1-206 Informix Guide to SQL: Syntax

CREATE SYNONYM
3. On the database server called zoo, issue the following statement:
CREATE TABLE customer (lname CHAR(15)...)

4. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE SYNONYM customer FOR stores7@zoo:customer

The synonym cust on the accntg database server now points to the customer
table on the zoo database server.

The following steps show an example of chaining two synonyms together
and changing the table to which a synonym points:

1. On the database server called training, issue the following
statement:

CREATE TABLE customer (lname CHAR(15)...)

2. On the database server called accntg, issue the following statement:
CREATE SYNONYM cust FOR stores7@training:customer

3. On the database server called training, issue the following
statement:

DROP TABLE customer
CREATE TABLE customer (lastname CHAR(20)...)

The synonym cust on the accntg database server now points to a new version
of the customer table on the training database server.

References
See the DROP SYNONYM statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of synonyms in
Chapter 5.
SQL Statements 1-207

1-208 Informix Guide to SQL: Syntax

CREATE TABLE
CREATE TABLE
Use the CREATE TABLE statement to create a new table in the current
database, place data-integrity constraints on its columns or on a combination
of its columns, designate the size of its initial and subsequent extents, and
specify how to lock each table. You can also use this statement to fragment
tables into separate dbspaces.

You can use CREATE TABLE to create untyped tables (traditional relational-
database tables), typed tables (object-relational tables), typed tables with
inheritance, or temporary tables.

Syntax

Element Purpose Restrictions Syntax
table name The name assigned to the table.

Every table must have a name.
Name must be unique within a
database. It must not be used for
any other tables or for any views
or synonyms within the current
database.

Identifier, p. 1-962

CREATE
Untyped Table

Clause
p. 1-210

Typed Table with
Inheritance Clause

p. 1-210

E/C

DB

SQLE

Typed Table Clause
p. 1-210

TABLE

TEMP TABLE
Untyped Table

Clause
p. 1-210

table name

table name

DB

CREATE TABLE
Some of the syntax diagrams in this chapter include branches that are valid
only for certain types of tables. The diagrams use the following icons to
indicate which types of tables can use the limited branches:

Syntax Clauses for Typed and Untyped Tables
The following syntax diagrams show the syntax for both typed and untyped
tables. Typed tables and inheritance are new features introduced by
INFORMIX-Universal Server. Earlier releases of Informix products support
only untyped tables, both permanent and temporary.

Actions in this branch can appear in (permanent) untyped
tables.

Actions in this branch can appear in typed tables.

Actions in this branch can appear in temporary (untyped)
tables.

UnT

Typ

Tmp
SQL Statements 1-209

CREATE TABLE
,
Column

Definition
Clause

 p. 1-219

()

Table-Level
Constraints

p. 1-228

Untyped Table Clause
(both permanent and

temporary tables)

Options
p. 1-252

,

Typed Table
Clause

(Options
p. 1-252

,
Table-Level
Constraints

p. 1-228

OF
TYPE

row
type

name

Typed Table with Inheritance
Clause

() Options
p. 1-252

UNDER

,
)

Table-Level
Constraints

p. 1-228

OF
TYPE

row
type

name
1-210 Informix Guide to SQL: Syntax

CREATE TABLE
Usage
When you create a table, the table and columns within that table must have
unique names and every table column must have a data type associated with
it. However, although temporary table names must be different from existing
table, view, or synonym names in the current database, they need not be
different from temporary table names used by other users.

In an ANSI-compliant database, the combination owner.tablename must be
unique within the database. ♦

In DB-Access, using the CREATE TABLE statement outside the CREATE
SCHEMA statement generates warnings if you set DBANSIWARN. ♦

The CREATE TABLE statement generates warnings if you use the -ansi flag or
set DBANSIWARN environment variable. ♦

For information about DBANSIWARN environment variable, refer to the
Informix Guide to SQL: Reference.

Element Purpose Restrictions Syntax
 row type name The name of row type used as

this table’s type
This type must already exist and
must be a named row type.

Data type, p.1-855

Identifier, p. 1-962

Informix Guide to
SQL: Reference:
Chapter 3,
“Environment
Variables”

supertable name The name of the parent table of
which this table is a child.

This parent table must already
exist as a typed table.

A type hierarchy must already
exist in which the named row
type of this table is a subtype of
the named row type of the
supertable.

ANSI

DB

ESQL
SQL Statements 1-211

CREATE TABLE
Typed and Untyped Tables

Untyped tables are the only kinds of tables that are available in Informix
products prior to INFORMIX-Universal Server. Typed tables use named row
types. For a detailed discussion of row types and typed and untyped tables,
refer to Chapter 10 of the Informix Guide to SQL: Tutorial.

Important: Informix recommends that you use the BLOB or CLOB data types instead
of the TEXT or BYTE data types when you create a typed table that contains columns
for large objects. For backward compatibility, you can create a named row type that
contains TEXT or BYTE fields and use that type to recreate an existing (untyped)
table as a typed table. However, although you can use a row type that contains BYTE
or TEXT fields to create a typed table, you cannot use such a row type as a column.
You can use a row type that contains CLOB or BLOB fields in both typed tables and
columns.

Typed Tables

A typed table is a table that has a named row type assigned to it. The columns
of a typed table correspond to the fields of the named row type.

For example, suppose you create a named row type, student_t as follows:

CREATE ROW TYPE student_t
(name VARCHAR(30),
 average REAL,
 birthdate DATETIME YEAR TO DAY)

If a table is assigned the type student_t, the table is a typed table whose
columns are of the same name and data type (and in the same order) as the
fields of the type student_t.

The following CREATE TABLE statement creates a typed table named
students whose type is student_t:

CREATE TABLE students OF TYPE student_t

The students table has the following columns:

name VARCHAR(30)
average REAL
birthdate DATETIME
1-212 Informix Guide to SQL: Syntax

CREATE TABLE
When you create a typed table, the columns of the table are not named in the
CREATE TABLE statement. Instead, the columns are specified when you create
the row type. You cannot add additional columns to a typed table.

Important: Typed tables do not take the default values or null/not null specification
of the row type whose type they adopt.

For more information about row types, refer to the CREATE ROW TYPE
statement on page 1-194.

Typed Tables with Inheritance

A typed table can inherit properties from a typed supertable and add new
columns and properties. The table that inherits is a subtable. The subtable
must use a row type that is derived from the row type of the supertable.

Continuing the example shown in “Typed Tables” on page 1-212, the
following statements created a typed table, grad_students, that inherits all of
the columns of the students table and in addition has columns for adviser
and field_of_study:

CREATE ROW TYPE grad_student_t
(adviser CHAR(25),
 field_of_study CHAR(40))
 UNDER student_t;

CREATE TABLE grad_students OF TYPE grad_student_t
UNDER students;

When you create a typed table as a subtable, the subtable inherits the
following properties:

■ All columns in the immediate supertable

■ All constraint definitions defined on its supertable

■ Fragmentation. If a subtable does not define fragments, and if its
supertable has fragments defined, then the subtable inherits the
fragments of the supertable.

■ All indexes defined by its supertable

■ Referential integrity
SQL Statements 1-213

CREATE TABLE
■ The access method

■ The WITH options

■ The storage option

■ All triggers defined on the supertable

Tip: Any heritable attributes that are added to a supertable after subtables have been
created will automatically be inherited by existing subtables. It is not necessary to
add all heritable attributes to a supertable before creating its subtables.

Inheritance occurs in one direction only—from supertable to subtable.
Properties of subtables are not inherited by supertables.

Constraints, indices, and triggers are recorded in the system catalog for the
supertable, but not for subtables that inherit them. Fragmentation infor-
mation is recorded for both supertables and subtables.

No two tables in a table hierarchy can have the same type. For example, the
final line of the following code sample is illegal because the tables tab2 and
tab3 cannot have the same row type (rowtype2):

create row type rowtype1 (...);
create row type rowtype2 (...) under rowtype1;
create table tab1 of type rowtype1;
create table tab2 of type rowtype2 under tab1;

Illegal --> create table tab3 of type rowtype2 under tab1;

For more information about inheritance, refer to Chapter 10 of the Informix
Guide to SQL: Tutorial.

Untyped Tables

Tables that have not been assigned a named row type are untyped tables.
Untyped tables, both permanent and temporary, are traditional relational-
database tables. For simplicity, this discussion refers to permanent untyped
tables as untyped tables and temporary untyped tables as temporary tables.

The following CREATE TABLE statement creates an untyped table:

CREATE TABLE students
(name VARCHAR(30),
 average REAL,
 birthdate DATETIME YEAR TO DAY)
1-214 Informix Guide to SQL: Syntax

CREATE TABLE
Temporary Tables

Temporary tables are always untyped tables. The following CREATE TABLE
statement creates a temporary table:

CREATE TEMP TABLE transient
(col1 integer,
 col2 char(20))

After a temporary table is created, you can build indexes on the table.
However, you are the only user who can see the temporary table.

Temporary tables that you create with the CREATE TEMP TABLE statement are
explicit temporary tables. You can also create explicit temporary tables with
the SELECT ... INTO TEMP statement. Temporary tables that the database
server creates as a part of processing are called implicit temporary tables.
Implicit temporary tables are discussed in the INFORMIX-Universal Server
Administrator’s Guide.

When an application creates an explicit temporary table, the table exists until
one of the following situations occur:

■ The application terminates.

■ The application closes the database where the table was created. In
this case, the table is dropped only if the database does transaction
logging, and the temporary table was not created with the WITH NO
LOG option.

■ The application closes the database where the table was created and
opens a database in a different database server.

When any of these events occur, the temporary table is deleted.

You cannot use the INFO statement and the Info Menu Option with
temporary tables. ♦

Temporary table names must be different from existing table, view, or
synonym names in the current database. However, they need not be different
from other temporary table names used by other users.

DB
SQL Statements 1-215

CREATE TABLE
You can specify where temporary tables are created with the CREATE TEMP
TABLE statement, environment variables, and ONCONFIG parameters. If you
do not specify a storage location, the temporary tables are created in the same
dbspace as the database. The database server stores temporary tables in the
following order:

1. The IN dbspace clause

You can specify the dbspace where you want the temporary table
stored with the IN dbspace clause of the CREATE TABLE statement.

2. The dbspaces you specify when you fragment temporary tables

Use the FRAGMENT BY clause of the CREATE TABLE statement to
fragment regular and temporary tables.

3. The DBSPACETEMP environment variable

The DBSPACETEMP environment variable lists dbspaces where
temporary tables can be stored. This list can include standard
dbspaces, temporary dbspaces, or both. If the environment variable
is set, the database server assigns each temporary table to a dbspace
in round-robin sequence.

4. The ONCONFIG parameter DBSPACETEMP

You can specify a location for temporary tables with the ONCONFIG
parameter DBSPACETEMP.

Tip: Use the PUT clause to specify a separate storage area for smart large objects.

For additional information about the DBSPACETEMP environment variable,
see Chapter 3 in the Informix Guide to SQL: Reference. For additional infor-
mation about the ONCONFIG parameter DBSPACETEMP, see the
INFORMIX-Universal Server Administrator’s Guide.
1-216 Informix Guide to SQL: Syntax

CREATE TABLE
Differences Among Tables

Tables created with the CREATE TABLE statement are similar in most ways,
but have a few notable differences. The following table summarizes the major
differences among tables.

Privileges on Tables

The privileges on a table describe both who can access the information in the
table and who can create new tables. For information about the privileges
required for creating a table, refer to the GRANT statement on page 1-458. For
additional information about privileges, refer to Chapter 11, “Granting and
Limiting Access to Your Database,” in the Informix Guide to SQL: Tutorial.

Table Description Characteristics
Untyped table A permanent database table

See “Untyped Tables” on
page 1-214.

Allows column-level constraints as well as table-
level constraints.

Temporary Table A table that exists only until the
application either terminates or,
under certain conditions, closes
the database.

See “Temporary Tables” on
page 1-215.

Allows column-level constraints as well as table-
level constraints.

Can use the DBSPACETEMP environment variable
or the DBSPACETEMP configuration parameter to
specify storage location.

Typed table A permanent database table

See “Typed Tables” on page 1-212.

Allows only table-level constraints.

Does not allow SERIAL, and SERIAL8 data types.
Does not allow the WITH ROWIDS clause.

Table with
Inheritance

A permanent database table that is
a subtable in an inheritance
hierarchy.

See “Typed Tables with
Inheritance” on page 1-213.

Both subtable and supertable must be typed, and
their types must be named row types. The type of
the subtable must be a subtype directly under the
type of the supertable.

Allows only table-level constraints.

Does not allow SERIAL, and SERIAL8 data types.
Does not allow the WITH ROWIDS clause.
SQL Statements 1-217

CREATE TABLE
In an ANSI-compliant database, no default table-level privileges exist. You
must grant these privileges explicitly. ♦

When set to yes, the environment variable NODEFDAC prevents default
privileges on a new table in a database that is not ANSI compliant from being
granted to PUBLIC. For information about preventing privileges from being
granted to PUBLIC, see the NODEFDAC environment variable in the Informix
Guide to SQL: Reference.

System Catalog Information

When you create a table, the database server adds basic information about
the table to the systables system catalog table and column information to
syscolumns table. The sysblobs table contains information about the
location of dbspaces and simple large objects. The syschunks table in the
sysmaster database contains information about the location of smart large
objects.

The systabauth, syscolauth, sysfragauth, sysprocauth, sysusers, and sysxt-
dtypeauth tables contain information about the privileges required for
various CREATE TABLE options. The systables, sysxtdtypes, and sysinherits
system catalog tables provide information about table types.

For information about the system catalog tables, refer to the Informix Guide to
SQL: Reference. For information about sysmaster database, refer to the
INFORMIX-Universal Server Administrator’s Guide.

ANSI
1-218 Informix Guide to SQL: Syntax

CREATE TABLE
Column Definition Clause

Use the column definition portion of the CREATE TABLE statement to list the
name, data type, default values, and constraints of a single column of an
untyped table (permanent or temporary) as well as to specify constraints on
the column.

The Untyped Table clause on page 1-210 refers to the Column Definition
Clause.

Element Purpose Restrictions Syntax
column name The name of a column in the

permanent table
Name must be unique within a
table, but you can use the same
names in different tables in the
same database.

Identifier, p. 1-962

column
name

DEFAULT
Clause
p. 1-220

Data Type
p. 1-855

Column
Definition
Clause

Column-Level
Constraint
Definition
p. 1-227
SQL Statements 1-219

CREATE TABLE
DEFAULT Clause

The default value is inserted in the column when an explicit value is not
specified. If a default is not specified, and the column allows nulls, the default
is NULL.

The column definition clause on page 1-219 refers to DEFAULT clause.

Important: If you use a named row type as one of the columns in an untyped table,
the table does not adopt any constraints of the named row.

Element Purpose Restrictions Syntax
literal A literal term that defines alpha-

betic or numeric constant
characters to be used as the
default value for the column

Term must be appropriate type
for the column. See “Literal
Terms as Default Values” on
page 1-221.

Expression, p. 1-876

DEFAULT
Clause

literalDEFAULT

DATETIME
Field Qualifier

p. 1-874

USER
p. 1-890

SITENAME
p. 1-890

DBSERVERNAME
p. 1-890

TODAY
p. 1-891

NULL

CURRENT
p. 1-892

+

1-220 Informix Guide to SQL: Syntax

CREATE TABLE
Literal Terms as Default Values

You can designate literal terms as default values. A literal term is a string of
character or numeric constant characters that you define. To use a literal term
as a default value, you must adhere to the following rules.

Characters must be enclosed in quotation marks. Date literals must be of the
format specified with the DBDATE environment variable. If DBDATE is not
set, the format mm/dd/yyyy is assumed.

Opaque data types support only string literals for default values. The default
value must be specified at the column level and not at the table level.

For information on using a literal INTERVAL, refer to the Literal INTERVAL
segment on page 1-994. For more information on using a literal DATETIME,
refer to the Literal DATETIME segment on page 1-991.

NULL as the Default Value

If you do not indicate a default value for a column, the default is NULL unless
you place a not null constraint on the column. In this case, no default value
exists for the column.

If you designate NULL as the default value for a column, you cannot specify
a not null constraint as part of the column definition.

If the column is TEXT or BYTE data type, you can designate only NULL as the
default value.

Use a Literal With Columns of Data Type

INTEGER INTEGER, SMALLINT, DECIMAL, MONEY, FLOAT,
SMALLFLOAT, INT8

DECIMAL DECIMAL, MONEY, FLOAT, SMALLFLOAT

CHARACTER CHAR, VARCHAR, NCHAR, NVARCHAR,
CHARACTER VARYING, DATE

INTERVAL INTERVAL

DATETIME DATETIME

CHARACTER Opaque data types
SQL Statements 1-221

CREATE TABLE
Data Type Requirements for Certain Columns

The following table indicates the data type requirements for columns that
specify the CURRENT, DBSERVERNAME, SITENAME, TODAY, or USER
functions as the default value.

Limitations on Default Values

You cannot designate default values for serial columns.

You cannot designate a server-defined function (that is, CURRENT, USER,
TODAY, SITENAME or DBSERVERNAME) as the default value for opaque or
distinct data types.

You cannot designate NULL as a default value for a column that is part of a
primary key.

Examples of Default Values in Column Definitions

The following example creates a table called accounts. In accounts, the
acc_num, acc_type, and acc_descr columns have literal default values. The
acc_id column defaults to the user’s login name.

CREATE TABLE accounts (
acc_num INTEGER DEFAULT 0001,
acc_type CHAR(1) DEFAULT 'A',
acc_descr CHAR(20) DEFAULT 'New Account',
acc_id CHAR(8) DEFAULT USER)

Function Name Data Type Requirement

CURRENT DATETIME column with matching qualifier

DBSERVERNAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

SITENAME CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 18 characters long

TODAY DATE column

USER CHAR, VARCHAR, NCHAR, NVARCHAR, or CHARACTER
VARYING column at least 8 characters long
1-222 Informix Guide to SQL: Syntax

CREATE TABLE
The following example creates the newitems table. In newitems, the column
manucode does not have a default value nor does it allow nulls.

CREATE TABLE newitems (
newitem_num INTEGER,
manucode CHAR(3) NOT NULL,
promotype INTEGER,
descrip CHAR(20))

If you place a not null constraint on a column (and no default value is
specified), you must enter a value into this column when you insert a row or
update that column in a row. If you do not enter a value, the database server
returns an error.

Constraints
Putting a constraint on a column is similar to putting an index on a column
(using the CREATE INDEX statement). However, if you use constraints instead
of indexes, you can also implement data-integrity constraints and turn
effective checking off and on. For information on data-integrity constraints,
refer to the Informix Guide to SQL: Tutorial. For information on effective
checking, see the SET statement on page 1-644.

Important: In a database without logging, detached checking is the only kind of
constraint checking available. Detached checking means that constraint checking is
performed on a row-by-row basis.

Limits on Constraint Definitions

You can include 16 columns in a list of columns for a table-level constraint.
The total length of all columns in the constraint list cannot exceed 390 bytes.

You cannot place a constraint on a violations or diagnostics table. For further
information on violations and diagnostics tables, see the START VIOLATIONS
TABLE statement on page 1-744.

Restrictions for Unique Constraints

Use the UNIQUE keyword to require that a single column or set of columns
accepts only unique data. You cannot insert duplicate values in a column that
has a unique constraint.
SQL Statements 1-223

CREATE TABLE
When you define a unique constraint (UNIQUE or DISTINCT keywords), a
column cannot appear in the constraint list more than once. You cannot place
a unique constraint on a column on which you have already placed a
primary-key constraint. You cannot place a unique constraint on a BYTE or
TEXT column.

Opaque types support a unique constraint only where there is a secondary
access method that supports the uniqueness for that type. The built-in
(default) secondary access method is a generic B-tree, which supports the
equal() function. Therefore, if the definition of the opaque type includes the
equal() function, a column of that opaque type can have a unique constraint.

Restrictions for Primary-Key Constraints

You can define a primary-key constraint (PRIMARY KEY keywords) on only
one column or one set of columns in a table.You cannot define a column or
set of columns as a primary key if you have already defined another column
or set of columns as the primary key.

You cannot define a primary-key constraint on a BYTE or TEXT column.

Opaque types support a primary key constraint only where there is a
secondary access method that supports the uniqueness for that type. The
built-in secondary access method is a generic B-tree, which supports the
equal() function. Therefore, if the definition of the opaque type includes the
equal() function, a column of that opaque type can have a primary key
constraint

Restrictions for Referential Constraints

When you specify a referential constraint, the data type of the referencing
column (the column you specify after the FOREIGN KEY keywords) must
match the data type of the referenced column (the column you specify in the
REFERENCES clause). The only exception is that the referencing column must
be INTEGER if the referenced column is SERIAL, or INT8 if the column is
SERIAL8.

You must have the REFERENCES privilege to create a referential constraint.
1-224 Informix Guide to SQL: Syntax

CREATE TABLE
Adding or Dropping Constraints

After you have used the CREATE TABLE statement to place constraints on a
column or set of columns in an untyped or temporary table, you can use the
ALTER TABLE statement to modify the constraints. You cannot use ALTER
TABLE with a typed table.

Enforcing Primary-Key, Unique, and Referential Constraints

When a primary-key, unique, and referential constraint is placed on a
column, the database server performs the following functions:

■ Creates a unique, ascending index for a unique or primary-key
constraint

■ Creates a nonunique, ascending index for the columns specified in
the referential constraint

However, if a constraint already was created on the same column or set of
columns, another index is not built for the constraint. Instead, the existing
index is shared by the constraints. If the existing index is non-unique, it is
upgraded to a unique index if a unique or primary-key constraint is placed on
that column.

Because these constraints are enforced through indexes, you cannot create an
index (using the CREATE INDEX statement) for a column that is of the same
type as the constraint placed on that column. For example, if a unique
constraint exists on a column, you can create neither an ascending unique
index for that column nor a duplicate ascending index.

Constraint Names

Whenever you place a data restriction on a column or specify a table-level
constraint, the database server creates a constraint. If you wish, you can
specify a name for the constraint. The name of the constraint must be unique
within the database.

The database server adds a row to the sysconstraints system catalog table for
each constraint. If you do not specify a constraint name, the database server
generates a constraint name using the following template:

<constraint_type><tabid>_<constraintid>
SQL Statements 1-225

CREATE TABLE
In this template, constraint_type is the letter u for unique or primary-key
constraints, r for referential constraints, c for check constraints, and n for not
null constraints. For example, the constraint name for a unique constraint
might look like this: u111_14. If the name conflicts with an existing identifier,
the database server returns an error, and you must then supply a constraint
name.

When you create a constraint of any type, the owner.constraint_name (the
combination of the owner name and constraint name) must be unique within
the database. ♦

In addition, the database server adds a row to the sysindices system catalog
table for each new primary-key, unique, or referential constraint that does not
share an index with an existing constraint. The index name in sysindices is
created with the following format:

[space]<tabid>_<constraintid>

In this format, tabid and constraintid are values from the tabid and constrid
columns of the systables and sysconstraints system catalog tables, respec-
tively. For example, the index name might be something like this: " 121_13"
(quotes used to show the space).

Using Simple Large Object Types in Constraints

You cannot place a unique, primary-key, or referential constraint on BYTE or
TEXT columns. However, you can check for null or non-null values if you
place a check constraint on a BYTE or TEXT column.

Restrictions on Temporary Table Constraints

The only difference between columns in permanent tables and columns in
temporary tables is in the constraint options, as follows:

■ You cannot place referential constraints on columns in a temporary
table. Temporary columns cannot be referenced or referencing
columns.

■ You cannot assign a name to a constraint on a temporary-table
column.

■ You cannot set the constraint mode on a temporary-table column.
(See “Constraint Mode Definition” on page 1-238 for information on
this option.)

ANSI
1-226 Informix Guide to SQL: Syntax

CREATE TABLE
Column-Level Constraint Definition

In untyped and temporary tables, you can define constraints at either the
column level or table level. At the column level, you can indicate that the
column has a specific default value or that data entered into the column must
be checked to meet a specific data requirement. Constraints at the column
level cannot refer to multiple columns. In other words, the constraint created
at the column level can apply only to a single column.

The following example creates a simple table with two constraints, a
primary-key constraint named num on the acc_num column and a unique
constraint named code on the acc_code column:

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY CONSTRAINT num,
acc_code INTEGER UNIQUE CONSTRAINT code,
acc_descr CHAR(30))

UNIQUE

DISTINCT

PRIMARY
KEY

Column-Level
REFERENCES

Clause
p. 1-232

CHECK
Clause
p. 1-230

Constraint
Mode

Definition
p. 1-238

Column-Level
Constraint
Definition

Constraint
Mode

Definition
p. 1-238

NOT
NULL

UnT

+

+

+

UnT

UnT
SQL Statements 1-227

CREATE TABLE
The column definition clause on page 1-219 refers to the column-level
constraint definition.

Table-Level Constraint Definition

You can define table-level constraints for both typed and untyped tables.
When you define a constraint at the table level, the constraint can refer to a
single column or to multiple columns. Constraints that refer to a single
column are treated the same way whether they are defined at the column
level or the table level.

Element Purpose Restrictions Syntax
column name The name of the column or

columns on which the constraint
is placed

You must observe general
restrictions that apply regardless
of the type of constraint you are
defining. You must also observe
specific restrictions that depend
on the type of constraint you are
defining. See “Constraints” on
page 1-223.

Identifier, p. 1-962

UNIQUE

FOREIGN KEY

Table-Level
REFERENCES

Clause
p. 1-232

CHECK
Clause
p. 1-230

column
name

)(

Table-Level
Constraint Definition

PRIMARY
KEY

,

Constraint Mode
Definition
p. 1-238

DISTINCT

column
name

)(

,

+

+

Typ

UnT

Typ

UnT
1-228 Informix Guide to SQL: Syntax

CREATE TABLE
Using the UNIQUE and DISTINCT Keywords

Use the UNIQUE keyword to require that a single column or set of columns
accepts only unique data. You cannot insert duplicate values in a column that
has a unique constraint.

When you define a unique constraint (UNIQUE or DISTINCT keywords), a
column cannot appear in the constraint list more than once. You cannot place
a unique constraint on a column on which you have already placed a
primary-key constraint. You cannot place a unique constraint on a BYTE or
TEXT column.

Each column named in a unique constraint must be a column in the table and
cannot appear in the constraint list more than once.

The following example creates a simple table that has a unique constraint on
one of its columns:

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL UNIQUE CONSTRAINT acc_num)

The following example creates a simple table, but includes the constraint as
a table-level constraint instead of a column-level constraint:

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL,
 UNIQUE (acc_num) CONSTRAINT acc_num)

Using the PRIMARY KEY Keywords

A primary key is a column or set of columns that contains a non-null unique
value for each row in a table. A table can have only one primary key, and a
column that is defined as a primary key cannot also be defined as unique.

In the previous two examples, a unique constraint was placed on the column
acc_name. The following example creates this column as the primary key for
the accounts table:

CREATE TABLE accounts
(acc_name CHAR(12),
 acc_num SERIAL,
 PRIMARY KEY (acc_num))
SQL Statements 1-229

CREATE TABLE
Using the FOREIGN KEY Keywords

A foreign key joins and establishes dependencies between tables. A foreign
key references a unique or primary key in a table. For every entry in the
foreign-key columns, a matching entry must exist in the unique or primary-
key columns if all foreign-key columns contain non-null values. You cannot
make BYTE or TEXT columns foreign keys.

When you use FOREIGN KEY keywords, you must use the REFERENCES
clause, page 1-232, to complete the foreign key dependencies.

CHECK Clause

Check constraints allow you to designate conditions that must be met before
data can be assigned to a column during an INSERT or UPDATE statement. If
a row evaluates to false for any check constraint defined on a table during an
insert or update, the database server returns an error.

Check constraints are defined using search conditions. The search condition
cannot contain subqueries; aggregates; host variables; rowids; the CURRENT,
USER, SITENAME, DBSERVERNAME, or TODAY functions; or stored procedure
calls.

Warning: When you specify a date value in a search condition, make sure to specify
4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on how the database server
interprets the search condition. When you specify a 2-digit year, the DBCENTURY
environment variable can affect how the database server interprets the search condi-
tion, so the check constraint might not work as you intended. See the “Informix
Guide to SQL: Reference” for more information on the DBCENTURY environment
variable.

The Column-Level Constraint definition on page 1-227 and the Table-Level
Constraint definition on page 1-228 refer to the CHECK clause.

CHECK
Clause

()Condition
p. 1-831

CHECK
1-230 Informix Guide to SQL: Syntax

CREATE TABLE
Defining Check Constraints at the Column Level

If you define a check constraint at the column level, the only column that the
check constraint can check against is the column itself. In other words, the
check constraint cannot depend upon values in other columns of the table.
For example, as the following statement shows, the table my_accounts has
two columns with check constraints:

CREATE TABLE my_accounts (
chk_id SERIAL PRIMARY KEY,
acct1 MONEY CHECK (acct1 BETWEEN 0 AND 99999),
acct2 MONEY CHECK (acct2 BETWEEN 0 AND 99999))

Both acct1 and acct2 are columns of MONEY data type whose values must be
between 0 and 99999. If, however, you wanted to test that acct1 had a larger
balance than acct2, you would not be able to create the check constraint at the
column level. To create a constraint that checks values in more than one
column, you must define the constraint at the table level.

Defining Check Constraints at the Table Level

When you defined a check constraint at the table level, each column in the
search condition must be a column in that table. You cannot create a check
constraint for columns across tables. The next example builds the same table
and columns as the previous example. However, the check constraint now
spans two columns in the table.

CREATE TABLE my_accounts (
chk_id SERIAL PRIMARY KEY,
acct1 MONEY,
acct2 MONEY,
CHECK (acct1 > acct2))

In this example, the acct1 column must be greater than the acct2 column, or
the insert or update fails.
SQL Statements 1-231

CREATE TABLE
REFERENCES Clause

The REFERENCES clause appears in the Column-Level Constraint definition
on page 1-227.

Element Purpose Restrictions Syntax
column name A referenced column or columns

in the referenced table
You must observe restrictions on
the column type and the number
and length of columns. See
“Restrictions on the Column
Name Variable” on page 1-233.

Identifier, p. 1-962

table name The name of the referenced table The referenced table must reside
in the same database as the refer-
encing table.

Table Name,
p. 1-1044

Column-Level
REFERENCES Clause

()column
name

REFERENCES

+

table
name

Table-Level
REFERENCES Clause

REFERENCES

+

table
name

()

,

column
name

ON DELETE
CASCADE

ON DELETE
CASCADE
1-232 Informix Guide to SQL: Syntax

CREATE TABLE
Restrictions on the Column Name Variable

You must observe the following restrictions on the column name variable in
the REFERENCES clause:

■ The referenced column must be a unique or primary-key column.

That is, the referenced column must already include a unique or
primary-key constraint.

■ The data types of the referencing and referenced columns must be
identical. The only exception is that a referencing column must be
INTEGER if the referenced column is SERIAL or INT8 if the referenced
column is SERIAL8.

■ You cannot place a referential constraint on a BYTE or TEXT column.

■ A column-level REFERENCES clause can include only a single
column name.

■ The maximum number of columns in a table-level REFERENCES
clause is 16, and the total length of the columns cannot exceed
390 bytes.

Using the REFERENCES Clause

In a referential relationship, the referenced column is a column or set of
columns within a table that uniquely identifies each row in the table. The
referenced column or set of columns must have a unique or primary-key
constraint.

The referencing column is the column or set of columns that refers to the refer-
enced columns. Unlike a referenced column, the referencing column or set of
columns can contain null and duplicate values. However, every non-null
value in the referencing columns must match a value in the referenced
columns. When a referencing column meets this criteria, it is called a foreign
key.

The relationship between referenced and referencing columns is called a
parent-child relationship, where the parent is the referenced column (primary
key) and the child is the referencing column (foreign key). The referential
constraint establishes this parent-child relationship.
SQL Statements 1-233

CREATE TABLE
You can use the REFERENCES clause to establish a referential relationship
between two tables or within the same table. The referenced and referencing
tables must be in the same database.

For example, you can have an employee table where the emp_no column
uniquely identifies every employee through an employee number. The
mgr_no column in that table contains the employee number of the manager
who manages that employee. In this case, mgr_no is the foreign key (the
child) that references emp_no, the primary key (the parent).

Using Column-Level REFERENCES Constraints

You can reference only one column when you use the REFERENCES clause at
the column level (that is, when you use the REFERENCES clause with the
“Column-Level Constraint Definition” on page 1-227).

The following example creates two tables, accounts and sub_accounts. A
referential constraint is created between the foreign key, ref_num, in the
sub_accounts table and the primary key, acc_num, in the accounts table.

CREATE TABLE accounts (
acc_num INTEGER PRIMARY KEY,
acc_type INTEGER,
acc_descr CHAR(20))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER REFERENCES accounts (acc_num),
sub_descr CHAR(20))

The ref_num is not explicitly called a foreign key in the column- definition
syntax. At the column level, the foreign-key designation is applied
automatically.

If the referenced table is different from the referencing table, you do not need
to specify the referenced column; the default is the primary-key column or
columns. If the referenced table is the same as the referencing table, you must
specify the referenced column.

In the preceding example, you can simply reference the accounts table
without specifying a column. Because acc_num is the primary key of the
accounts table, it becomes the referenced column by default.
1-234 Informix Guide to SQL: Syntax

CREATE TABLE
Using Table-Level REFERENCES Constraints

You can specify multiple columns when you are using the REFERENCES
clause at the table level.

A referential constraint must have a one-to-one relationship between refer-
encing and referenced columns. In other words, if the primary key is a set of
columns, then the foreign key also must be a set of columns that corresponds
to the primary key. The following example creates two tables. The first table
has a multiple-column primary key, and the second table has a referential
constraint that references this key.

CREATE TABLE accounts (
acc_num INTEGER,
acc_type INTEGER,
acc_descr CHAR(20),
PRIMARY KEY (acc_num, acc_type))

CREATE TABLE sub_accounts (
sub_acc INTEGER PRIMARY KEY,
ref_num INTEGER NOT NULL,
ref_type INTEGER NOT NULL,
sub_descr CHAR(20),
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

(acc_num, acc_type))

In this example, the foreign key of the sub_accounts table, ref_num and
ref_type, references the primary key, acc_num and acc_type, in the accounts
table. If, during an insert, you tried to insert a row into the sub_accounts
table whose value for ref_num and ref_type did not exactly correspond to
the values for acc_num and acc_type in an existing row in the accounts table,
the database server would return an error. Likewise, if you attempt to update
sub_accounts with values for ref_num and ref_type that do not correspond
to an equivalent set of values in acc_num and acc_type (from the accounts
table), the database server returns an error.

If you are referencing a primary key in another table, you do not have to state
the primary-key columns in that table explicitly. Referenced tables that do not
specify the referenced columns default to the primary-key columns. You can
rewrite the references section of the previous example as follows:

...
FOREIGN KEY (ref_num, ref_type) REFERENCES accounts

...
SQL Statements 1-235

CREATE TABLE
Because acc_num and acc_type is the primary key of the accounts table, and
no other columns are specified, the foreign key, ref_num and ref_type,
references those columns.

Locking Implications

When you create a referential constraint, an exclusive lock is placed on the
referenced table. The lock is released when the CREATE TABLE statement is
done. If you are creating a table in a database with transactions, and you are
using transactions, the lock is released at the end of the transaction.

Using ON DELETE CASCADE

Cascading deletes allow you to specify whether you want rows deleted in the
child table when rows are deleted in the parent table. Unless you specify
cascading deletes, the default prevents you from deleting data in the parent
table if child tables are associated with the parent table. With the ON DELETE
CASCADE clause, when you delete a row in the parent table, any rows
associated with that row (foreign keys) in a child table are also deleted. The
principal advantage to the cascading deletes feature is that it allows you to
reduce the quantity of SQL statements you need to perform delete actions.

For example, the all_candy table contains the candy_num column as a
primary key. The hard_candy table refers to the candy_num column as a
foreign key. The following CREATE TABLE statement creates the hard_candy
table with the cascading-delete clause on the foreign key:

CREATE TABLE all_candy
(candy_num SERIAL PRIMARY KEY,
 candy_makerCHAR(25));

CREATE TABLE hard_candy
(candy_num INT,
 candy_flavor CHAR(20),
 FOREIGN KEY (candy_num) REFERENCES all_candy
 ON DELETE CASCADE)

With cascading deletes specified on the child table, in addition to deleting a
candy item from the all_candy table, the delete cascades to the hard_candy
table associated with the candy_num foreign key. If you indicate cascading
deletes, when you delete a row from a parent table, the database server
deletes the associated matching rows from the child table.
1-236 Informix Guide to SQL: Syntax

CREATE TABLE
You specify cascading deletes with the REFERENCES clause on a column-level
or table-level constraint. You need only the References privilege to indicate
cascading deletes. You do not need the Delete privilege to perform cascading
deletes; however, you do need the Delete privilege on tables referenced in the
DELETE statement.

Locking and Logging

During deletes, the database server places locks on all qualifying rows of the
referenced and referencing tables. You must turn logging on when you
perform the deletes. If logging is turned off in a database, even temporarily,
deletes do not cascade. This restriction applies because if logging is turned
off, you cannot roll back any actions. For example, if a parent row is deleted,
and the system crashes before the child rows are deleted, the database will
have dangling child records, which violates referential integrity. However,
when logging is turned back on, subsequent deletes cascade.

What Happens to Multiple Children Tables

If you have a parent table with two child constraints, one child with
cascading deletes specified and one child without cascading deletes, and you
attempt to delete a row from the parent table that applies to both child tables,
the delete statement fails, and no rows are deleted from either the parent or
child tables.

Restriction on Cascading Deletes

Cascading deletes can be used for most deletes. The only exception is
correlated subqueries. In correlated subqueries, the subquery (or inner
SELECT) is correlated when the value it produces depends on a value
produced by the outer SELECT statement that contains it. If you have imple-
mented cascading deletes, you cannot write deletes that use a child table in
the correlated subquery. You receive an error when you attempt to delete
from a query that contains such a correlated subquery.

See the Informix Guide to SQL: Tutorial for a detailed discussion about
cascading deletes.
SQL Statements 1-237

CREATE TABLE
Constraint Mode Definition

You can set the object mode of the constraint to the enabled, disabled, or
filtering mode. For a discussion of object modes, see “Terminology for Object
Modes” on page 1-645.

You can use the Constraint Mode Definition option for the following
purposes:

■ To assign a name to a column-level or table-level constraint

■ To set any type of column-level constraint or table-level constraint to
the disabled, enabled, or filtering object modes

The Column-Level Constraint Definition on page 1-227 and the Table-Level
Constraint Definition on page 1-228 refer to the Constraint Mode Definition.

CONSTRAINT

FILTERING

DISABLED

WITH
ERROR

Constraint Mode
Definition

Constraint
Name

p. 1-850
ENABLED

WITHOUT
ERROR
1-238 Informix Guide to SQL: Syntax

CREATE TABLE
Description of Constraint Modes

You can set constraints in the following modes: disabled, enabled, and
filtering. The following list explains these modes and options.

If you choose filtering mode, you can specify the WITHOUT ERROR or WITH
ERROR options. The following list explains these options.

Constraint
Mode Effect

disabled A constraint created in disabled mode is not enforced during insert,
delete, and update operations.

enabled A constraint created in enabled mode is enforced during insert,
delete, and update operations. If a target row causes a violation of
the constraint, the statement fails.

filtering A constraint created in filtering mode is enforced during insert,
delete, and update operations. If a target row causes a violation of
the constraint, the statement continues processing, but the bad row
is written to the violations table associated with the target table.
Diagnostic information about the constraint violation is written to
the diagnostics table associated with the target table.

Error Option Effect

WITHOUT
ERROR

When a filtering-mode constraint is violated during an insert,
delete, or update operation, no integrity-violation error is returned
to the user.

WITH ERROR When a filtering-mode constraint is violated during an insert,
delete, or update operation, an integrity-violation error is returned
to the user.
SQL Statements 1-239

CREATE TABLE
Using Constraint Mode Definitions

You must observe the following rules concerning the use of constraint mode
definitions:

■ If you do not specify the object mode of a column-level constraint or
table-level constraint explicitly, the default mode is enabled.

■ If you do not specify the WITH ERROR or WITHOUT ERROR option for
a filtering-mode constraint, the default error option is WITHOUT
ERROR.

■ Constraints defined on temporary tables are always in the enabled
mode. You cannot create a constraint on a temporary table in the
disabled or filtering mode, nor can you use the SET statement to
switch the object mode on a temporary table to the disabled or
filtering mode.

■ You cannot assign a name to a not null constraint on a temporary
table.

■ You cannot create a constraint on a table that is serving as a violations
or diagnostics table for another table.

Options
The CREATE TABLE options let you specify logging and rowid options,
optional storage locations, and user-defined access methods.

WITH
Clause
p. 1-241

Options

Access
Method
p. 1-252

Storage Option
p. 1-242
1-240 Informix Guide to SQL: Syntax

CREATE TABLE
WITH Clause

Using WITH ROWIDS

Nonfragmented tables contain a hidden column called the rowid column.
However, fragmented tables do not contain this column. If a table is
fragmented, you can use the WITH ROWIDS clause to add the rowid column
to the table. The database server assigns each row in the rowid column a
unique number that remains stable for the life of the row. The database server
uses an index to find the physical location of the row. After you add the
rowid column, each row contains an additional 4 bytes to store the rowid.

You cannot use the WITH ROWIDS clause with typed tables.

Important: Use the WITH ROWIDS clause only on fragmented tables. In non-
fragmented tables, the rowid column remains unchanged. Informix recommends,
however, that you utilize primary keys as an access method rather than exploiting the
rowid column.

Using WITH NO LOG

You must use the WITH NO LOG keywords on temporary tables created in
temporary dbspaces. Using the WITH NO LOG keywords prevents logging of
temporary tables in databases started with logging.

If you use the WITH NO LOG keywords in a CREATE TABLE statement, and the
database does not use logging, the WITH NO LOG option is ignored.

WITH Clause

ROWIDS

NO LOG

WITH

,

Tmp
SQL Statements 1-241

CREATE TABLE
Once you turn off logging on a temporary table, you cannot turn it back on;
a temporary table is, therefore, always logged or never logged.

The following example shows how to prevent logging temporary tables in a
database that uses logging:

CREATE TEMP TABLE tab2 (fname CHAR(15), lname CHAR(15))
WITH NO LOG

Storage Option

The storage option allows you to specify where the table is stored and the
locking granularity for the table. If you use the Access Method Option on
page 1-252 to specify an access method, the spaces named must be supported
by that access method.

Element Purpose Restrictions Syntax
dbspace The name of the dbspace in

which to store the table. The
default for database tables is the
dbspace in which the current
database resides.

Specified dbspace must already
exist.

Identifier, p. 1-962

extspace The name of an external space in
which to store a virtual table

Specified extspace must already
exist.

IN dbspace

FRAGMENT
BY Clause
p. 1-244

+

EXTENT
Option

p. 1-250
LOCK
MODE
Clause
p. 1-251

Storage Option

PUT Clause
p. 1-247

IN extspace
1-242 Informix Guide to SQL: Syntax

CREATE TABLE
You can specify a dbspace for the table that is different from the storage
location specified for the database, or fragment the table into several
dbspaces. You can also specify an sbspace for each smart large object (CLOB
or BLOB) using the PUT clause.

Tip: If your table has columns that contain simple large objects (TEXT or BYTE), you
can specify a separate blobspace for each object. For information on storing simple
large objects, refer to “Large-Object Data Types” on page 864.

The following statement creates the foo table. The data for the table is
fragmented into the dbs1 and dbs2 dbspaces. However, the PUT clause
assigns the smart large object data in the gamma and delta columns to the
sb1 and sb2 sbspaces, respectively. The TEXT data in the eps column is
assigned to the blb1 blobspace.

create table foo
(alpha INTEGER,
beta VARCHAR(150),
gamma CLOB,
delta BLOB,
eps TEXT IN blb1)

FRAGMENT BY EXPRESSION
alpha <= 5 IN dbs1,
alpha > 5 IN dbs2
PUT gamma IN (sb1), delta IN (sb2)

The Storage Option appears in the Options diagram on page 1-240.

IN dbspace Clause

The IN dbspace clause allows you to isolate a table. The dbspace that you
specify must already exist. If you do not specify the IN dbspace clause, the
default is the dbspace where the current database resides. Temporary tables
do not have a default dbspace. For further information about storing
temporary tables, see the “Temporary Tables” on page 1-215.

For example, if the stores7 database is in the stockdata dbspace, but you
want the customer data placed in a separate dbspace called custdata, use the
following statements:

CREATE DATABASE stores7 IN stockdata

CREATE TABLE customer
(
customer_num SERIAL(101),
fname CHAR(15),
SQL Statements 1-243

CREATE TABLE
lname CHAR(15),
company CHAR(20),
address1 CHAR(20),
address2 CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(5),
phone CHAR(18)
)

 IN custdata EXTENT SIZE 16

.

.

.

For more information about storing your tables in separate dbspaces, see the
INFORMIX-Universal Server Administrator’s Guide.

FRAGMENT BY Clause

The FRAGMENT BY clause allows you to create fragmented tables.
Fragmentation means that groups of rows within a table are stored together
in the same dbspace.

Element Purpose Restrictions Syntax
dbspace The dbspace that contains a table

fragment
You must specify at least two
dbspaces. You can specify a
maximum of 2,048 dbspaces.
The dbspaces must exist when
you execute the statement.

Identifier, p. 1-962

 (1 of 2)

,

dbspaceROUND ROBIN INFRAGMENT BY

EXPRESSION

,

frag-expression
IN dbspace

FRAGMENT BY
Clause

,
REMAINDER IN

remainder
dbspace

dbspace ,

frag-expression
IN dbspace

,

1-244 Informix Guide to SQL: Syntax

CREATE TABLE
Use the FRAGMENT BY clause to define the distribution scheme, either round-
robin or expression-based.

In a round-robin distribution scheme, specify at least two dbspaces where
you want the fragments to be placed. As records are inserted into the table,
they are placed in the first available dbspace. The database server balances
the load between the specified dbspaces as you insert records and distributes
the rows in such a way that the fragments always maintain approximately
the same number of rows. In this distribution scheme, the database server
must scan all fragments when it searches for a row.

frag-expression An expression that defines a
fragment where a row is to be
stored using a range, hash, or
arbitrary rule

If you specify a value for
remainder dbspace, you must
specify at least one fragment
expression. If you do not specify
a value for remainder dbspace, you
must specify at least two
fragment expressions. You can
specify a maximum of 2,048
fragment expressions. Each
fragment expression can contain
only columns from the current
table and only data values from
a single row. No subqueries,
stored procedures, current
date/time functions, or
aggregates are allowed in a
fragment expression.

Expression, p. 1-876,
and Condition,
p. 1-831

remainder
dbspace

The dbspace that contains table
rows that do not meet the condi-
tions defined in any fragment
expression

If you specify two or more
fragment expressions, remainder
dbspace is optional. If you specify
only one fragment expression,
remainder dbspace is required.
The dbspace specified in
remainder dbspace must exist at
the time you execute the
statement.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-245

CREATE TABLE
In an expression-based distribution scheme, each fragment expression in a rule
specifies a dbspace. Each fragment expression within the rule isolates data
and aids the database server in searching for rows. Specify one of the
following rules:

■ Range rule

A range rule specifies fragment expressions that use a range to
specify which rows are placed in a fragment, as the following
example shows:

...
FRAGMENT BY EXPRESSION
c1 < 100 IN dbsp1,
c1 >= 100 and c1 < 200 IN dbsp2,
c1 >= 200 IN dbsp3

■ Hash rule

A hash rule specifies fragment expressions that are created when you
use a hash algorithm, which is often implemented with the MOD
function, as the following example shows:

...
FRAGMENT BY EXPRESSION
MOD(id_num, 3) = 0 IN dbsp1,
MOD(id_num, 3) = 1 IN dbsp2,
MOD(id_num, 3) = 2 IN dbsp3

■ Arbitrary rule

An arbitrary rule specifies fragment expressions based on a
predefined SQL expression that typically includes the use of OR
clauses to group data, as the following example shows:

...
FRAGMENT BY EXPRESSION
zip_num = 95228 OR zip_num = 95443 IN dbsp2,
zip_num = 91120 OR zip_num = 92310 IN dbsp4,
REMAINDER IN dbsp5

Warning: When you specify a date value in a fragment expression, make sure to
specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year, the
DBCENTURY environment variable has no effect on the distribution scheme. When
you specify a 2-digit year, the DBCENTURY environment variable can affect the
distribution scheme and can produce unpredictable results. See the “Informix Guide
to SQL: Reference” for more information on the DBCENTURY environment variable.
1-246 Informix Guide to SQL: Syntax

CREATE TABLE
PUT Clause

The PUT clause specifies storage information for smart large objects (CLOB
and BLOB columns).

Element Purpose Restrictions Syntax
column name The name of the smart-large-

object column to store in the
specified sbspace

Column must be BLOB or CLOB
data type.

Identifier, p. 1-962

kbytes The number of kilobytes to
allocate for the extent size

Number must be an integer
value.

sbspace An area of storage used for
smart large objects

The sbspace must exist.

INcolumn
namePUT

EXTENT SIZE kbytes

LOG

KEEP ACCESS TIME

sbspace

PUT Clause

(

,

)

+ ()

,

MODERATE INTEG

NO KEEP ACCESS TIME

HIGH INTEG

NO LOG
SQL Statements 1-247

CREATE TABLE
A smart large object is contained in a single sbspace. The SB_SPACE_NAME
configuration parameter specifies the system default in which smart large
objects are created unless you specify another area.

Important: The PUT clause does not affect the storage of simple large-object data
types (BYTE and TEXT).

The PUT clause appears in the Storage Option on page 1-242.

EXTENT SIZE Option of the PUT Clause

The EXTENT SIZE option of the PUT clause specifies the number of kilobytes
in an smart large-object extent. The EXTENT SIZE should be a multiple of the
sbspace page size. If it is not, Universal Server rounds up the number to the
nearest multiple of the sbspace page size.

If the extent size is not specified, or if no extent of the specified size exists,
Universal Server uses the larger of:

■ the size of the write request.

■ the smallest extent size for the sbspace.

After eight extension operations for a single smart large object, Universal
Server automatically doubles the extent size for that smart large object, to
avoid having a large number of extents.

LOG and NO LOG Options of the PUT Clause

Use the LOG option of the PUT clause when you want the database server to
follow the logging procedure used with the current database log for the
corresponding smart large object.

Warning: Use of the LOG option can generate large amounts of log traffic and
increase the risk that the logical log fills up.

Instead of full logging, you might turn off logging when you load the smart
large object initially, and then turn logging back on once the smart large
object has been loaded.
1-248 Informix Guide to SQL: Syntax

CREATE TABLE
Use the NO LOG option to turn off logging. If you use NO LOG, you can
restore the smart-large-object metadata later to a state in which no structural
inconsistencies exist. In most cases, no transaction inconsistencies will exist
either, but that result is not guaranteed.

The NO LOG option is the default logging behavior for smart large objects.

HIGH INTEG and MODERATE INTEG Option

The HIGH INTEG option of the PUT clause provides user data pages that
contain a page header and a page trailer. The database server uses the header
and trailer to detect incomplete writes and data corruption. The HIGH INTEG
option is the default.

Important: After you have specified the HIGH INTEG option, you cannot use the
ALTER TABLE statement to change to MODERATE INTEG.

The MODERATE INTEG option provides a lower level of data integrity but is
faster. It does not produce page headers or trailers on user data pages, so it
preserves the user data alignment on pages. The MODERATE INTEG option is
useful for moving large volumes of data through the server when very high
data integrity is not required. Audio and video applications may benefit from
a MODERATE INTEG option.

KEEP ACCESS TIME and NO KEEP ACCESS TIME Options

The KEEP ACCESS TIME option of the PUT clause tells the database server to
record, in the smart large-object meta data, the system time at which the
corresponding smart large object was last read or written. This capability is
provided for compatibility with the Illustra interface.

When you specify the NO KEEP ACCESS TIME option, the database server
does not track the system time at which the corresponding smart large object
was last read or written. This option provides better performance than the
KEEP ACCESS TIME option.

The NO KEEP ACCESS TIME option is the default.
SQL Statements 1-249

CREATE TABLE
EXTENT Option

See the INFORMIX-Universal Server Performance Guide for a discussion about
calculating extent sizes.

The following example specifies a first extent of 20 kilobytes and allows the
rest of the extents to use the default size:

CREATE TABLE emp_info
(
f_name CHAR(20),
l_name CHAR(20),
position CHAR(20),
start_date DATETIME YEAR TO DAY,
comments VARCHAR(255)
)

EXTENT SIZE 20

Element Purpose Restrictions Syntax
first kbytes The length in kilobytes of the

first extent for the table. The
default length is eight times the
disk page size on your system.
For example, if you have a
2-kilobyte page system, the
default length is 16 kilobytes.

The minimum length is four
times the disk page size on your
system. For example, if you have
a 2-kilobyte page system, the
minimum length is eight
kilobytes. The maximum length
is equal to the chunk size.

Expression, p. 1-876

next kbytes The length in kilobytes for the
subsequent extents. The default
length is eight times the disk
page size on your system. For
example, if you have a 2-kilobyte
page system, the default length
is 16 kilobytes.

The minimum length is four
times the disk page size on your
system. For example, if you have
a 2-kilobyte page system, the
minimum length is
8 kilobytes.The maximum
length is equal to the chunk size.

Expression, p. 1-876

EXTENT Option

NEXT SIZE
next

kbytesEXTENT SIZE
first

kbytes
1-250 Informix Guide to SQL: Syntax

CREATE TABLE
Revising Extent Sizes for Unloaded Tables

You can revise the CREATE TABLE statements in generated schema files to
revise the extent and next-extent sizes of unloaded tables. See the
INFORMIX-Universal Server Administrator’s Guide for information about
revising extent sizes.

The EXTENT option appears in the Storage Option on page 1-242.

LOCK MODE Clause

The default locking granularity is a page.

Row-level locking provides the highest level of concurrency. However, if you
are using many rows at one time, the lock-management overhead can
become significant. Also, you might exceed the maximum number of locks
available, depending on the configuration of your database-server system.

Page locking allows you to obtain and release one lock on a whole page of
rows. Page locking is especially useful when you know that the rows are
grouped into pages in the same order that you are using to process all the
rows. For example, if you are processing the contents of a table in the same
order as its cluster index, page locking is especially appropriate.

You can change the lock mode of an existing table with the ALTER TABLE
statement.

The Lock Mode clause appears in the Storage Option on page 1-242.

LOCK MODE

LOCK MODE

ROW

PAGE
SQL Statements 1-251

CREATE TABLE
Access Method Option

A primary access method is a set of routines that perform all of the operations
needed to make a table available to a server, such as create, drop, insert,
delete, update, and scan. Universal Server provides a built-in primary access
method.

An virtual table is managed outside of the database server but can be
accessed by Universal Server users with SQL statements. Access to an virtual
table requires a user-defined primary access method.

DataBlade Modules can provide other primary access methods to access
virtual tables. When you access a virtual table, the database server calls the
routines associated with that access method rather than the built-in table
routines. For more information on these other primary access methods, refer
to the DataBlade user guides.

Access Method
Option

=

USING

' configuration
value '

,
configuration

keyword

,

)(

Access
Method
Name
Clause
p. 1-253
1-252 Informix Guide to SQL: Syntax

CREATE TABLE
The Access Method Option appears in the Options clause on page 1-240.

Access Method Name Clause

For example, if there was an access method called textfile, you could specify
that access method in the following Access Method clause:

create table mybook
(...)
using textfile (delimiter=’:’)

The Access Method Name clause appears in the Access Method Option on
page 1-252.

Element Purpose Restrictions Syntax
access method
name

Name of the access method to be
used with this table

Access method must already
exist.

See “Access Method
Name Clause”

configuration
keyword

One of the configuration
keywords associated with the
specified access method name.

Keyword must already exist. Keywords can be up
to 18 bytes in length.

configuration
value

Value of the specified configu-
ration keyword. Configuration
values are not required with all
keywords.

You can retrieve a list of configu-
ration values for an access
method from a table descriptor
(mi_am_table_desc) using the
MI_TAB_AMPARAM macro.

Value must be defined by the
access method.

Value must be in
quotation marks.

Values can be up to
236 bytes in length.

Access Method
Name Clause

identifier

owner .
SQL Statements 1-253

CREATE TABLE
References
See the ALTER TABLE, CREATE INDEX, CREATE DATABASE, DROP TABLE, and
SET statements in this manual. Also see the Condition, Data Type, Identifier,
and Table Name segments.

In the Informix Guide to SQL: Tutorial, see the discussion of data-integrity
constraints and the discussion of the ON DELETE CASCADE clause. Also see
the discussion of creating a database and tables in the same book.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
extent sizing.
1-254 Informix Guide to SQL: Syntax

CREATE TRIGGER
CREATE TRIGGER
Use the CREATE TRIGGER statement to create a trigger on a table in the
database. A trigger is a database object that automatically sets off a specified
set of SQL statements when a specified event occurs.

Syntax

Trigger
Name

p. 1-258
CREATE TRIGGER

DELETE

UPDATE
Clause
p. 1-259

ON

ON

Insert
REFERENCING

 Clause
p. 1-264

Action
Clause
p. 1-261

Table
Name

p. 1-1044

Delete
REFERENCING

 Clause
p. 1-265

Action
Clause
p. 1-261

Table
Name

p. 1-1044

Update
REFERENCING

Clause
p. 1-266

Action
Clause
p. 1-261

Table
Name

p. 1-1044
INSERT ON

Action
Clause

Referencing
p. 1-267

Action
Clause

Referencing
p. 1-267

Action
Clause

Referencing
p. 1-267

Trigger Object
Modes

p. 1-283

+

E/C

DB

SQLE
SQL Statements 1-255

CREATE TRIGGER
Usage
You must be either the owner of the table or have DBA status to create a
trigger on a table.

You can use roles with triggers. Role-related statements (CREATE ROLE,
DROP ROLE, and SET ROLE) and SET SESSION AUTHORIZATION statements
can be triggered inside a trigger. Privileges that a user has acquired through
enabling a role or through a SET SESSION AUTHORIZATION statement are not
relinquished when a trigger is executed.

You can define a trigger with a stand-alone CREATE TRIGGER statement.

You can define a trigger as part of a schema by placing the CREATE TRIGGER
statement inside a CREATE SCHEMA statement. ♦

You can create a trigger only on a table in the current database. You cannot
create a trigger on a temporary table, a view, or a system catalog table.

You cannot create a trigger inside a stored procedure if the procedure is called
inside a data manipulation statement. For example, you cannot create a
trigger inside the stored procedure sp_items in the following INSERT
statement:

INSERT INTO items EXECUTE PROCEDURE sp_items

See “Data Manipulation Statements” on page 1-15 for a list of data
manipulation statements.

If you are embedding the CREATE TRIGGER statement in an ESQL/C
program, you cannot use a host variable in the trigger specification. ♦

You cannot use a stored procedure variable in a CREATE TRIGGER statement.

Trigger Event

The trigger event specifies the type of statement that activates a trigger. The
trigger event can be an INSERT, DELETE, or UPDATE statement. Each trigger
can have only one trigger event. The occurrence of the trigger event is the
triggering statement.

DB

ESQL
1-256 Informix Guide to SQL: Syntax

CREATE TRIGGER
For each table, you can define only one trigger that is activated by an INSERT
statement and only one trigger that is activated by a DELETE statement. For
each table, you can define multiple triggers that are activated by UPDATE
statements. See “UPDATE Clause” on page 1-259 for more information about
multiple triggers on the same table.

You cannot define a DELETE trigger event on a table with a referential
constraint that specifies ON DELETE CASCADE.

You are responsible for guaranteeing that the triggering statement returns the
same result with and without the triggered actions. See “Action Clause” on
page 1-261 and “Triggered Action List” on page 1-268 for more information
on the behavior of triggered actions.

If Universal Server is the database server, a triggering statement from an
external database server can activate the trigger. As shown in the following
example, an insert trigger on newtab, managed by dbserver1, is activated by
an INSERT statement from dbserver2. The trigger executes as if the insert
originated on dbserver1.

-- Trigger on stores7@dbserver1:newtab

CREATE TRIGGER ins_tr INSERT ON newtab
REFERENCING new AS post_ins
FOR EACH ROW(EXECUTE PROCEDURE nt_pct (post_ins.mc));

-- Triggering statement from dbserver2

INSERT INTO stores7@dbserver1:newtab
SELECT item_num, order_num, quantity, stock_num,

manu_code,
total_price FROM items;

Trigger Events with Cursors

If the triggering statement uses a cursor, the complete trigger is activated
each time the statement executes. For example, if you declare a cursor for a
triggering INSERT statement, each PUT statement executes the complete
trigger. Similarly, if a triggering UPDATE or DELETE statement contains the
clause WHERE CURRENT OF, each update or delete activates the complete
trigger. This behavior is different from what occurs when a triggering
statement does not use a cursor and updates multiple rows. In this case, the
set of triggered actions executes only once. For more information on the
execution of triggered actions, see “Action Clause” on page 1-261.
SQL Statements 1-257

CREATE TRIGGER
Privileges on the Trigger Event

You must have the appropriate Insert, Delete, or Update privilege on the
triggering table to execute the INSERT, DELETE, or UPDATE statement that is
the trigger event. The triggering statement might still fail, however, if you do
not have the privileges necessary to execute one of the SQL statements in the
action clause. When the triggered actions are executed, the database server
checks your privileges for each SQL statement in the trigger definition as if
the statement were being executed independently of the trigger. For infor-
mation on the privileges you need to execute a trigger, see “Privileges to
Execute Triggered Actions” on page 1-277.

Impact of Triggers

The INSERT, DELETE, and UPDATE statements that initiate triggers might
appear to execute slowly because they activate additional SQL statements,
and the user might not know that other actions are occurring.

The execution time for a triggering data manipulation statement depends on
the complexity of the triggered action and whether it initiates other triggers.
Obviously, the elapsed time for the triggering data manipulation statement
increases as the number of cascading triggers increases. For more infor-
mation on triggers that initiate other triggers, see “Cascading Triggers” on
page 1-278.

Trigger Name

Element Purpose Restrictions Syntax
owner The user name of the owner of

the trigger
The specified name must be a
valid user name.

Identifier, p. 1-962

Trigger
Name

Identifier
p. 1-962

owner.
1-258 Informix Guide to SQL: Syntax

CREATE TRIGGER
When you create a trigger, the name of the trigger must be unique within a
database.

When you create a trigger, the owner.name combination (the combination of
the owner name and trigger name) must be unique within a database. ♦

For information about the relationship between the trigger owner’s privi-
leges and the privileges of other users, see “Privileges to Execute Triggered
Actions” on page 1-277.

UPDATE Clause

If the trigger event is an UPDATE statement, the trigger executes when any
column in the triggering column list is updated.

If the triggering UPDATE statement updates more than one of the triggering
columns in a trigger, the trigger executes only once.

ANSI

Element Purpose Restrictions Syntax
column name The name of a column or

columns that activate the trigger.
The default is all the columns in
the table on which you create the
trigger.

The specified columns must
belong to the table on which you
create the trigger. If you define
more than one update trigger on
a table, the column lists of the
triggering statements must be
mutually exclusive.

Identifier, p. 1-962

,

column name

UPDATE

UPDATE
Clause

OF
SQL Statements 1-259

CREATE TRIGGER
Defining Multiple Update Triggers

If you define more than one update trigger event on a table, the column lists
of the triggers must be mutually exclusive. The following example shows
that trig3 is illegal on the items table because its column list includes
stock_num, which is a triggering column in trig1. Multiple update triggers
on a table cannot include the same columns.

CREATE TRIGGER trig1 UPDATE OF item_num, stock_num ON items
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW(EXECUTE PROCEDURE proc1());

CREATE TRIGGER trig2 UPDATE OF manu_code ON items
BEFORE(EXECUTE PROCEDURE proc2());

-- Illegal trigger: stock_num occurs in trig1
CREATE TRIGGER trig3 UPDATE OF order_num, stock_num ON items
BEFORE(EXECUTE PROCEDURE proc3());

When an UPDATE Statement Activates Multiple Triggers

When an UPDATE statement updates multiple columns that have different
triggers, the column numbers of the triggering columns determine the order
of trigger execution. Execution begins with the smallest triggering column
number and proceeds in order to the largest triggering column number. The
following example shows that table taba has four columns (a, b, c, d):

CREATE TABLE taba (a int, b int, c int, d int)

Define trig1 as an update on columns a and c, and define trig2 as an update
on columns b and d, as the following example shows:

CREATE TRIGGER trig1 UPDATE OF a, c ON taba
AFTER (UPDATE tabb SET y = y + 1);

CREATE TRIGGER trig2 UPDATE OF b, d ON taba
AFTER (UPDATE tabb SET z = z + 1);

The triggering statement is shown in the following example:

UPDATE taba SET (b, c) = (b + 1, c + 1)

Then trig1 for columns a and c executes first, and trig2 for columns b and d
executes next. In this case, the smallest column number in the two triggers is
column 1 (a), and the next is column 2 (b).
1-260 Informix Guide to SQL: Syntax

CREATE TRIGGER
Action Clause

The action clause defines the characteristics of triggered actions and specifies
the time when these actions occur. You must define at least one triggered
action, using the keywords BEFORE, FOR EACH ROW, or AFTER to indicate
when the action occurs relative to the triggering statement. You can specify
triggered actions for all three options on a single trigger, but you must order
them in the following sequence: BEFORE, FOR EACH ROW, and AFTER. You
cannot follow a FOR EACH ROW triggered action list with a BEFORE triggered
action list. If the first triggered action list is FOR EACH ROW, an AFTER action
list is the only option that can follow it. See “Action Clause Referencing” on
page 1-267 for more information on the action clause when a REFERENCING
clause is present.

BEFORE Actions

The BEFORE triggered action or actions execute once before the triggering
statement executes. If the triggering statement does not process any rows, the
BEFORE triggered actions still execute because the database server does not
yet know whether any row is affected.

FOR EACH
ROW

BEFORE
Triggered
Action List
p. 1-268

Action
Clause

Triggered
Action List
p. 1-268

AFTER
Triggered
Action List
p. 1-268

FOR EACH
ROW

Triggered
Action List
p. 1-268

AFTER
Triggered
Action List
p. 1-268

AFTER
Triggered
Action List
p. 1-268
SQL Statements 1-261

CREATE TRIGGER
FOR EACH ROW Actions

The FOR EACH ROW triggered action or actions execute once for each row
that the triggering statement affects. The triggered SQL statement executes
after the triggering statement processes each row.

If the triggering statement does not insert, delete, or update any rows, the
FOR EACH ROW triggered actions do not execute.

AFTER Actions

An AFTER triggered action or actions execute once after the action of the
triggering statement is complete. If the triggering statement does not process
any rows, the AFTER triggered actions still execute.

Actions of Multiple Triggers

When an UPDATE statement activates multiple triggers, the triggered actions
merge. Assume that taba has columns a, b, c, and d, as the following example
shows:

CREATE TABLE taba (a int, b int, c int, d int)

Next, assume that you define trig1 on columns a and c, and trig2 on columns
b and d. If both triggers have triggered actions that are executed BEFORE, FOR
EACH ROW, and AFTER, the triggered actions are executed in the following
sequence:

1. BEFORE action list for trigger (a, c)

2. BEFORE action list for trigger (b, d)

3. FOR EACH ROW action list for trigger (a, c)

4. FOR EACH ROW action list for trigger (b, d)

5. AFTER action list for trigger (a, c)

6. AFTER action list for trigger (b, d)

The database server treats the triggers as a single trigger, and the triggered
action is the merged-action list. All the rules governing a triggered action
apply to the merged list as one list, and no distinction is made between the
two original triggers.
1-262 Informix Guide to SQL: Syntax

CREATE TRIGGER
Guaranteeing Row-Order Independence

In a FOR EACH ROW triggered-action list, the result might depend on the
order of the rows being processed. You can ensure that the result is
independent of row order by following these suggestions:

■ Avoid selecting the triggering table in the FOR EACH ROW section. If
the triggering statement affects multiple rows in the triggering table,
the result of the SELECT statement in the FOR EACH ROW section
varies as each row is processed. This condition also applies to any
cascading triggers. See “Cascading Triggers” on page 1-278.

■ In the FOR EACH ROW section, avoid updating a table with values
derived from the current row of the triggering table. If the triggered
actions modify any row in the table more than once, the final result
for that row depends on the order in which rows from the triggering
table are processed.

■ Avoid modifying a table in the FOR EACH ROW section that is
selected by another triggered statement in the same FOR EACH ROW
section, including any cascading triggered actions. If you modify a
table in this section and refer to it later, the changes to the table might
not be complete when you refer to it. Consequently, the result might
differ, depending on the order in which rows are processed.

The database server does not enforce rules to prevent these situations
because doing so would restrict the set of tables from which a triggered
action can select. Furthermore, the result of most triggered actions is
independent of row order. Consequently, you are responsible for ensuring
that the results of the triggered actions are independent of row order.
SQL Statements 1-263

CREATE TRIGGER
INSERT REFERENCING Clause

Once you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing” on page 1-267.

To use the correlation name, precede the column name with the correlation
name, followed by a period. For example, if the new correlation name is post,
refer to the new value for the column fname as post.fname.

If the trigger event is an INSERT statement, using the old correlation name as
a qualifier causes an error because no value exists before the row is inserted.
For the rules that govern the use of correlation names, see “Using Correlation
Names in Triggered Actions” on page 1-271.

You can use the INSERT REFERENCING clause only if you define a FOR EACH
ROW triggered action.

Element Purpose Restrictions Syntax
correlation
name

A name that you assign to a new
column value so that you can
refer to it within the triggered
action. The new column value in
the triggering table is the value
of the column after execution of
the triggering statement.

The correlation name must be
unique within the CREATE
TRIGGER statement.

Identifier, p. 1-962

REFERENCING NEW correlation name

INSERT
REFERENCING

Clause

AS
1-264 Informix Guide to SQL: Syntax

CREATE TRIGGER
The following example illustrates the use of the INSERT REFERENCING
clause. This example inserts a row into backup_table1 for every row that is
inserted into table1. The values that are inserted into col1 and col2 of
backup_table1 are an exact copy of the values that were just inserted into
table1.

CREATE TABLE table1 (col1 INT, col2 INT);
CREATE TABLE backup_table1 (col1 INT, col2 INT);
CREATE TRIGGER before_trig

INSERT ON table1
REFERENCING NEW as new
FOR EACH ROW
(
INSERT INTO backup_table1 (col1, col2)
VALUES (new.col1, new.col2)
);

As the preceding example shows, the advantage of the INSERT
REFERENCING clause is that it allows you to refer to the data values that the
trigger event in your triggered action produces.

DELETE REFERENCING Clause

Once you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing” on page 1-267.

Element Purpose Restrictions Syntax
correlation
name

A name that you assign to an old
column value so that you can
refer to it within the triggered
action. The old column value in
the triggering table is the value
of the column before execution
of the triggering statement.

The correlation name must be
unique within the CREATE
TRIGGER statement.

Identifier, p. 1-962

DELETE
REFERENCING

Clause

REFERENCING OLD correlation name

AS
SQL Statements 1-265

CREATE TRIGGER
Use the correlation name to refer to an old column value by preceding the
column name with the correlation name and a period (.). For example, if the
old correlation name is pre, refer to the old value for the column fname as
pre.fname.

If the trigger event is a DELETE statement, using the new correlation name as
a qualifier causes an error because the column has no value after the row is
deleted. See “Using Correlation Names in Triggered Actions” on page 1-271
for the rules governing the use of correlation names.

You can use the DELETE REFERENCING clause only if you define a FOR EACH
ROW triggered action.

UPDATE REFERENCING Clause

Element Purpose Restrictions Syntax
correlation
name

A name that you assign to an old
or new column value so that you
can refer to it within the
triggered action. The old column
value in the triggering table is
the value of the column before
execution of the triggering
statement. The new column
value in the triggering table is
the value of the column after the
statement executes.

You can specify a correlation
name for an old column value
only (OLD option), for a new
column value only (NEW
option), or for both the old and
new column values. Each corre-
lation name you specify must be
unique within the CREATE
TRIGGER statement.

Identifier, p. 1-962

UPDATE
REFERENCING

Clause

REFERENCING

AS

OLD correlation
name

AS

NEW correlation
 name

1

1

1-266 Informix Guide to SQL: Syntax

CREATE TRIGGER
After you assign a correlation name, you can use it only inside the FOR EACH
ROW triggered action. See “Action Clause Referencing”.

Use the correlation name to refer to an old or new column value by preceding
the column name with the correlation name and a period (.). For example, if
the new correlation name is post, you refer to the new value for the column
fname as post.fname.

If the trigger event is an UPDATE statement, you can define both old and new
correlation names to refer to column values before and after the triggering
update. See “Using Correlation Names in Triggered Actions” on page 1-271
for the rules that govern the use of correlation names.

You can use the UPDATE REFERENCING clause only if you define a FOR EACH
ROW triggered action.

Action Clause Referencing

If the CREATE TRIGGER statement contains an INSERT REFERENCING clause,
a DELETE REFERENCING clause, or an UPDATE REFERENCING clause, you
must include a FOR EACH ROW triggered-action list in the action clause. You
can also include BEFORE and AFTER triggered-action lists, but they are
optional. See “Action Clause” on page 1-261 for information on the BEFORE,
FOR EACH ROW, and AFTER triggered-action lists.

Triggered
Action List
p. 1-268

BEFORE

FOR EACH
ROW

Triggered
Action List
p. 1-268

AFTER
Triggered
Action List
p. 1-268

Action
Clause

Referencing
SQL Statements 1-267

CREATE TRIGGER
Triggered Action List

The triggered action consists of an optional WHEN condition and the action
statements. Objects that are referenced in the triggered action, that is, tables,
columns, and stored procedures, must exist when the CREATE TRIGGER
statement is executed. This rule applies only to objects that are referenced
directly in the trigger definition.

Warning: When you specify a date expression in the WHEN condition or in an
action statement, make sure to specify 4 digits instead of 2 digits for the year. When
you specify a 4-digit year, the DBCENTURY environment variable has no effect on
how the database server interprets the date expression. When you specify a 2-digit
year, the DBCENTURY environment variable can affect how the database server
interprets the date expression, so the triggered action might produce unpredictable
results. See the “Informix Guide to SQL: Reference” for more information on the
DBCENTURY environment variable.

,

Condition
p. 1-831

WHEN

INSERT
Statement
p. 1-492

UPDATE
Statement
p. 1-775

DELETE
Statement
p. 1-324

EXECUTE
PROCEDURE

p. 1-404

Triggered
Action List

,

()

()
1-268 Informix Guide to SQL: Syntax

CREATE TRIGGER
WHEN Condition

The WHEN condition lets you make the triggered action dependent on the
outcome of a test. When you include a WHEN condition in a triggered action,
if the triggered action evaluates to true, the actions in the triggered action list
execute in the order in which they appear. If the WHEN condition evaluates
to false or unknown, the actions in the triggered action list are not executed. If
the triggered action is in a FOR EACH ROW section, its search condition is
evaluated for each row.

For example, the triggered action in the following trigger executes only if the
condition in the WHEN clause is true:

CREATE TRIGGER up_price
UPDATE OF unit_price ON stock
REFERENCING OLD AS pre NEW AS post
FOR EACH ROW WHEN(post.unit_price > pre.unit_price * 2)

(INSERT INTO warn_tab VALUES(pre.stock_num,
pre.order_num, pre.unit_price, post.unit_price,
CURRENT))

A routine that executes inside the WHEN condition carries the same restric-
tions as a routine that is called in a data manipulation statement. See the
Extending INFORMIX-Universal Server: User-Defined Routines manual for
more information about a routine that is called within a data manipulation
statement.

Action Statements

The triggered-action statements can be INSERT, DELETE, UPDATE, or
EXECUTE PROCEDURE statements. If a triggered-action list contains multiple
statements, these statements execute in the order in which they appear in the
list.
SQL Statements 1-269

CREATE TRIGGER
Achieving a Consistent Result

To guarantee that the triggering statement returns the same result with and
without the triggered actions, make sure that the triggered actions in the
BEFORE and FOR EACH ROW sections do not modify any table referenced in
the following clauses:

■ WHERE clause

■ SET clause in the UPDATE statement

■ SELECT clause

■ EXECUTE PROCEDURE clause in a multiple-row INSERT statement

Using Keywords

If you use the INSERT, DELETE, UPDATE, or EXECUTE keywords as an
identifier in any of the following clauses inside a triggered action list, you
must qualify them by the owner name, the table name, or both:

■ FROM clause of a SELECT statement

■ INTO clause of the EXECUTE PROCEDURE statement

■ GROUP BY clause

■ SET clause of the UPDATE statement

You get a syntax error if these keywords are not qualified when you use these
clauses inside a triggered action.

If you use the keyword as a column name, it must be qualified by the table
name—for example, table.update. If both the table name and the column
name are keywords, they must be qualified by the owner name—for
example, owner.insert.update. If the owner name, table name, and column
name are all keywords, the owner name must be in quotes—for example,
'delete'.insert.update. The only exception is when these keywords are the
first table or column name in the list, and you do not have to qualify them.
For example, delete in the following statement does not need to be qualified
because it is the first column listed in the INTO clause:

CREATE TRIGGER t1 UPDATE OF b ON tab1
FOR EACH ROW (EXECUTE PROCEDURE p2()
INTO delete, d)
1-270 Informix Guide to SQL: Syntax

CREATE TRIGGER
The following statements show examples in which you must qualify the
column name or the table name:

FROM clause of a SELECT statement

CREATE TRIGGER t1 INSERT ON tab1
BEFORE (INSERT INTO tab2 SELECT * FROM tab3,
'owner1'.update)

INTO clause of an EXECUTE PROCEDURE statement

CREATE TRIGGER t3 UPDATE OF b ON tab1
FOR EACH ROW (EXECUTE PROCEDURE p2() INTO
d, tab1.delete)

GROUP BY clause of a SELECT statement

CREATE TRIGGER t4 DELETE ON tab1
BEFORE (INSERT INTO tab3 SELECT deptno, SUM(exp)
FROM budget GROUP BY deptno, budget.update)

SET clause of an UPDATE statement

CREATE TRIGGER t2 UPDATE OF a ON tab1
BEFORE (UPDATE tab2 SET a = 10, tab2.insert = 5)

Using Correlation Names in Triggered Actions
The following rules apply when you use correlation names in triggered
actions:

■ You can use the correlation names for the old and new column values
only in statements in the FOR EACH ROW triggered-action list. You
can use the old and new correlation names to qualify any column in
the triggering table in either the WHEN condition or the triggered
SQL statements.

■ The old and new correlation names refer to all rows affected by the
triggering statement.
SQL Statements 1-271

CREATE TRIGGER
■ You cannot use the correlation name to qualify a column name in the
GROUP BY, the SET, or the COUNT DISTINCT clause.

■ The scope of the correlation names is the entire trigger definition.
This scope is statically determined, meaning that it is limited to the
trigger definition; it does not encompass cascading triggers or
columns that are qualified by a table name in a routine that is a
triggered action.

When to Use Correlation Names

In an SQL statement in a FOR EACH ROW triggered action, you must qualify
all references to columns in the triggering table with either the old or new
correlation name, unless the statement is valid independent of the triggered
action.

In other words, if a column name inside a FOR EACH ROW triggered action
list is not qualified by a correlation name, even if it is qualified by the
triggering table name, it is interpreted as if the statement is independent of
the triggered action. No special effort is made to search the definition of the
triggering table for the nonqualified column name.

For example, assume that the following DELETE statement is a triggered
action inside the FOR EACH ROW section of a trigger:

DELETE FROM tab1 WHERE col_c = col_c2

For the statement to be valid, both col_c and col_c2 must be columns from
tab1. If col_c2 is intended to be a correlation reference to a column in the
triggering table, it must be qualified by either the old or the new correlation
name. If col_c2 is not a column in tab1 and is not qualified by either the old
or new correlation name, you get an error.
1-272 Informix Guide to SQL: Syntax

CREATE TRIGGER
When a column is not qualified by a correlation name, and the statement is
valid independent of the triggered action, the column name refers to the
current value in the database. In the triggered action for trigger t1 in the
following example, mgr in the WHERE clause of the correlated subquery is an
unqualified column from the triggering table. In this case, mgr refers to the
current column value in empsal because the INSERT statement is valid
independent of the triggered action.

CREATE DATABASE db1;
CREATE TABLE empsal (empno INT, salary INT, mgr INT);
CREATE TABLE mgr (eno INT, bonus INT);
CREATE TABLE biggap (empno INT, salary INT, mgr INT);

CREATE TRIGGER t1 UPDATE OF salary ON empsal
AFTER (INSERT INTO biggap SELECT * FROM empsal WHERE salary <

(SELECT bonus FROM mgr WHERE eno = mgr));

In a triggered action, an unqualified column name from the triggering table
refers to the current column value, but only when the triggered statement is
valid independent of the triggered action.

Qualified Versus Unqualified Value

The following table summarizes the value retrieved when you use the
column name qualified by the old correlation name and the column name
qualified by the new correlation name.

Trigger Event old.col new.col

INSERT no value (error) inserted value

UPDATE

(column updated)
original value current value (N)

UPDATE

(column not updated)
original value current value (U)

DELETE original value no value (error)
SQL Statements 1-273

CREATE TRIGGER
Refer to the following key when you read the table.

Outside a FOR EACH ROW triggered-action list, you cannot qualify a column
from the triggering table with either the old correlation name or the new
correlation name; it always refers to the current value in the database.

Action on the Triggering Table

You cannot reference the triggering table in any triggered SQL statement,
with the following exceptions:

■ The trigger event is UPDATE and the triggered SQL statement is also
UPDATE, and the columns in both statements, including any
nontriggering columns in the triggering UPDATE, are mutually
exclusive.

For example, assume that the following UPDATE statement, which
updates columns a and b of tab1, is the triggering statement:
UPDATE tab1 SET (a, b) = (a + 1, b + 1)

Now consider the triggered actions in the following example. The
first UPDATE statement is a valid triggered action, but the second one
is not because it updates column b again.
UPDATE tab1 SET c = c + 1; -- OK
UPDATE tab1 SET b = b + 1;-- ILLEGAL

Term Meaning

original value is the value before the triggering statement.

current value is the value after the triggering statement.

(N) cannot be changed by triggered action.

(U) can be updated by triggered statements; value may be
different from original value because of preceding triggered
actions.
1-274 Informix Guide to SQL: Syntax

CREATE TRIGGER
■ The triggered SQL statement is a SELECT statement. The SELECT
statement can be a triggered statement in the following instances:

❑ The SELECT statement appears in a subquery in the WHEN clause
or a triggered-action statement.

❑ The triggered action is a stored procedure, and the SELECT
statement appears inside the stored procedure.

This rule, which states that a triggered SQL statement cannot reference the
triggering table, with the two noted exceptions, applies recursively to all
cascading triggers, which are considered part of the initial trigger. This
situation means that a cascading trigger cannot update any columns in the
triggering table that were updated by the original triggering statement,
including any nontriggering columns affected by that statement. For
example, assume the following UPDATE statement is the triggering
statement:

UPDATE tab1 SET (a, b) = (a + 1, b + 1)

Then in the cascading triggers shown in the following example, trig2 fails at
runtime because it references column b, which is updated by the triggering
UPDATE statement. See “Cascading Triggers” on page 1-278 for more
information about cascading triggers.

CREATE TRIGGER trig1 UPDATE OF a ON tab1-- Valid
AFTER (UPDATE tab2 set e = e + 1);

CREATE TRIGGER trig2 UPDATE of e ON tab2-- Invalid
AFTER (UPDATE tab1 set b = b + 1);
SQL Statements 1-275

CREATE TRIGGER
Rules for Procedures

The following rules apply to a procedure that is used as a triggered action:

■ The routine cannot be a cursory procedure (that is, a procedure that
returns more than one row) in a place where only one row is
expected.

■ When an EXECUTE PROCEDURE statement is the triggered action,
you can specify the INTO clause only for an UPDATE trigger when the
triggered action occurs in the FOR EACH ROW section. In this case,
the INTO clause can contain only column names from the triggering
table. The following statement illustrates the appropriate use of the
INTO clause:
CREATE TRIGGER upd_totpr UPDATE OF quantity ON items
REFERENCING OLD AS pre_upd NEW AS post_upd
FOR EACH ROW(EXECUTE PROCEDURE
calc_totpr(pre_upd.quantity,
post_upd.quantity, pre_upd.total_price)
INTO total_price)

When the INTO clause appears in the EXECUTE PROCEDURE
statement, the database server updates the columns named there
with the values returned from the routine. The database server
performs the update immediately upon returning from the routine.
See “EXECUTE PROCEDURE” on page 1-404 for more information
about the statement.

■ You cannot use the old or new correlation name inside the routine. If
you need to use the corresponding values in the procedure, you must
pass them as parameters. The routine should be independent of
triggers, and the old or new correlation name do not have any
meaning outside the trigger.

■ You cannot use the following statements inside the routine: ALTER
FRAGMENT, ALTER INDEX, ALTER OPTICAL, ALTER TABLE, BEGIN
WORK, COMMIT WORK, CREATE TRIGGER, DELETE, DROP INDEX,
DROP OPTICAL, DROP SYNONYM, DROP TABLE, DROP TRIGGER,
DROP VIEW, INSERT, RENAME COLUMN, RENAME TABLE,
ROLLBACK WORK, SET CONSTRAINTS, and UPDATE.

When you use a procedure as a triggered action, the objects that it references
are not checked until the procedure is executed.
1-276 Informix Guide to SQL: Syntax

CREATE TRIGGER
Privileges to Execute Triggered Actions

If you are not the trigger owner, but the trigger owner’s privileges include the
WITH GRANT OPTION privilege, you inherit the owner’s privileges as well as
the WITH GRANT OPTION privilege for each triggered SQL statement. You
have these privileges in addition to your privileges.

If the triggered action is an SPL or external routine, you must have the
Execute privilege on the routine or the owner of the trigger must have the
Execute privilege and the WITH GRANT OPTION privilege.

While executing the routine, you do not carry the privileges of the trigger
owner; instead you receive the privileges granted with the routine, as
follows:

1. Privileges for a DBA routine

When the routine is registered with the CREATE DBA keywords and
you are granted the Execute privilege on the routine, the database
server automatically grants you temporary DBA privileges while the
routine executes. These DBA privileges are available only when you
are executing the routine.

2. Privileges for a routine without DBA restrictions

If the routine owner has the WITH GRANT OPTION right for the
necessary privileges on the underlying objects, you inherit these
privilege when you are granted the Execute privilege. In this case, all
the nonqualified objects that the Routine references are qualified by
the name of the Routine owner.

If the Routine owner does not have the WITH GRANT OPTION right,
you have your original privileges on the underlying objects when the
Routine executes.

For more information on privileges on routines, see Chapter 14 in the
Informix Guide to SQL: Tutorial.
SQL Statements 1-277

CREATE TRIGGER
Creating a Triggered Action That Anyone Can Use

To create a trigger that is executable by anyone who has the privileges to
execute the triggering statement, you can ask the DBA to create a
DBA-privileged procedure and grant you the Execute privilege with the
WITH GRANT OPTION right. You then use the DBA-privileged procedure as
the triggered action. Anyone can execute the triggered action because the
DBA-privileged procedure carries the WITH GRANT OPTION right. When you
activate the procedure, the database server applies privilege-checking rules
for a DBA. For more information about privileges on stored procedures, see
Chapter 14 of the Informix Guide to SQL: Tutorial.

Cascading Triggers

The database server allows triggers to cascade, meaning that the triggered
actions of one trigger can activate another trigger. The maximum number of
triggers in a cascading sequence is 61; the initial trigger plus a maximum of
60 cascading triggers. When the number of cascading triggers in a series
exceeds the maximum, the database server returns error number -748, as the
following example shows:

Exceeded limit on maximum number of cascaded triggers.

The following example illustrates a series of cascading triggers that enforce
referential integrity on the manufact, stock, and items tables in the stores7
database. When a manufacturer is deleted from the manufact table, the first
trigger, del_manu, deletes all the items from that manufacturer from the
stock table. Each delete in the stock table activates a second trigger,
del_items, that deletes all the items from that manufacturer from the items
table. Finally, each delete in the items table triggers the stored procedure
log_order, which creates a record of any orders in the orders table that can no
longer be filled.

CREATE TRIGGER del_manu
DELETE ON manufact
REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM stock

WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_stock
DELETE ON stock
REFERENCING OLD AS pre_del
FOR EACH ROW(DELETE FROM items
1-278 Informix Guide to SQL: Syntax

CREATE TRIGGER
WHERE manu_code = pre_del.manu_code);

CREATE TRIGGER del_items
DELETE ON items
REFERENCING OLD AS pre_del
FOR EACH ROW(EXECUTE PROCEDURE log_order(pre_del.order_num));

When you are not using logging, referential integrity constraints on both the
manufact and stock tables would prohibit the triggers in this example from
executing. When you use INFORMIX-Universal Server with logging, however,
the triggers execute successfully because constraint checking is deferred until
all the triggered actions are complete, including the actions of cascading
triggers. See “Constraint Checking” for more information about how
constraints are handled when triggers execute.

The database server prevents loops of cascading triggers by not allowing you
to modify the triggering table in any cascading triggered action, except an
UPDATE statement, which does not modify any column that the triggering
UPDATE statement updated.

Constraint Checking

When you use logging, INFORMIX-Universal Server defers constraint
checking on the triggering statement until after the statements in the
triggered-action list execute. Universal Server effectively executes a SET
statement (SET CONSTRAINTS ALL DEFERRED) before it executes the
triggering statement. After the triggered action is completed, it effectively
executes another SET statement (SET CONSTRAINTS constr_name IMMEDIATE)
to check the constraints that were deferred. This action allows you to write
triggers so that the triggered action can resolve any constraint violations that
the triggering statement creates. For more information, see the SET statement
on page 1-644.
SQL Statements 1-279

CREATE TRIGGER
Consider the following example, in which the table child has constraint r1,
which references the table parent. You define trigger trig1 and activate it with
an INSERT statement. In the triggered action, trig1 checks to see if parent has
a row with the value of the current cola in child; if not, it inserts it.

CREATE TABLE parent (cola INT PRIMARY KEY);
CREATE TABLE child (cola INT REFERENCES parent CONSTRAINT r1);
CREATE TRIGGER trig1 INSERT ON child

REFERENCING NEW AS new
FOR EACH ROW
WHEN((SELECT COUNT (*) FROM parent

WHERE cola = new.cola) = 0)
-- parent row does not exist

(INSERT INTO parent VALUES (new.cola));

When you insert a row into a table that is the child table in a referential
constraint, the row might not exist in the parent table. The database server
does not immediately return this error on a triggering statement. Instead, it
allows the triggered action to resolve the constraint violation by inserting the
corresponding row into the parent table. As the previous example shows,
you can check within the triggered action to see whether the parent row
exists, and if so, bypass the insert.

For a database without logging, Universal Server does not defer constraint
checking on the triggering statement. In this case, it immediately returns an
error if the triggering statement violates a constraint.

Universal Server does not allow the SET statement in a triggered action.
Universal Server checks this restriction when you activate a trigger because
the statement could occur inside a stored procedure.
1-280 Informix Guide to SQL: Syntax

CREATE TRIGGER
Preventing Triggers from Overriding Each Other

When you activate multiple triggers with an UPDATE statement, a trigger can
possibly override the changes that an earlier trigger made. If you do not want
the triggered actions to interact, you can split the UPDATE statement into
multiple UPDATE statements, each of which updates an individual column.
As another alternative, you can create a single update trigger for all columns
that require a triggered action. Then, inside the triggered action, you can test
for the column being updated and apply the actions in the desired order. This
approach, however, is different than having the database server apply the
actions of individual triggers, and it has the following disadvantages:

■ If the trigger has a BEFORE action, it applies to all columns because
you cannot yet detect whether a column has changed.

■ If the triggering UPDATE statement sets a column to the current
value, you cannot detect the update, so the triggered action is
skipped. You might want to execute the triggered action even though
the value of the column has not changed.

Client/Server Environment

In an Universal Server database, the statements inside the triggered action
can affect tables in external databases. The following example shows an
update trigger on dbserver1, which triggers an update to items on
dbserver2:

CREATE TRIGGER upd_nt UPDATE ON newtab
REFERENCING new AS post
FOR EACH ROW(UPDATE stores7@dbserver2:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc)
SQL Statements 1-281

CREATE TRIGGER
If a statement from an external database server initiates the trigger, however,
and the triggered action affects tables in an external database, the triggered
actions fail. For example, the following combination of triggered action and
triggering statement results in an error when the triggering statement
executes:

-- Triggered action from dbserver1 to dbserver3:

CREATE TRIGGER upd_nt UPDATE ON newtab
REFERENCING new AS post
FOR EACH ROW(UPDATE stores7@dbserver3:items

SET quantity = post.qty WHERE stock_num = post.stock
AND manu_code = post.mc);

-- Triggering statement from dbserver2:

UPDATE stores7@dbserver1:newtab
SET qty = qty * 2 WHERE s_num = 5
AND mc = 'ANZ';

Logging and Recovery

You can create triggers for databases, with and without logging. However,
when the database does not have logging, you cannot roll back when the
triggering statement fails. In this case, you are responsible for maintaining
data integrity in the database.

In INFORMIX-Universal Server, if the trigger fails and the database has trans-
actions, all triggered actions and the triggering statement are rolled back
because the triggered actions are an extension of the triggering statement.
The rest of the transaction, however, is not rolled back.

The row action of the triggering statement occurs before the triggered actions
in the FOR EACH ROW section. If the triggered action fails for a database
without logging, the application must restore the row that was changed by
the triggering statement to its previous value.
1-282 Informix Guide to SQL: Syntax

CREATE TRIGGER
When you use a stored procedure as a triggered action, if you terminate the
procedure in an exception-handling section, any actions that modify data
inside that section are rolled back along with the triggering statement. In the
following partial example, when the exception handler traps an error, it
inserts a row into the table logtab:

ON EXCEPTION IN (-201)
INSERT INTO logtab values (errno, errstr);
RAISE EXCEPTION -201

END EXCEPTION

When the RAISE EXCEPTION statement returns the error, however, the
database server rolls back this insert because it is part of the triggered actions.
If the procedure is executed outside a triggered action, the insert is not rolled
back.

The stored procedure that implements a triggered action cannot contain any
BEGIN WORK, COMMIT WORK, or ROLLBACK WORK statements. If the
database has logging, you must either begin an explicit transaction before the
triggering statement, or the statement itself must be an implicit transaction.
In any case, another transaction-related statement cannot appear inside the
stored procedure.

You can use triggers to enforce referential actions that the database server
does not currently support. For any database without logging, you are
responsible for maintaining data integrity when the triggering statement
fails.

Trigger Object Modes

The Trigger Object Modes option allows you to create a trigger in either the
enabled or disabled object mode.

Trigger Object
Modes

DISABLED

ENABLED
SQL Statements 1-283

CREATE TRIGGER
You can create triggers in the following object modes.

Specifying Object Modes for Triggers

You must observe the following rules when you specify the object mode for
a trigger in the CREATE TRIGGER statement:

■ If you do not specify the disabled or enabled object modes explicitly,
the default object mode is enabled.

■ In contrast to unique indexes and constraints of all types, you cannot
set triggers to the filtering object mode because a trigger does not
impose any type of data-integrity requirement on the tables in the
database.

■ You can use the SET statement to switch the mode of a disabled
trigger to the enabled mode. Once the trigger has been re-enabled,
the database server executes the triggered action whenever the
trigger event takes place. However, the re-enabled trigger does not
perform retroactively. The database server does not attempt to
execute the trigger for rows that were inserted, deleted, or updated
after the trigger was disabled and before it was enabled; therefore, be
cautious about disabling a trigger. If disabling a trigger will
eventually destroy the semantic integrity of the database, do not
disable the trigger in the first place.

■ You cannot create a trigger on a violations table or a diagnostics
table.

Object Mode Effect

disabled When a trigger is created in disabled mode, the database server
does not execute the triggered action when the trigger event (an
insert, delete, or update operation) takes place. In effect, the
database server ignores the trigger even though its catalog
information is maintained.

enabled When a trigger is created in enabled mode, the database server
executes the triggered action when the trigger event (an insert,
delete, or update operation) takes place.
1-284 Informix Guide to SQL: Syntax

CREATE TRIGGER
References
See the DROP TRIGGER, CREATE PROCEDURE, and EXECUTE PROCEDURE
statements in this manual.

In the Informix Guide to SQL: Tutorial, see Chapter 14 for information about
stored procedures.
SQL Statements 1-285

CREATE VIEW
CREATE VIEW
Use the CREATE VIEW statement to create a new view that is based upon
existing tables and views in the database.

Syntax

Element Purpose Restrictions Syntax
row type name The name of a named row type

that you use to specify the type
of a typed view

You must have USAGE privileges
on the named row type or be its
owner or the DBA. The named
row type must exist before you
can assign it to a view.

Data Type, p. 1-855

column name The name of a column in the
view being created

See “Naming View Columns” on
page 1-288.

Identifier, p. 1-962

CREATE VIEW
View
Name

p. 1-1047

OF TYPE
row type

name

WITH CHECK
OPTION

SELECT
Statement
(subset)
p. 1-288

AS

column
name)(

,

E/C

DB

SQLE
1-286 Informix Guide to SQL: Syntax

CREATE VIEW
Usage
You can create typed or untyped views. If you omit the OF TYPE clause, the
rows in the view are considered to be untyped and default to an unnamed
row type.

Typed views, like typed tables, are based on a named row type. Each column
in the view corresponds to a field in the named row type.

You can use a view in any SQL statement where you can use a table, except
the following.

The view behaves like a table that is called view name. It consists of the set of
rows and columns that the SELECT statement returns each time the SELECT
statement is executed by using the view. The view reflects changes to the
underlying tables with one exception. If a SELECT * clause defines the view,
the view has only the columns in the underlying tables at the time the view
is created. New columns that are subsequently added to the underlying
tables with the ALTER TABLE statement do not appear in the view.

The view name must be unique; that is, a view name cannot have the same
name as another database object, such as a table, synonym, or temporary
table.

The view inherits the data types of the columns from the tables from which
they come. Data types of virtual columns are determined from the nature of
the expression.

To create a view, you must have the Select privilege on all columns from
which the view is derived.

ALTER FRAGMENT DROP TABLE
ALTER INDEX DROP TRIGGER
ALTER TABLE LOCK TABLE
CREATE INDEX RECOVER TABLE
CREATE TABLE RENAME TABLE
CREATE TRIGGER UNLOCK TABLE
DROP INDEX
SQL Statements 1-287

CREATE VIEW
The SELECT statement is stored in the sysviews system catalog table. When
you subsequently refer to a view in another statement, the database server
performs the defining SELECT statement while it executes the new statement.

You cannot create a view on a temporary table.

If you create a view outside the CREATE SCHEMA statement, you receive
warnings if you use the -ansi flag or set DBANSIWARN. ♦

Subset of a SELECT Allowed in CREATE VIEW
The SELECT statement has the form that is described on page 1-593, but in
CREATE VIEW, it cannot have an ORDER BY clause, INTO TEMP clause, or
UNION operator. Do not use display labels in the select list; display labels are
interpreted as column names.

Naming View Columns
The number of columns that you specify in the column name parameter must
match the number of columns returned by the SELECT statement that defines
the view.

If you do not specify a list of columns, the view inherits the column names of
the underlying tables. In the following example, the view herostock has the
same column names as the ones in the SELECT statement:

CREATE VIEW herostock AS
SELECT stock_num, description, unit_price, unit, unit_descr

FROM stock WHERE manu_code = 'HRO'

If the SELECT statement returns an expression, the corresponding column in
the view is called a virtual column. You must provide a name for virtual
columns. You must also provide a column name in cases where the selected
columns have duplicate column names when the table prefixes are stripped.
For example, when both orders.order_num and items.order_num appear in
the SELECT statement, you must provide two separate column names to label
them in the CREATE VIEW statement, as the following example shows:

CREATE VIEW someorders (custnum,ocustnum,newprice) AS
SELECT orders.order_num,items.order_num,

items.total_price*1.5
FROM orders, items
WHERE orders.order_num = items.order_num
AND items.total_price > 100.00

DB
1-288 Informix Guide to SQL: Syntax

CREATE VIEW
If you must provide names for some of the columns in a view, then you must
provide names for all the columns; that is, the column list must contain an
entry for every column that appears in the view.

Using a View in the SELECT Statement
You can define a view in terms of other views, but you must abide by the
restrictions on creating views that are listed in Chapter 11 of the Informix
Guide to SQL: Tutorial. See that manual for further information.

WITH CHECK OPTION Keywords
The WITH CHECK OPTION keywords instruct the database server to ensure
that all modifications that are made through the view to the underlying tables
satisfy the definition of the view.

The following example creates a view that is named palo_alto, which uses all
the information in the customer table for customers in the city of Palo Alto.
The database server checks any modifications made to the customer table
through palo_alto because the WITH CHECK OPTION is specified.

CREATE VIEW palo_alto AS
SELECT * FROM customer

WHERE city = 'Palo Alto'
WITH CHECK OPTION

What do the WITH CHECK OPTION keywords really check and prevent? It is
possible to insert into a view a row that does not satisfy the conditions of the
view (that is, a row that is not visible through the view). It is also possible to
update a row of a view so that it no longer satisfies the conditions of the view.
For example, if the view was created without the WITH CHECK OPTION
keywords, you could insert a row through the view where the city is Los
Altos, or you could update a row through the view by changing the city from
Palo Alto to Los Altos.

To prevent such inserts and updates, you can add the WITH CHECK OPTION
keywords when you create the view. These keywords ask the database server
to test every inserted or updated row to ensure that it meets the conditions
that are set by the WHERE clause of the view. The database server rejects the
operation with an error if the row does not meet the conditions.
SQL Statements 1-289

CREATE VIEW
However, even if the view was created with the WITH CHECK OPTION
keywords, you can perform inserts and updates through the view to change
columns that are not part of the view definition. A column is not part of the
view definition if it does not appear in the WHERE clause of the SELECT
statement that defines the view.

Updating Through Views
If a view is built on a single table, the view is updatable if the SELECT statement
that defined it did not contain any of the following items:

■ Columns in the select list that are aggregate values

■ Columns in the select list that use the UNIQUE or DISTINCT keyword

■ A GROUP BY clause

■ A derived value for a column, which was created using an
arithmetical expression

In an updatable view, you can update the values in the underlying table by
inserting values into the view.

Important: You cannot update or insert rows in a remote table through views with
check options.

Examples
The following statement creates a view that is based on the person table.
When you create a view without an OF TYPE clause, the view is referred to as
an untyped view.

CREATE VIEW v1 AS SELECT *
FROM person

The following statement creates a typed view that is based on the table
person. To create a typed view, you must include an OF TYPE clause. When
you create a typed view, the named row type that you specify immediately
after the OF TYPE keywords must already exist.

CREATE VIEW v2 OF TYPE person_t AS SELECT *
FROM person

For more information about how to create and use typed views, see
Chapter 11 of the Informix Guide to SQL: Tutorial.
1-290 Informix Guide to SQL: Syntax

CREATE VIEW
References
See the CREATE TABLE, DROP VIEW, GRANT, SELECT, and SET SESSION
AUTHORIZATION statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of views and
security in Chapter 11. Also, see the discussion of named row types in
Chapter 10.
SQL Statements 1-291

1-292 Informix Guide to SQL: Syntax

DATABASE
DATABASE
Use the DATABASE statement to select an accessible database as the current
database.

Syntax

Usage
You can use the DATABASE statement to select any database on your database
server. To select a database on another Universal Server database server,
specify the name of the database server with the database name.

If you specify the name of the current database server or another database
server with the database name, the database server name cannot be
uppercase.

Issuing a DATABASE statement when a database is already open closes the
current database before opening the new one. Closing the current database
releases any cursor resources held by the database server, which invalidates
any cursors you have declared up to that point. If the user identity was
changed through a SET SESSION AUTHORIZATION statement, the original
user name is restored.

The current user (or PUBLIC) must have the Connect privilege on the
database specified in the DATABASE statement. The current user cannot have
the same user name as an existing role in the database.

You cannot include the DATABASE statement in a multistatement PREPARE
operation.

DATABASE

EXCLUSIVE

Database
Name

p. 1-852

+

E/C

DB

SQLE

ESQL

DATABASE
You can determine the type of database a user selects by checking the
warning flag after a DATABASE statement in the sqlca structure.

If the database has transactions, the second element of the sqlwarn structure
(sqlca.sqlwarn.sqlwarn1) contains a W after the DATABASE statement
executes. ♦

 If the database is ANSI compliant, the third element of the sqlwarn structure
(sqlca.sqlwarn.sqlwarn2) contains a W after the DATABASE statement
executes. ♦

 If the database is an INFORMIX-Universal Server database, the fourth element
of the sqlwarn structure (sqlca.sqlwarn.sqlwarn3) contains a W after the
DATABASE statement executes.

If the database is running in secondary mode, the seventh element of the
sqlwarn structure (sqlca.sqlwarn.sqlwarn6) contains a W after the DATABASE
statement executes. ♦

EXCLUSIVE Keyword
The EXCLUSIVE keyword opens the database in exclusive mode and prevents
access by anyone but the current user. To allow others access to the database,
you must execute the CLOSE DATABASE statement and then reopen the
database without the EXCLUSIVE keyword.

The following statement opens the stores7 database on the training database
server in exclusive mode:

DATABASE stores7@training EXCLUSIVE

If another user has already opened the database, exclusive access is denied,
an error is returned, and no database is opened.

References
See the CLOSE DATABASE and CONNECT statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of database design
in Chapter 8 and implementing the data model in Chapter 9.

ESQL

ANSI

ESQL
SQL Statements 1-293

DEALLOCATE COLLECTION
DEALLOCATE COLLECTION
Use the DEALLOCATE DESCRIPTOR statement to release memory for an
INFORMIX-ESQL/C collection variable that was previously allocated with
the ALLOCATE COLLECTION statement.

Syntax

Usage
The DEALLOCATE COLLECTION statement frees all the memory that is
associated with the ESQL/C collection variable that variable name identifies.
You must explicitly release memory resources for a collection variable with
DEALLOCATE COLLECTION. Otherwise, deallocation does not occur
automatically until the end of the program.

Element Purpose Restrictions Syntax
variable name Variable name that identifies a

typed or untyped collection
variable for which to deallocate
memory

Variable must contain the name
of an ESQL/C collection
variable that has already been
allocated.

Name must conform
to language-specific
rules for variable
names.

DEALLOCATE COLLECTION variable
name

+

E/C
1-294 Informix Guide to SQL: Syntax

DEALLOCATE COLLECTION
The following example shows how to deallocate resources with the
DEALLOCATE COLLECTION statement for the untyped collection variable,
a_set:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
...
EXEC SQL deallocate collection :a_set;

The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped collection variables.

Tip: The DEALLOCATE COLLECTION statement deallocates memory for an ESQL/C
collection variable only. To deallocate memory for ESQL/C row variables, use the
DEALLOCATE ROW statement.

If you deallocate a nonexistent collection variable or a variable that is not an
ESQL/C collection variable, an error results. Once you deallocate a collection
variable, you can use the ALLOCATE COLLECTION to reallocate resources and
you can then reuse a collection variable.

References
See the ALLOCATE COLLECTION and DEALLOCATE ROW statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of collection data
types in Chapter 10. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of complex data types.
SQL Statements 1-295

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR
Use the DEALLOCATE DESCRIPTOR statement to free a system-descriptor
area that was previously allocated with the ALLOCATE DESCRIPTOR
statement.

Syntax

Usage
The DEALLOCATE DESCRIPTOR statement frees all the memory that is
associated with the system-descriptor area that descriptor or descriptor variable
identifies. It also frees all the item descriptors (including memory for data
values in the value descriptors).

Element Purpose Restrictions Syntax
descriptor Quoted string that identifies a

system-descriptor area
System-descriptor area must
already be allocated. The
surrounding quotes must be
single.

Quoted String,
p. 1-1010

descriptor
variable

Host variable name that
identifies a system-descriptor
area

System-descriptor area must
already be allocated.

Name must conform
to language-specific
rules for variable
names.

descriptor
variable

DEALLOCATE DESCRIPTOR 'descriptor '

+

ESQL
1-296 Informix Guide to SQL: Syntax

DEALLOCATE DESCRIPTOR
The following examples show the DEALLOCATE DESCRIPTOR statement for
INFORMIX-ESQL/C. The first line shows an embedded-variable name, and
the second line shows a quoted string that identifies the allocated system-
descriptor area.

EXEC SQL deallocate descriptor :descname;

EXEC SQL deallocate descriptor 'desc1';

You can reuse a descriptor or descriptor variable after it is deallocated.
Deallocation occurs automatically at the end of the program.

If you deallocate a nonexistent descriptor or descriptor variable, an error
results.

You cannot use the DEALLOCATE DESCRIPTOR statement to deallocate an
sqlda structure. You can use it only to free the memory that is allocated for a
system-descriptor area.

References
See the ALLOCATE DESCRIPTOR, DECLARE, DESCRIBE, EXECUTE, FETCH, GET
DESCRIPTOR, OPEN, PREPARE, PUT, and SET DESCRIPTOR statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of dynamic SQL in
Chapter 5. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of dynamic SQL.
SQL Statements 1-297

DEALLOCATE ROW
DEALLOCATE ROW
Use the DEALLOCATE ROW statement to release memory for an
INFORMIX-ESQL/C row variable that was previously allocated with the
ALLOCATE ROW statement.

Syntax

Usage
The DEALLOCATE ROW statement frees all the memory that is associated
with the ESQL/C row variable that variable name identifies. You must
explicitly release memory resources for a row variable with DEALLOCATE
ROW. Otherwise, deallocation does not occur automatically until the end of
the program.

The following example shows how to deallocate resources for the row
variable, a_row, with the DEALLOCATE ROW statement:

EXEC SQL BEGIN DECLARE SECTION;
row (a int, b int) a_row;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate row :a_row;
...
EXEC SQL deallocate row :a_row;

Element Purpose Restrictions Syntax
variable name Variable name that identifies a

typed or untyped row variable
for which to deallocate memory

Variable must contain the name
of an ESQL/C row variable that
has already been allocated.

Name must conform
to language-specific
rules for variable
names.

DEALLOCATE ROW variable
name

+

E/C
1-298 Informix Guide to SQL: Syntax

DEALLOCATE ROW
The DEALLOCATE COLLECTION statement releases resources for both typed
and untyped row variables.

Tip: The DEALLOCATE ROW statement deallocates memory for an ESQL/C row
variable only. To deallocate memory for ESQL/C collection variables, use the
DEALLOCATE COLLECTION statement.

If you deallocate a nonexistent row variable or a variable that is not an
ESQL/C row variable, an error results. Once you deallocate a row variable,
you can use the ALLOCATE ROW to reallocate resources, and you can then
reuse a row variable.

References
See the ALLOCATE ROW and DEALLOCATE COLLECTION statements in this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of row types in
Chapter 10. In the INFORMIX-ESQL/C Programmer’s Manual, see the
discussion of complex data types.
SQL Statements 1-299

DECLARE
DECLARE
Use the DECLARE statement to define a cursor, which associates rows with a
SELECT, INSERT, or EXECUTE FUNCTION statement.

Syntax

SELECT
Statement
p. 1-593

statement id

column
name

OF

SCROLL
CURSOR

+

EXECUTE
FUNCTION
Statement
p. 1-394

DECLARE cursor
identifier

ESQL

,

statement id
variable

FOR

FOR
UPDATE

SELECT with
Collection Derived

Table
p. 1-318

INSERT with
Collection Derived

Table
p. 1-320

+

+

cursor
variable

CURSOR

WITH
HOLD

+

FOR

+

+

+

INSERT
Statement
(subset)
p. 1-312

SELECT
Statement
(subset)
p. 1-311

FOR READ ONLY

WITH
HOLD

CURSOR FOR
1-300 Informix Guide to SQL: Syntax

DECLARE
Usage
A cursor is an identifier that you associate with a group of rows. The
DECLARE statement associates the cursor with one of the following database
objects:

■ With an SQL statement, such as SELECT, EXECUTE FUNCTION, or
INSERT

Each of these SQL statements creates a different type of cursor. For
more information, see “Overview of Cursor Types” on page 1-303.

■ With the statement identifier (statement id or statement id variable) of a
prepared statement.

You can prepare a SELECT, EXECUTE FUNCTION, or INSERT
statement and associate the prepared statement with a cursor. For
more information, see “Associating a Cursor With a Prepared
Statement” on page 1-316.

Element Purpose Restrictions Syntax
column name A column that you can update

through the cursor
The specified column must exist,
but it does not have to be in the
select list of the SELECT clause.

Identifier, p. 1-962

cursor id The name that the DECLARE
statement assigns to the cursor
and that refers to the cursor in
other statements

You cannot specify a cursor
name that a previous DECLARE
statement in the same program
has specified.

Identifier, p. 1-962

cursor variable An embedded variable name
that holds the value of cursor id

Variable must be a character data
type.

The name must
conform to
language-specific
rules for variable
names.

statement id A statement identifier that is a
data structure representing the
text of a prepared SQL statement

The statement id must have
already been specified in a
PREPARE statement in the same
program.

Identifier, p. 1-962,
and PREPARE,
p. 1-538

statement id
variable

An embedded variable name
that holds the value of statement
id

Variable must be a character data
type.

The name must
conform to
language-specific
rules for variable
names.
SQL Statements 1-301

DECLARE
■ With a collection variable in an INFORMIX-ESQL/C program

The name of the collection variable appears in the FROM clause of a
SELECT or the INTO clause of an INSERT. For more information, see
“Associating a Cursor With a Collection Variable” on page 1-317.

The DECLARE statement assigns an identifier to the cursor, specifies its uses,
and directs the preprocessor to allocate storage to hold the cursor. The
DECLARE statement must precede any other statement that refers to the
cursor during the execution of the program.

The amount of available memory in the system limits the number of open
cursors and prepared statements that you can have at one time in one
process. Use FREE statement id or FREE statement id variable to release the
resources that a prepared statement holds; use FREE cursor id or FREE cursor
variable to release resources that a cursor holds.

A program can consist of one or more source-code files. By default, the scope
of a cursor is global to a program, so a cursor declared in one file can be refer-
enced from another file. In a multiple-file program, if you want to limit the
scope of cursors to the files in which they are declared, you must preprocess
all the files with the -local command-line option. See your SQL API product
manual for more information, restrictions, and performance issues when you
preprocess with the -local option.

A host variable used in place of the cursor name or statement identifier must
be a character data type. The following ESQL/C code defines a char host
variable called cursname:

EXEC SQL BEGIN DECLARE SECTION;
char cursname[20];

EXEC SQL END DECLARE SECTION;

Other ESQL/C character data types are also valid to hold cursor names and
statement identifiers.

To declare multiple cursors, use a single statement identifier. For instance, the
following INFORMIX-ESQL/C example does not return an error:

EXEC SQL prepare id1 from 'select * from customer';
EXEC SQL declare x cursor for id1;
EXEC SQL declare y scroll cursor for id1;
EXEC SQL declare z cursor with hold for id1;
1-302 Informix Guide to SQL: Syntax

DECLARE
If you include the -ansi compilation flag (or if DBANSIWARN is set),
warnings are generated for statements that use dynamic cursor names or
dynamic statement identifier names and statements that use derived tables.
Some error checking is performed at runtime. The following list indicates the
typical checks:

■ Illegal use of cursors (that is, normal cursors used as scroll cursors)

■ Use of undeclared cursors

■ Bad cursor or statement names (empty)

Checks for multiple declarations of a cursor of the same name are performed
at compile time only if the cursor or statement is an identifier. For example,
the code in the first example below results in a compile error. The code in the
second example does not result in a compile error because it uses a host
variable to hold the cursor name.

Results in error

EXEC SQL declare x cursor for
select * from customer;

. . .
EXEC SQL declare x cursor for

select * from orders;

Runs successfully

EXEC SQL declare x cursor for
select * from customer;

. . .
stcopy("x", s);
EXEC SQL declare :s cursor for

select * from customer;

Overview of Cursor Types
With the DECLARE statement, you can declare the following types of cursors:

■ A select cursor is a cursor that is associated with a SELECT statement.

■ A function cursor is a cursor that is associated with an EXECUTE
FUNCTION statement, which executes routines that return values.

■ An insert cursor is a cursor that is associated with an INSERT
statement.
SQL Statements 1-303

DECLARE
Any of these cursor types can have cursor characteristics: sequential, scroll,
and hold. These characteristics determine the structure of the cursor. For
more information, see “Cursor Characteristics” on page 1-313. In addition, a
select or function cursor can have a cursor mode: read-only or update. For
more information, see “Cursor Modes” on page 1-306.

The following table summarizes types of cursors that are available.

Tip: A cursor can also be associated with a statement identifier, enabling you to use
a cursor with INSERT, SELECT, or EXECUTE FUNCTION statement that is prepared
dynamically and to use different statements with the same cursor at different times.
In this case, the type of cursor depends on the statement that is prepared at the time
the cursor is opened (see the OPEN statement on page 1-525). For more information,
see “Associating a Cursor With a Prepared Statement” on page 1-316.

The following sections describe each of these cursor types.

Cursor Type

Cursor Mode Cursor Characteristic

Read-Only Update Sequential Scroll Hold

Select and
Function

✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓ ✓

Insert ✓

✓ ✓
1-304 Informix Guide to SQL: Syntax

DECLARE
Select or Function Cursor
When an SQL statement returns more than one group of values to an ESQL/C
program, you must declare a cursor to save the multiple groups, or rows, of
data and to access these rows one at a time. You must associate the following
SQL statements with cursors:

■ When you associate a SELECT statement with a cursor, the cursor is
called a select cursor.

A select cursor is a data structure that represents a specific location
within the active set of rows that the SELECT statement retrieved.

■ When you associate an EXECUTE FUNCTION statement with a cursor,
the cursor is called a function cursor.

The function cursor represents the columns or values that a user-
defined function (and external function or an SPL function) returns.
Function cursors behave the same as select cursors, which are
enabled as update cursors.

Important: In previous releases of Informix products, the EXECUTE PROCEDURE
statement was used to execute stored procedures that returned values. For backward
compatibility, you can still use EXECUTE PROCEDURE to execute stored procedures
that return a value. However, Informix recommends that you execute new SPL
routines that return values, called SPL functions, with the EXECUTE FUNCTION
statement. For more information on how to use EXECUTE PROCEDURE with
function names, see page 1-404.

When you associate a SELECT or EXECUTE FUNCTION statement with a
cursor, the statement can include an INTO clause. However, if you prepare the
SELECT or EXECUTE FUNCTION statement, you must omit the INTO clause in
the PREPARE statement and use the INTO clause of the FETCH statement to
retrieve the values from the collection cursor.
SQL Statements 1-305

DECLARE
A select or function cursor enables you to scan returned rows of data and to
move data row by row into a set of receiving variables, as the following steps
describe:

1. Use a DECLARE statement to define a cursor and associate the
SELECT statement or the EXECUTE FUNCTION statement with the
cursor.

2. Open the cursor with the OPEN statement. The database server
processes the query until it locates or constructs the first row of the
active set.

3. Retrieve successive rows of data from the cursor with the FETCH
statement.

4. Close the cursor with the CLOSE statement when the active set is no
longer needed.

5. Free the cursor with the FREE statement. The FREE statement releases
the resources that are allocated for a select or function cursor.

Cursor Modes

You can declare a select or function cursor with one of two cursor modes:

■ Read-only mode, with the FOR READ ONLY keywords

■ Update mode, with the FOR UPDATE keywords

You cannot specify both the FOR UPDATE option and the FOR READ ONLY
option in the same DECLARE statement because these options are mutually
exclusive.

Read-Only Cursor

In a database that is not ANSI compliant, data in a select cursor or function
cursor is read only. That is, you cannot directly update the data that is within
a select or function cursor. Such a cursor is called a read-only cursor. To update
data in a read-only cursor, you must copy the data out of the read-only
cursor, perform the modifications on the copy, and then explicitly update the
row with an UPDATE statement and a WHERE clause to identify the row you
are updating.
1-306 Informix Guide to SQL: Syntax

DECLARE
In an ANSI-compliant database, you can directly update the data that is
within a select cursor because a select cursor and a function cursor are, by
default, update cursors. (For more information, see “Update Cursor”.) If you
want a select or function cursor to be for read only, you must declare a read-
only cursor with the FOR READ ONLY option of the DECLARE statement. The
FOR READ ONLY keywords state explicitly that a select or function cursor
cannot be used to modify data. The database server can use less stringent
locking for a read-only cursor than for an update cursor.

The following example declares a read-only cursor:

EXEC SQL declare z_curs cursor for
select * from customer_ansi
for read only;

The SELECT statement for the cursor must conform to all of the restrictions
for read-only cursors listed in “Subset of the SELECT Statement Associated
with Cursors” on page 1-311. ♦

In a database that is not ANSI compliant, a select cursor and a select cursor
with the FOR READ ONLY option are the same. The only advantage of speci-
fying the FOR READ ONLY keywords explicitly is for better program
documentation. The following example declares a read-only cursor in a non-
ANSI database:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi;

If you want to make it clear in the program code that this cursor is a read-only
cursor, you can specify the FOR READ ONLY option as the following example
shows:

EXEC SQL declare cust_curs cursor for
select * from customer_notansi
for read only;

Update Cursor

In a database that is not ANSI compliant, you cannot directly update the data
that is within a select cursor or function cursor because these cursors are, by
default, read-only cursors. (For more information, see “Read-Only Cursor”
on page 1-306.) To update data in a select or function cursor, you must declare
an update cursor with the FOR UPDATE option of the DECLARE statement.

ANSI
SQL Statements 1-307

DECLARE
The following example declares an update cursor:

EXEC SQL declare new_curs cursor for
select * from customer_notansi
for update;

In an ANSI-compliant database, a select cursor and a select cursor with the
FOR UPDATE option are the same. You can use a select cursor to update or
delete data as long as the cursor was not declared with the FOR READ ONLY
option and it follows the restrictions on update cursors that are described in
“Subset of the SELECT Statement Associated with Cursors” on page 1-311.

The following example declares an update cursor in an ANSI-compliant
database:

EXEC SQL declare x_curs cursor for
select * from customer_ansi;

If you want to make it clear in the program documentation that this cursor is
an update cursor, you can specify the FOR UPDATE option as the following
example shows:

EXEC SQL declare x_curs cursor for
select * from customer_ansi
for update;

The SELECT statement for the cursor must conform to all of the restrictions
for update cursors listed in “Subset of the SELECT Statement Associated
with Cursors” on page 1-311. ♦

In an update cursor, you can update or delete rows in the active set. After you
create an update cursor, you can update or delete the currently selected row
by using an UPDATE or DELETE statement with the WHERE CURRENT OF
clause. The words CURRENT OF refer to the row that was most recently
fetched; they take the place of the usual test expressions in the WHERE clause.

An update cursor lets you perform updates that are not possible with the
UPDATE statement because the decision to update and the values of the new
data items can be based on the original contents of the row. Your program can
evaluate or manipulate the selected data before it decides whether to update.
The UPDATE statement cannot interrogate the table that is being updated.

ANSI
1-308 Informix Guide to SQL: Syntax

DECLARE
Locking with an update cursor

Use the FOR UPDATE keywords to notify the database server that updating is
possible and cause it to use more stringent locking than with a select cursor.
You declare an update cursor to let the database server know that the
program might update (or delete) any row that it fetches as part of the
SELECT statement. The update cursor employs promotable locks for rows that
the program fetches. Other programs can read the locked row, but no other
program can place a promotable or write lock. Before the program modifies
the row, the row lock is promoted to an exclusive lock.

Although it is possible to declare an update cursor with the WITH HOLD
keywords, the only reason to do so is to break a long series of updates into
smaller transactions. You must fetch and update a particular row in the same
transaction. (For more information on hold cursors, see page 1-315.)

If an operation involves fetching and updating a very large number of rows,
the lock table that the database server maintains can overflow. The usual way
to prevent this overflow is to lock the entire table that is being updated. If this
action is impossible, an alternative is to update through a hold cursor and to
execute COMMIT WORK at frequent intervals. However, you must plan such
an application very carefully because COMMIT WORK releases all locks, even
those that are placed through a hold cursor.

Using FOR UPDATE with a list of columns

When you declare an update cursor, you can limit the update to specific
columns by including the OF keyword and a list of columns.You can modify
only those named columns in subsequent UPDATE...WHERE CURRENT OF
statements. The columns need not be in the select list of the SELECT clause.

The following example declares an update cursor and specifies that this
cursor can update only the fname and lname columns in the
customer_notansi table:

EXEC SQL declare name_curs cursor for
select * from customer_notansi
for update of fname, lname;
SQL Statements 1-309

DECLARE
By default, a select cursor in a database that is ANSI compliant is an update
cursor. Therefore, the FOR UPDATE keywords are optional. However, if you
want an update cursor to be able to modify only some of the columns in a
table, you must specify these columns in the FOR UPDATE option. The
following example declares an update cursor and specifies that this cursor
can update only the fname and lname columns in the customer_ansi table:

EXEC SQL declare y_curs cursor for
select * from customer_ansi
for update of fname, lname;

♦

The principal advantage to specifying columns is documentation and
preventing programming errors. (The database server refuses to update any
other columns.) An additional advantage is speed, when the SELECT
statement meets the following criteria:

■ The SELECT statement can be processed using an index.

■ The columns that are listed are not part of the index that is used to
process the SELECT statement.

If the columns that you intend to update are part of the index that is used to
process the SELECT statement, the database server must keep a list of each
row that is updated to ensure that no row is updated twice. When you use
the OF keyword to specify the columns that can be updated, the database
server determines whether to keep the list of updated rows. If the database
server determines that the list is unnecessary, then eliminating the work of
keeping the list results in a performance benefit. If you do not use the OF
keyword, the database server keeps the list of updated rows, although it
might be unnecessary.

This column restriction applies only to UPDATE...WHERE CURRENT OF state-
ments. The OF column clause has no effect on subsequent DELETE statements
that use a WHERE CURRENT OF clause. (A DELETE statement removes the
contents of all columns.)

ANSI
1-310 Informix Guide to SQL: Syntax

DECLARE
The following example contains INFORMIX-ESQL/C code that uses an update
cursor with a DELETE statement to delete the current row. Whenever the row
is deleted, the cursor remains between rows. After you delete data, you must
use a FETCH statement to advance the cursor to the next row before you can
refer to the cursor in a DELETE or UPDATE statement.

EXEC SQL declare q_curs cursor for
select * from customer where lname matches :last_name

for update;

EXEC SQL open q_curs;
for (;;)
{

EXEC SQL fetch q_curs into :cust_rec;
if (strncmp(SQLSTATE, "00", 2) != 0)

break;

/* Display customer values and prompt for answer */
printf("\n%s %s", cust_rec.fname, cust_rec.lname);
printf("\nDelete this customer? ");
scanf("%s", answer);

if (answer[0] == 'y')
EXEC SQL delete from customer where current of q_curs;

if (strncmp(SQLSTATE, "00", 2) != 0)
break;

}
printf("\n");
EXEC SQL close q_curs;

Subset of the SELECT Statement Associated with Cursors

Not all SELECT statements can be associated with an update cursor or a
read-only cursor. If the DECLARE statement includes the FOR UPDATE clause
or the FOR READ ONLY clause, you must observe certain restrictions on the
SELECT statement that is included in the DECLARE statement (either directly
or as a prepared statement).

If the DECLARE statement includes the FOR UPDATE clause, the SELECT
statement must conform to the following restrictions:

■ The statement can select data from only one table.

■ The statement cannot include any aggregate functions.

■ The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, FOR UPDATE, GROUP BY,
INTO TEMP, ORDER BY, UNION, or UNIQUE.
SQL Statements 1-311

DECLARE
If the DECLARE statement includes the FOR READ ONLY clause, the SELECT
statement must conform to the following restrictions:

■ The SELECT statement cannot have a FOR READ ONLY clause.

■ The SELECT statement cannot have a FOR UPDATE clause.

For a complete description of SELECT syntax and usage, see the SELECT
statement on page 1-593.

Insert Cursor
When you associate an INSERT statement with a cursor, the cursor is called an
insert cursor. An insert cursor is a data structure that represents the rows that
the INSERT statement is to add to the database. The insert cursor simply
inserts rows of data; it cannot be used to fetch data. To create an insert cursor,
you associate a cursor with a restricted form of the INSERT statement. The
INSERT statement must include a VALUES clause; it cannot contain an
embedded SELECT statement.

Create an insert cursor if you want to add multiple rows to the database in an
INSERT operation. An insert cursor allows bulk insert data to be buffered in
memory and written to disk when the buffer is full, as the following steps
describe:

1. Use a DECLARE statement to define an insert cursor for the INSERT
statement.

2. Open the cursor with the OPEN statement. The database server
creates the insert buffer in memory and positions the cursor at the
first row of the insert buffer.

3. Put successive rows of data into the insert buffer with the PUT
statement.

4. The database server writes the rows to disk only when the buffer is
full. You can use the CLOSE, FLUSH, or COMMIT WORK statement to
flush the buffer when it is less than full. This topic is discussed
further under the PUT and CLOSE statements.
1-312 Informix Guide to SQL: Syntax

DECLARE
5. Close the cursor with the CLOSE statement when the insert cursor is
no longer needed. You must close an insert cursor to insert any
buffered rows into the database before the program ends. You can
lose data if you do not close the cursor properly.

6. Free the cursor with the FREE statement. The FREE statement releases
the resources that are allocated for an insert cursor.

An insert cursor increases processing efficiency (compared with embedding
the INSERT statement directly). This process reduces communication
between the program and the database server and also increases the speed of
the insertions.

Cursor Characteristics
Structurally, you can declare a cursor with the following cursor
characteristics:

■ As a sequential cursor, which is the default characteristic

■ As a scroll cursor, with the SCROLL keyword

■ As a hold cursor, with the WITH HOLD keywords

A select or function cursor can be either a sequential or scroll cursor. An insert
cursor can only be a sequential cursor. Select, function, and insert cursors can
optionally be hold cursors. The following sections explain these structural
characteristics.

Sequential Cursor

If you use only the CURSOR keyword in a DECLARE statement, you create a
sequential cursor, which can fetch only the next row in sequence from the
active set. The sequential cursor can read through the active set only once
each time it is opened. If you are using a sequential cursor for a select cursor,
on each execution of the FETCH statement, the database server returns the
contents of the current row and locates the next row in the active set.
SQL Statements 1-313

DECLARE
The following INFORMIX-ESQL/C example creates a read-only sequential
cursor in a database that is not ANSI compliant and an update sequential
cursor in an ANSI-compliant database:

EXEC SQL declare s_cur cursor for
select fname, lname into :st_fname, :st_lname
from orders where customer_num = 114;

In addition to select and function cursors, insert cursors can also have the
sequential cursor characteristic. To create an insert cursor, you associate a
sequential cursor with a restricted form of the INSERT statement. (For more
information, see “Insert Cursor” on page 1-312.) The following example
contains INFORMIX-ESQL/C code that declares a sequential insert cursor:

EXEC SQL declare ins_cur cursor for
insert into stock values
(:stock_no,:manu_code,:descr,:u_price,:unit,:u_desc);

Scroll Cursor

When you specify the SCROLL keyword in a DECLARE statement, you create
a scroll cursor, which can fetch rows of the active set in any sequence. The
following example creates a scroll cursor for a SELECT:

DECLARE sc_cur SCROLL CURSOR FOR
SELECT * FROM orders

You can create scroll cursors for select and function cursors but not for insert
cursors. Scroll cursors cannot be declared as FOR UPDATE.

To implement a scroll cursor, the database server creates a temporary table to
hold the active set. With the active set retained as a table, you can fetch the
first, last, or any intermediate rows as well as fetch rows repeatedly without
having to close and reopen the cursor. See the FETCH statement on
page 1-408 for a discussion of these abilities.

The database server retains the active set for a scroll cursor in a temporary
table until the cursor is closed. On a multiuser system, the rows in the tables
from which the active-set rows were derived might change after a copy is
made in the temporary table. (For information about temporary tables, see
the INFORMIX-Universal Server Administrator’s Guide.) If you use a scroll
cursor within a transaction, you can prevent copied rows from changing
either by setting the isolation level to Repeatable Read or by locking the
entire table in share mode during the transaction. (See the SET ISOLATION
statement on page 1-719 and the LOCK TABLE statement on page 1-522.)
1-314 Informix Guide to SQL: Syntax

DECLARE
Hold Cursor

If you use the WITH HOLD keywords in a DECLARE statement, you create a
hold cursor. A hold cursor allows uninterrupted access to a set of rows across
multiple transactions. Ordinarily, all cursors close at the end of a transaction.
A hold cursor does not close; it remains open after a transaction ends.

You can use the WITH HOLD keywords to declare select and function cursors
sequential and scroll), and insert cursors. These keywords follow the
CURSOR keyword in the DECLARE statement. The following example creates
a sequential hold cursor for a SELECT:

DECLARE hld_cur CURSOR WITH HOLD FOR
SELECT customer_num, lname, city FROM customer

You can use a select hold cursor as the following ESQL/C code example
shows. This code fragment uses a hold cursor as a master cursor to scan one
set of records and a sequential cursor as a detail cursor to point to records that
are located in a different table. The records that the master cursor scans are
the basis for updating the records to which the detail cursor points. The
COMMIT WORK statement at the end of each iteration of the first WHILE loop
leaves the hold cursor c_master open but closes the sequential cursor
c_detail and releases all locks. This technique minimizes the resources that
the database server must devote to locks and unfinished transactions, and it
gives other users immediate access to updated rows.

EXEC SQL BEGIN DECLARE SECTION;
int p_custnum,
int save_status;
long p_orddate;

EXEC SQL END DECLARE SECTION;

EXEC SQL prepare st_1 from
'select order_date

from orders where customer_num = ? for update';
EXEC SQL declare c_detail cursor for st_1;

EXEC SQL declare c_master cursor with hold for
select customer_num

from customer where city = 'Pittsburgh';

EXEC SQL open c_master;
if(SQLCODE==0) /* the open worked */

EXEC SQL fetch c_master into :p_custnum; /* discover first customer */
while(SQLCODE==0) /* while no errors and not end of pittsburgh customers */

{
EXEC SQL begin work; /* start transaction for customer p_custnum */
EXEC SQL open c_detail using :p_custnum;
if(SQLCODE==0) /* detail open succeeded */

EXEC SQL fetch c_detail into :p_orddate; /* get first order */
while(SQLCODE==0) /* while no errors and not end of orders */
SQL Statements 1-315

DECLARE
{
EXEC SQL update orders set order_date = '08/15/94'

where current of c_detail;
if(status==0) /* update was ok */

EXEC SQL fetch c_detail into :p_orddate; /* next order */
}

if(SQLCODE==SQLNOTFOUND) /* correctly updated all found orders */
EXEC SQL commit work; /* make updates permanent, set status */

else /* some failure in an update */
{
save_status = SQLCODE; /* save error for loop control */
EXEC SQL rollback work;
SQLCODE = save_status; /* force loop to end */
}

if(SQLCODE==0) /* all updates, and the commit, worked ok */
EXEC SQL fetch c_master into :p_custnum; /* next customer? */

}
EXEC SQL close c_master;

When you associate a hold cursor with an insert cursor, you can use transac-
tions to break a long series of PUT statements into smaller sets of PUT
statements. Instead of waiting for the PUT statements to fill the buffer and
trigger an automatic write to the database, you can execute a COMMIT WORK
statement to flush the row buffer. If you use a hold cursor, the COMMIT WORK
statement commits the inserted rows but leaves the cursor open for further
inserts. This method can be desirable when you are inserting a large number
of rows, because pending uncommitted work consumes database server
resources.

Use either the CLOSE statement to close the hold cursor explicitly or the
CLOSE DATABASE or DISCONNECT statements to close it implicitly. The
CLOSE DATABASE statement closes all cursors.

Associating a Cursor With a Prepared Statement
The PREPARE statement lets you assemble the text of an SQL statement at
runtime and pass the statement text to the database server for execution. If
you anticipate that a dynamically prepared SELECT statement or EXECUTE
FUNCTION statement that returns values could produce more than one row
of data, the prepared statement must be associated with a cursor. (See the
PREPARE statement on page 1-538 for more information about preparing SQL
statements.)

The result of a PREPARE statement is a statement identifier (statement id or id
variable), which is a data structure that represents the prepared statement
text. You declare a cursor for the statement text by associating a cursor with
the statement identifier.
1-316 Informix Guide to SQL: Syntax

DECLARE
You can associate a sequential cursor with any prepared SELECT or EXECUTE
FUNCTION statement. You cannot associate a scroll cursor with a prepared
INSERT statement or with a SELECT statement that was prepared to include a
FOR UPDATE clause.

After a cursor is opened, used, and closed, a different statement can be
prepared under the same statement identifier. In this way, it is possible to use
a single cursor with different statements at different times. The cursor must
be redeclared before you use it again.

The following example contains INFORMIX-ESQL/C code that prepares a
SELECT statement and declares a sequential cursor for the prepared
statement text. The statement identifier st_1 is first prepared from a SELECT
statement that returns values; then the cursor c_detail is declared for st_1.

EXEC SQL prepare st_1 from
'select order_date

from orders where customer_num = ?';
EXEC SQL declare c_detail cursor for st_1;

If you want use a prepared SELECT statement to modify data, add a FOR
UPDATE clause to the statement text that you wish to prepare, as the
following INFORMIX-ESQL/C example shows:

EXEC SQL prepare sel_1 from 'select * from customer for update';
EXEC SQL declare sel_curs cursor for sel_1;

Associating a Cursor With a Collection Variable
The DECLARE statement allows you to declare a cursor for an ESQL/C
collection variable. Such a cursor is called a collection cursor. You use a
collection variable to access the elements of a collection (SET, MULTISET, LIST)
column. Use a cursor when you want to access one or more elements in a
collection variable.

Tip: To access only one element of a collection variable, you do not need to declare a
cursor. For information on how to select a single element, see “Selecting From a Col-
lection Variable” on page 1-610. For information on how to insert a single element,
see “Inserting Into a Collection Variable” on page 1-506.
SQL Statements 1-317

DECLARE
You can declare the following types of cursors for a collection variable:

■ A select cursor for a collection variable

Include the Collection Derived Table clause with the SELECT
statement that you associate with the cursor.

■ An insert cursor for a collection variable

Include the Collection Derived Table clause with the INSERT
statement that you associate with the cursor.

The Collection Derived Table clause identifies the collection variable for
which to declare the cursor. For more information on the Collection Derived
Table clause, see page 1-827.

A Select Cursor for a Collection Variable

To declare a select cursor for a collection variable, include the Collection
Derived Table clause with the SELECT statement that you associate with the
cursor. A select cursor allows you to select one or more elements from the
collection variable. The DECLARE for this select cursor has the following
restrictions:

■ The select cursor is an update cursor.

The DECLARE statement cannot include the FOR READ ONLY clause
that specifies the read-only cursor mode.

■ The select cursor must be a sequential cursor.

The DECLARE statement cannot specify the SCROLL or WITH HOLD
cursor characteristics.
1-318 Informix Guide to SQL: Syntax

DECLARE
The SELECT statement that you associate with the cursor also has some
restrictions:

■ The SELECT statement cannot include the following clauses and
options: WHERE, GROUP BY, ORDER BY, HAVING, INTO TEMP, and
WITH REOPTIMIZATION.

■ The select list of the SELECT cannot contain expressions.

■ The select list must be an asterisk (*) if the collection contains
elements of opaque, distinct, built-in, or other collection data types.

■ Column names in the select list must be simple column names.

These columns cannot use the following syntax:
database@server:table.column

When you declare a select cursor for a collection variable, the Collection
Derived Table clause of the SELECT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. For example, the following
DECLARE statement declares a select cursor for a collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(integer not null) a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare set_curs cursor for

select * from table(:a_set);

To select the element(s) from the collection variable, use the FETCH statement
with the INTO clause. For more information, see “Fetching From a Collection
Cursor” on page 1-419.

If you want to modify the elements of the collection variable, declare the
select cursor as an update cursor with the FOR UPDATE keywords. You can
then use the WHERE CURRENT OF clause of the DELETE and UPDATE state-
ments to delete or update elements of the collection. For more information,
see the DELETE and UPDATE statements in this manual.
SQL Statements 1-319

DECLARE
A collection cursor that includes a SELECT statement with the Collection
Derived Table clause allows you to access the elements in a collection
variable. To select elements, follow these steps:

1. Create a client collection variable in your ESQL/C program.

2. Declare the collection cursor for the SELECT statement with the
DECLARE statement and open this cursor with the OPEN statement.

3. Fetch the element(s) from the collection cursor with the FETCH
statement and the INTO clause.

4. If necessary, perform any updates or deletes on the fetched data and
save the modified collection variable in the collection column.

Once the collection variable contains the correct elements, you can
use the UPDATE statement or the INSERT statement on a table name
to save the contents of the collection variable in a collection column
(SET, MULTISET, or LIST).

5. Close the collection cursor with the CLOSE statement.

For a code example that uses a collection cursor for a SELECT statement, see
“Fetching From a Collection Cursor” on page 1-419. For more information on
how to use ESQL/C collection variables, see the discussion of complex data
types in the INFORMIX-ESQL/C Programmer’s Manual.

An Insert Cursor For a Collection Variable

To declare an insert cursor for a collection variable, include the Collection
Derived Table clause with the INSERT statement that you associate with the
cursor. An insert cursor allows you to insert one or more elements in the
collection. The insert cursor must be a sequential cursor; the DECLARE
statement cannot specify the WITH HOLD cursor characteristic.
1-320 Informix Guide to SQL: Syntax

DECLARE
When you declare an insert cursor for a collection variable, the Collection
Derived Table clause of the INSERT statement must contain the name of the
collection variable. You cannot specify an input parameter (the question-
mark (?) symbol) for the collection variable. However, you can use an input
parameter in the VALUES clause of the INSERT statement. This parameter
indicates that the collection element is to be provided later by the FROM
clause of the PUT statement. For example, the following DECLARE statement
declares an insert cursor for the a_set collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(smallint not null) a_mset;
int an_element;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL declare mset_curs cursor for

insert into table(:a_mset)
values (?);

EXEC SQL open mset_curs;
while (1)
{
...

EXEC SQL put mset_curs from :an_element;
...
}

To insert the element(s) into the collection variable, use the PUT statement
with the FROM clause. For more information, see “Inserting into a Collection
Cursor” on page 1-560.

A collection cursor that includes an INSERT statement with the Collection
Derived Table clause allows you to insert many elements into a collection
variable. To insert elements, follow these steps:

1. Create a client collection variable in your ESQL/C program.

2. Declare the collection cursor for the INSERT statement with the
DECLARE statement and open the cursor with the OPEN statement.

3. Put the element(s) into the collection cursor with the PUT statement
and the FROM clause.

4. Once the collection variable contains all the elements, you then use
the UPDATE statement or the INSERT statement on a table name to
save the contents of the collection variable in a collection column
(SET, MULTISET, or LIST).

5. Close the collection cursor with the CLOSE statement.
SQL Statements 1-321

DECLARE
For a code example that uses a collection cursor for an INSERT statement, see
“Inserting into a Collection Cursor” on page 1-560. For more information on
how to use ESQL/C collection variables, see the discussion on complex data
types INFORMIX-ESQL/C Programmer’s Manual.

Using Cursors within Transactions
To roll back a modification, you must perform the modification within a
transaction. A transaction in a database that is not ANSI compliant begins
only when the BEGIN WORK statement is executed.

In ANSI-compliant databases, transactions are always in effect. ♦

 The database server enforces the following guidelines for insert and update
cursors. These guidelines ensure that modifications can be committed or
rolled back properly:

■ Open an insert or update cursor within a transaction.

■ Include PUT and FLUSH statements within one transaction.

■ Modify data (update, insert, or delete) within one transaction.

The database server lets you open and close a hold cursor for an update
outside a transaction; however, you should fetch all the rows that pertain to
a given modification and then perform the modification all within a single
transaction. You cannot open and close hold or update cursors outside a
transaction.

The following example produces an error when the database server tries to
execute the UPDATE statement:

Results in error

EXEC SQL declare q_curs cursor for
select customer_num, fname, lname from customer
where lname matches :last_name

for update;
EXEC SQL open q_curs;
EXEC SQL fetch q_curs into :cust_rec; /* fetch before begin */
EXEC SQL begin work;
EXEC SQL update customer set lname = 'Smith'

where current of q_curs;
/* error here */
EXEC SQL commit work;

ANSI
1-322 Informix Guide to SQL: Syntax

DECLARE
The following example does not produce an error when the database server
tries to execute the UPDATE statement:

Runs successfully

EXEC SQL declare q_curs cursor for
select customer_num, fname, lname from customer
where lname matches :last_name

for update;
EXEC SQL open q_curs;
EXEC SQL begin work;
EXEC SQL fetch q_curs into :cust_rec; /* fetch after begin */
EXEC SQL update customer set lname = 'Smith'

where current of q_curs;
/* no error */
EXEC SQL commit work;

When you update a row within a transaction, the row remains locked until
the cursor is closed or the transaction is committed or rolled back. If you
update a row when no transaction is in effect, the row lock is released when
the modified row is written to disk.

If you update or delete a row outside a transaction, you cannot roll back the
operation.

In a database that uses transactions, you cannot open an insert cursor outside
a transaction unless it was also declared with hold.

References
See the CLOSE, DELETE, EXECUTE FUNCTION, FETCH, FREE, INSERT, OPEN,
PREPARE, PUT, SELECT, and UPDATE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of cursors and data
modification in Chapter 5 and Chapter 6, respectively.
SQL Statements 1-323

DELETE
DELETE
Use the DELETE statement to delete one or more rows from a table, or one or
more elements in an SPL or INFORMIX-ESQL/C collection variable.

Syntax

Element Purpose Restrictions Syntax
cursor name The name of the cursor whose

current row or current collection
element will be deleted

The cursor must have been
previously declared in an SPL
FOREACH statement or a
DECLARE statement with a FOR
UPDATE clause.

Identifier, p. 1-962

DELETE
FROM

Table
Name

p. 1-1044

WHERE Condition
p. 1-831

Collection Derived
Table, p. 1-827

WHERE CURRENT OF cursor
name

cursor
nameCURRENT OF

E/C

E/C

DB

SQLE

View
Name

p. 1-1047

ONLY ()Table
Name

p. 1-1044

+

Synonym
Name

p. 1-1042

SPL

+

E/C
1-324 Informix Guide to SQL: Syntax

DELETE
Usage
Use the DELETE statement to remove either of the following types of objects:

■ A row in a table: a single row, a group of rows, all rows in a table, or
rows from multiple tables in a table hierarchy

■ An element in a collection variable ♦

For information on how to delete an element from a collection variable, see
“Deleting from a Collection Variable” on page 1-330. The other sections of
this DELETE statement describe how to remove a row in a table.

If you use the DELETE statement without a WHERE clause, all the rows in the
table are deleted.

If you use the DELETE statement to remove rows of a supertable, rows from
both the supertable and its subtables can be deleted. To delete rows from the
supertable only, you must use the ONLY keyword prior to the table name, as
the following example shows:

DELETE FROM ONLY(super_tab)
WHERE name = "johnson"

Warning: If you use the DELETE statement on a supertable without the ONLY
keyword and without a WHERE clause, all rows of the supertable and its subtables
are deleted.

If you use the DELETE statement outside a transaction in a database that uses
transactions, each DELETE statement that you execute is treated as a single
transaction.

Each row affected by a DELETE statement within a transaction is locked for
the duration of the transaction; therefore, a single DELETE statement that
affects a large number of rows locks the rows until the entire operation is
complete. If the number of rows affected is very large, you might exceed the
limits your operating system places on the maximum number of simulta-
neous locks. If this occurs, you can either reduce the scope of the DELETE
statement or lock the entire table before you execute the statement.

If you specify a view name, the view must be updatable. See “Updating
Through Views” on page 1-290 for an explanation of an updatable view.

E/C

SPL
SQL Statements 1-325

DELETE
If you omit the WHERE clause while you are working within the SQL menu,
DB-Access prompts you to verify that you want to delete all rows from a table.
You do not receive a prompt if you run the DELETE statement within a
command file. ♦

Statements are always within an implicit transaction in an ANSI-compliant
database; therefore, you cannot have a DELETE statement outside a
transaction. ♦

Deleting Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted. A
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for very large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function
called destroy(). When you use the DELETE statement to delete a row that
contains one of these opaque types, the database server automatically
invokes the destroy() function for the type. The destroy() support function
can decide how remove the data, regardless of where it is stored. For more
information on the destroy() support function, see the Extending
INFORMIX-Universal Server: Data Types manual.

Deleting Rows That Contain Collection Data Types

When a row contains a column that is a collection data type (LIST, MULTISET,
or SET), you can search for a particular element in the collection, and delete
the row or rows in which the element is found. For example, the following
statement deletes any rows from the new_tab table in which the set_col
column contains the element jimmy smith:

DELETE FROM new_tab
WHERE 'jimmy smith' IN set_col

DB

ANSI
1-326 Informix Guide to SQL: Syntax

DELETE
Using Cascading Deletes

Use the ON DELETE CASCADE option of the REFERENCES clause on either the
CREATE TABLE or ALTER TABLE statement to specify that you want deletes to
cascade from one table to another. For example, the stock table contains the
column stock_num as a primary key. The catalog and items tables each
contain the column stock_num as foreign keys with the ON DELETE
CASCADE option specified. When a delete is performed from the stock table,
rows are also deleted in the catalog and items tables, which are referred
through the foreign keys.

If a cascading delete is performed without a WHERE clause, all rows in the
parent table (and subsequently, the affected child tables) are deleted.

WHERE Clause
Use the WHERE clause to specify one or more rows that you want to delete.
The WHERE conditions are the same as the conditions in the SELECT
statement. For example, the following statement deletes all the rows of the
items table where the order number is less than 1034:

DELETE FROM items
WHERE order_num < 1034

If you include a WHERE clause that selects all rows in the table, DB-Access
gives no prompt and deletes all rows. ♦

Deleting and the WHERE Clause

If you delete from a table in an ANSI-compliant database with a DELETE that
contains a WHERE clause and no rows are found, that database server issues
a warning. You can detect this warning condition in either of the following
ways:

■ The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value ‘02000.’ In an SQL API application, the SQLSTATE
variable contains this same value.

■ In an SQL API application, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

DB

E/C
SQL Statements 1-327

DELETE
The database server also sets SQLSTATE and SQLCODE to these values if the
DELETE ... WHERE ... is a part of a multistatement prepare and the database
server returns no rows. ♦

In a database that is not ANSI compliant, the database server does not return
a warning when it finds no matching rows for the WHERE clause of a DELETE
statement. The SQLSTATE code is ‘00000’ and the SQLCODE code is zero (0).
However, if the DELETE ... WHERE ... is a part of a multistatement prepare, and
no rows are returned, the database server does issue a warning. It sets
SQLSTATE to ‘02000’ and SQLCODE value to 100.

For additional information about the SQLSTATE code, see the GET
DIAGNOSTICS statement in this manual. For information about the
SQLCODE code, see the description of the sqlca structure in the Informix
Guide to SQL: Tutorial.

WHERE CURRENT OF Clause
You can use the WHERE CURRENT OF clause to delete either of the following
objects:

■ The current row of the active set of a cursor

■ The current element of a collection cursor (INFORMIX-ESQL/C only)

You access both of these objects with an update cursor. An update cursor is a
sequential cursor that is associated with a SELECT statement but can modify
and delete the contents of the cursor. For more information on the update
cursor, see page 1-307. ♦

To use the WHERE CURRENT OF clause, you must have previously used the
DECLARE statement with the FOR UPDATE clause to define the cursor name for
the update cursor. (See the DECLARE statement on page 1-300.) ♦

Before you can use the WHERE CURRENT OF clause, you must declare a
cursor with the FOREACH statement. (See the FOREACH statement on
page 2-27.)♦

All select cursors are potentially update cursors in ANSI-compliant
databases. You can use the WHERE CURRENT OF clause with any select
cursor. ♦

ESQL

SPL

ESQL

SPL

ANSI
1-328 Informix Guide to SQL: Syntax

DELETE
Deleting the Current Row

When you specify a table or view name in the FROM clause of the SELECT, the
DECLARE statement defines a cursor that populates an active set with the
rows of the specified tables or views. The DELETE....WHERE CURRENT OF
statement deletes the current row of the active set of a cursor. When you use
the WHERE CURRENT OF clause, the DELETE statement removes the row of
the active set at the current position of the cursor. After the deletion, no
current row exists; you cannot use the cursor to delete or update a row until
you reposition the cursor with a FETCH statement. ♦

Deleting a Collection Element

You declare a collection cursor when you associate a cursor with SELECT
statement that includes a Collection Derived Table clause. You use one of the
following statements to declare a collection cursor:

■ In an ESQL/C program, use the DECLARE statement.

For more information, see “Associating a Cursor With a Collection
Variable” on page 1-317 in the DECLARE statement.

■ In an SPL routine, use the FOREACH statement.

For more information, see the FOREACH statement on page 2-27.

A collection cursor is an update cursor by default. However, you can
optionally specify the FOR UPDATE clause with the SELECT statement. With
an update cursor, you can use the DELETE...WHERE CURRENT OF statement
to delete the current element of a collection cursor. For more information, see
“Deleting from a Collection Variable” on page 1-330.

Important: You can only declare a select cursor on a collection variable. Neither
INFORMIX-ESQL/C nor SPL supports cursors on row variables. For more informa-
tion, see “Updating a Row Variable” on page 1-798.♦

ESQL

SPL

ESQL

SPL
SQL Statements 1-329

DELETE
Deleting from a Collection Variable
The DELETE statement with the Collection Derived Table clause allows you
to delete elements from a collection variable. The Collection Derived Table
clause identifies the collection variable in which to delete the elements. For
more information, see “Collection Derived Table” on page 1-827.

In an INFORMIX-ESQL/C program, declare a host variable of type collection
for a collection variable. This collection variable can be typed or untyped. ♦

In an SPL routine, declare a variable of type COLLECTION, LIST, MULTISET, or
SET for a collection variable. This collection variable can be typed or
untyped. ♦

To delete elements, follow these steps:

1. Create a collection variable in your SPL routine or ESQL/C program.

2. Optionally, select a collection column into the collection variable
with the SELECT statement (without the Collection Derived Table
clause).

3. Delete elements of the collection variable with the DELETE statement
and the Collection Derived Table Clause.

4. After the collection variable contains the correct elements, use the
INSERT or UPDATE statement on a table name to save the collection
variable in the collection column (SET, MULTISET, or LIST).

The DELETE statement and the Collection Derived Table clause allow you to
perform the following operations on a collection variable:

■ Delete a particular element in the collection.

You must declare an update cursor for the collection variable and use
DELETE with the WHERE CURRENT OF clause. For more information
on how to use an update cursor with ESQL/C, see the DECLARE
statement on page 1-300. For more information on how to use an
update cursor with SPL, see “FOREACH” on page 2-27.

The application or SPL routine must position the update cursor on
the element to be deleted and then use DELETE...WHERE CURRENT
OF to delete this value. For more information on the WHERE
CURRENT OF clause of DELETE, see page 1-328.

E/C

SPL

E/C

SPL
1-330 Informix Guide to SQL: Syntax

DELETE
■ Delete all elements in the collection.

Use the DELETE statement (without the WHERE CURRENT OF clause).
No cursor is required to delete all elements of a collection.

For example, the following DELETE statement removes all elements
in the a_list ESQL/C collection variable:

EXEC SQL delete from table(:a_list);

♦
You could also use the following statements in an SPL routine:

DEFINE a COLLECTION;
DELETE FROM TABLE (a);

♦

A DELETE of an element or elements in a collection variable cannot include
a WHERE clause.

The collection variable stores the elements of the collection. However, it has
no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the
collection column with one of the following SQL statements:

■ To update the collection column in the table with the collection
variable, use an UPDATE statement on a table or view name and
specify the collection variable in the SET clause.

For more information, see “Updating Collection Columns” on
page 1-786 in the UPDATE statement.

■ To insert a collection in a column, use the INSERT statement on a table
or view name and specify the collection variable in the VALUES
clause.

For more information, see “Inserting Values into Collection
Columns” on page 1-501 in the INSERT statement.

E/C

SPL
SQL Statements 1-331

DELETE
Suppose that the set_col column of a row in the table1 table is defined as a
SET and for one row contains the values {1,8,4,5,2}. The following ESQL/C
code fragment uses an update cursor and a DELETE statement with a WHERE
CURRENT OF clause to delete the element whose value is 4:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(smallint not null) a_set;
int an_int;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate collection :a_set;
EXEC SQL select set_col into :a_set from table1

where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:a_set)
for update;

EXEC SQL open set_curs;
while (i<coll_size)
{

EXEC SQL fetch set_curs into :an_int;
if (an_int = 4)
{

EXEC SQL delete from table(:a_set)
where current of set_curs;

break;
}
i++;

}

EXEC SQL update table1 set set_col = :a_set
where int_col = 6;

EXEC SQL deallocate collection :a_set;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

After the DELETE statement executes, this collection variable contains the
elements {1,8,5,2}. The UPDATE statement at the end of this code fragment
saves the modified collection into the set_col column of the database.
Without this UPDATE statement, the collection column never has element 4
deleted.

For information on how to use collection host variables in an ESQL/C
program, see the discussion of complex data types in the INFORMIX-ESQL/C
Programmer’s Manual. ♦
1-332 Informix Guide to SQL: Syntax

DELETE
You can also delete the element with the value 4 from the set {1,8,4,5,2} with
an SPL routine, as the following example shows.

CREATE_PROCEDURE test6()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);

SELECT set_col INTO b FROM table1
WHERE id = 6;
-- Select the set in one row from the table
-- into a collection variable

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

-- Select each element one at a time from
-- the collection derived table b into a

IF a = 4 THEN
DELETE FROM TABLE(b)

WHERE CURRENT OF cursor1;
-- Delete the element if it has the value 4

EXIT FOREACH;
END IF;

END FOREACH;

UPDATE table1 SET set_col = b
WHERE id = 6;
-- Update the base table with the new collection

END PROCEDURE;

This SPL routine defines two variables, a and b, each to hold a SET of
SMALLINT values. The first SELECT statement selects a SET column from one
row of table1 into b. Then, the routine declares a cursor that selects one
element at a time from b into a. When the cursor is positioned on the element
with the value 4, the DELETE statement deletes that element from b. Last, the
UPDATE statement updates the row of table1 with the new collection that is
stored in b.

For information on how to use collection variables in an SPL routine, see
Chapter 14 of the Informix Guide to SQL: Tutorial. ♦

SPL
SQL Statements 1-333

DELETE
Deleting a Row Variable
The DELETE statement does not support a row variable in the Collection
Derived Table clause. A row variable must have a value for each field. For
more information, see “Updating a Row Variable” on page 1-798. ♦

References
See the DECLARE, INSERT, OPEN, and SELECT statements in Chapter 1 of this
manual. See the FOREACH statement in Chapter 2 of this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of cursors and data
modification in Chapter 5 and Chapter 6, respectively, and the discussion of
stored routines in Chapter 14. In the Guide to GLS Functionality, see the
discussion of the GLS aspects of the DELETE statement.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex data types in the INFORMIX-ESQL/C
Programmer’s Manual.

E/C

SPL
1-334 Informix Guide to SQL: Syntax

DESCRIBE
DESCRIBE
Use the DESCRIBE statement to obtain information about a prepared
statement before you execute it. The information can be stored in a system-
descriptor area or in an sqlda structure.

Syntax

Element Purpose Restrictions Syntax
descriptor A quoted string that identifies a

system-descriptor area to which
values are assigned

The system-descriptor area must
have been previously allocated
with the ALLOCATE
DESCRIPTOR statement.

Quoted String,
p. 1-1010

descriptor
variable

A host variable that holds the
value of descriptor

The same restrictions apply to
descriptor variable as apply to
descriptor.

Variable name must
conform to
language-specific
rules for variable
names.

sqlda pointer A pointer to an sqlda structure You cannot begin an sqlda
pointer with a dollar sign ($) or a
colon (:). You must use an sqlda
structure if you are using
dynamic SQL statements.

See the discussion of
sqlda structure in the
INFORMIX-ESQL/C
Programmer’s
Manual.

 (1 of 2)

INTO sqlda pointer

+

statement
id variable

ESQL

DESCRIBE statement id
USING

SQL DESCRIPTOR 'descriptor '

descriptor
variable
SQL Statements 1-335

DESCRIBE
Usage
The DESCRIBE statement allows you to determine, at runtime, the following
information about a prepared statement:

■ The DESCRIBE statement returns the prepared statement type.

■ The DESCRIBE statement can determine whether an UPDATE or
DELETE statement contains a WHERE clause.

■ For a SELECT, EXECUTE FUNCTION, or INSERT statement, the
DESCRIBE statement also returns the number, data types and size of
the values, and the name of the column or expression that the query
returns.

With this information, you can write code to allocate memory to hold
retrieved values and display or process them after they are fetched.

Describing the Statement Type
The DESCRIBE statement takes a statement identifier from a PREPARE
statement as input. When the DESCRIBE statement executes, the database
server sets the value of the SQLCODE (the sqlcode field of the sqlca) to
indicate the statement type (that is, the keyword with which the statement
begins). If the prepared statement text contains more than one SQL statement,
the DESCRIBE statement returns the type of the first statement in the text.

statement id The statement identifier for a
prepared SQL statement

The statement identifier must be
defined in a previous PREPARE
statement.

PREPARE, p. 1-538

statement id
variable

A host variable that contains the
value of statement id

The statement identifier must be
defined in a previous PREPARE
statement. The variable must be
a character data type.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)
1-336 Informix Guide to SQL: Syntax

DESCRIBE
SQLCODE is set to zero to indicate a SELECT statement without an INTO TEMP
clause. This situation is the most common. For any other SQL statement,
SQLCODE is set to a positive integer. See the discussion on exception
handling in the INFORMIX-ESQL/C Programmer’s Manual for more infor-
mation about possible SQLCODE values after a DESCRIBE statement.

You can test the number against the constant names that are defined. In
INFORMIX-ESQL/C, the constant names are defined in the sqlstype.h header
file. A printed list of the possible values and their constant names appears in
the INFORMIX-ESQL/C Programmer’s Manual.

The DESCRIBE statement uses the SQLCODE field differently than any other
statement, possibly returning a nonzero value when it executes successfully.
You can revise standard error-checking routines to accommodate this
behavior, if desired.

Checking for Existence of a WHERE Clause
If the DESCRIBE statement detects that a prepared statement contains an
UPDATE or DELETE statement without a WHERE clause, the DESCRIBE
statement sets the following sqlca variable to W.

Without a WHERE clause, the update or delete action is applied to the entire
table. Check this variable to avoid unintended global changes to your table.

Product Field Name

ESQL/C sqlca.sqlwarn.sqlwarn4
SQL Statements 1-337

DESCRIBE
Describing SELECT, EXECUTE FUNCTION, or INSERT
If the prepared statement text includes a SELECT statement without an INTO
TEMP clause, an EXECUTE FUNCTION statement, or an INSERT statement, the
DESCRIBE statement also returns a description of each column or expression
that is included in the SELECT, EXECUTE FUNCTION, or INSERT list. You can
store these descriptions in one of the following dynamic-management
structures:

■ A system-descriptor area

For more information, see “USING SQL DESCRIPTOR Clause”.

■ An sqlda structure

For more information, see “INTO sqlda pointer Clause” on
page 1-340.

These dynamic-management structures provide the following information:

■ The data type of the column, as defined in the table

■ The length of the column, in bytes

■ The name of the column or expression

USING SQL DESCRIPTOR Clause
If the prepared statement contains parameters for which the number of
parameters or parameter data types is to be supplied at runtime, you can
describe these input values in a system-descriptor area. A system-descriptor
area describes the data type and memory location of one or more values.

You can also use an sqlda structure to dynamically supply parameters.
However, a system-descriptor area conforms to the X/Open standards. ♦

The USING SQL DESCRIPTOR clause lets you store the description of a SELECT,
INSERT, or EXECUTE FUNCTION list in a system-descriptor area that an
ALLOCATE DESCRIPTOR statement creates. You can obtain information about
the resulting columns of a prepared statement through a system-descriptor
area.

X/O
1-338 Informix Guide to SQL: Syntax

DESCRIBE
The following example shows the use of a system-descriptor area in a
DESCRIBE statement. In the first example system-descriptor area is a quoted
string; in the second example, it is a host variable name.

main()
{
. . .
EXEC SQL allocate descriptor 'desc1' with max 3;
EXEC SQL prepare curs1 FROM 'select * from tab';
EXEC SQL describe curs1 using sql descriptor 'desc1';
}

EXEC SQL describe curs1 using sql descriptor :desc1var;

The DESCRIBE...USING SQL DESCRIPTOR statement performs the following
tasks on a system-descriptor area:

■ It sets the COUNT field in the system-descriptor area to the number
of values in the SELECT, EXECUTE FUNCTION, or INSERT list. If
COUNT is greater than the number of item descriptors (occurrences)
in the system-descriptor area, the system returns an error.

■ It sets the TYPE, LENGTH, NAME, SCALE, PRECISION, and NULLABLE
fields in the item descriptor.

If the column has an opaque data type, DESCRIBE...USING SQL
DESCRIPTOR sets the EXTYPEID, EXTYPENAME, EXTYPELENGTH,
EXTYPEOWNERLENGTH, and EXTYPEOWNERNAME fields of the
item descriptor.

■ It allocates memory for the DATA field in each item descriptor, based
on the TYPE and LENGTH information.

After a DESCRIBE statement is executed, the SCALE and PRECISION fields
contain the scale and precision of the column, respectively. If SCALE and
PRECISION are set in the SET DESCRIPTOR statement, and TYPE is set to
DECIMAL or MONEY, the LENGTH field is modified to adjust for the scale and
precision of the decimal value. If TYPE is not set to DECIMAL or MONEY, the
values for SCALE and PRECISION are not set, and LENGTH is unaffected.

You can modify the system-descriptor-area information with the SET
DESCRIPTOR statement. You must modify the system-descriptor area to show
the address in memory that is to receive the described value. You can change
the data type to another compatible type. This change causes data conversion
to take place when the data is fetched.
SQL Statements 1-339

DESCRIBE
You can use the system-descriptor area in statements that support a USING
SQL DESCRIPTOR clause, such as EXECUTE, FETCH, OPEN, and PUT.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

INTO sqlda pointer Clause
If the prepared statement contains parameters for which the number of
parameters or their data types is to be supplied at runtime, you can describe
these input values in an sqlda structure. An sqlda structure describes the
data type and memory location of one or more values.

The INTO sqlda pointer clause lets you allocate memory for an sqlda structure
and store its address in an sqlda pointer. The DESCRIBE statement fills in the
allocated memory with descriptive information for a SELECT, INSERT, or
EXECUTE FUNCTION list.

The DESCRIBE statement sets the sqlda.sqld field to the number of values in
the SELECT, INSERT, or EXECUTE FUNCTION list. The sqlda structure also
contains an array of data descriptors (sqlvar structures), one for each value
in the SELECT, INSERT, or EXECUTE FUNCTION list. After a DESCRIBE
statement is executed, the sqlda.sqlvar structure has the sqltype, sqllen, and
sqlname fields set.

If the column has an opaque data type, DESCRIBE...INTO sets the sqlxid,
sqltypename, sqltypelen, sqlownerlen, and sqlownername fields of the
item descriptor.

The DESCRIBE statement allocates memory for an sqlda pointer once it is
declared in a program. However, the application program must designate the
storage area of the sqlda.sqlvar.sqldata fields.

See the INFORMIX-ESQL/C Programmer’s Manual for further information on
the sqlda structure.
1-340 Informix Guide to SQL: Syntax

DESCRIBE
Describing a Collection Variable
The DESCRIBE statement can provide this information about a collection
variable when you use the USING SQL DESCRIPTOR or INTO clause.

You must perform the DESCRIBE statement after you open the select or insert
cursor. Otherwise, DESCRIBE cannot get information about the collection
variable because it is the OPEN...USING statement that specifies the name of
the collection variable to use.

The following ESQL/C code fragment shows how to dynamically select the
elements of the :a_set collection variable into a system-descriptor area called
desc1:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_set;
int i, set_count;
int element_type, element_value;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :a_set;
EXEC SQL allocate descriptor 'desc1';

EXEC SQL select set_col into :a_set from table1;

EXEC SQL prepare set_id from
'select * from table(?)'

EXEC SQL declare set_curs cursor for set_id;
EXEC SQL open set_curs using :a_set;
EXEC SQL describe set_id using sql descriptor 'desc1';

do
{

EXEC SQL fetch set_curs using sql descriptor
'desc1';

...
EXEC SQL get descriptor 'desc1' :set_count =

count;
for (i = 1; i <= set_count; i++)
{

EXEC SQL get descriptor 'desc1' value :i
:element_type = TYPE;

switch
{

SQL Statements 1-341

DESCRIBE
case SQLINTEGER:
EXEC SQL get descriptor 'desc1' value

:i
:element_value = data;

...
} /* end switch */

} /* end for */
} while (SQLCODE == 0);

EXEC SQL close set_curs;
EXEC SQL free set_curs;
EXEC SQL free set_id;
EXEC SQL deallocate collection :a_set;
EXEC SQL deallocate descriptor 'desc1';

References
See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE, PUT, and SET
DESCRIPTOR statements in this manual for further information about using
dynamic management statements.

In the Informix Guide to SQL: Tutorial, see the discussion of the DESCRIBE
statement in Chapter 5.

For further information about how to use a system-descriptor area or an
sqlda pointer with a FETCH or an INSERT statement, refer to the
INFORMIX-ESQL/C Programmer’s Manual.
1-342 Informix Guide to SQL: Syntax

DISCONNECT
DISCONNECT
The DISCONNECT statement terminates a connection between an application
and a database server.

Syntax

Element Purpose Restrictions Syntax
connection
name

Quoted string that identifies a
connection to be terminated

Specified connection name must
match a connection name
assigned by the CONNECT
statement.

Quoted String,
p. 1-1010

conn_nm
variable

Host variable that holds the
value of connection name

Variable must be a fixed-length
character data type. Specified
connection name must match a
connection name assigned by the
CONNECT statement.

Variable name must
conform to
language-specific
rules for variable
names.

DISCONNECT CURRENT

conn_nm variable

ALL

DEFAULT

ESQL

+

E/C

DB

SQLE

'connection name '
SQL Statements 1-343

DISCONNECT
Usage
The DISCONNECT statement lets you terminate a connection to a database
server. If a database is open, it closes before the connection drops. Even if you
made a connection to a specific database only, that connection to the database
server is terminated by the DISCONNECT statement.

You cannot use the PREPARE statement for the DISCONNECT statement.

If you disconnect a specific connection using connection name or conn_nm
variable, DISCONNECT generates an error if the specified connection is not a
current or dormant connection.

A DISCONNECT statement that does not terminate the current connection
does not change the context of the current environment (the connection
context). ♦

DEFAULT Option
Use the DEFAULT option to identify the default connection for a
DISCONNECT statement. The default connection is one of the following
connections:

■ An explicit default connection (a connection established with the
CONNECT TO DEFAULT statement)

■ An implicit default connection (any connection made using the
DATABASE, CREATE DATABASE, or START DATABASE statements)

You can use DISCONNECT to disconnect the default connection. See
“DEFAULT Option” on page 1-100 and “Implicit Connection with
DATABASE Statements” on page 1-101 for more information.

If the DATABASE statement does not specify a database server, as shown in
the following example, the default connection is made to the default database
server:

EXEC SQL database 'stores7';
.
.
.
EXEC SQL disconnect default;

ESQL
1-344 Informix Guide to SQL: Syntax

DISCONNECT
If the DATABASE statement specifies a database server, as shown in the
following example, the default connection is made to that database server:

EXEC SQL database 'stores7@mydbsrvr';
.
.
.
EXEC SQL disconnect default;

In either case, the DEFAULT option of DISCONNECT disconnects this default
connection. See “DEFAULT Option” on page 1-100 and “Implicit Connection
with DATABASE Statements” on page 1-101 for more information about the
default database server and implicit connections.

CURRENT Keyword
Use the CURRENT keyword with the DISCONNECT statement as a shorthand
form of identifying the current connection. The CURRENT keyword replaces
the current connection name. For example, the DISCONNECT statement in the
following excerpt terminates the current connection to the database server
mydbsrvr:

CONNECT TO 'stores7@mydbsrvr'
.
.
.
DISCONNECT CURRENT

When a Transaction is Active
When a transaction is active, the DISCONNECT statement generates an error.
The transaction remains active, and the application must explicitly commit it
or roll it back. If an application terminates without issuing a DISCONNECT
statement (because of a system crash or program error, for example), active
transactions are rolled back.

Disconnecting in a Thread-Safe Environment
If you issue the DISCONNECT statement in a thread-safe ESQL/C application,
keep in mind that an active connection can only be disconnected from within
the thread in which it is active. Therefore, one thread cannot disconnect the
active connection of another thread. The DISCONNECT statement generates
an error if such an attempt is made.
SQL Statements 1-345

DISCONNECT
However, once a connection becomes dormant, any other thread can discon-
nect this connection unless an ongoing transaction is associated with the
dormant connection (the connection was established with the WITH CON-
CURRENT TRANSACTION clause of CONNECT). If the dormant connection
was not established with the WITH CONCURRENT TRANSACTION clause,
DISCONNECT generates an error when it tries to disconnect it.

See the SET CONNECTION statement on page 1-682 for an explanation of con-
nections in a thread-safe ESQL/C application.

Specifying the ALL Option
Use the keyword ALL to terminate all connections established by the appli-
cation up to that time. For example, the following DISCONNECT statement
disconnects the current connection as well as all dormant connections:

DISCONNECT ALL

The ALL keyword has the same effect on multithreaded applications that it
has on single-threaded applications. Execution of the DISCONNECT ALL
statement causes all connections in all threads to be terminated. However, the
DISCONNECT ALL statement fails if any of the connections is in use or has an
ongoing transaction associated with it. If either of these conditions is true,
none of the connections is disconnected.

References
See the CONNECT, SET CONNECTION, and DATABASE statements in this
manual.

For information on multithreaded applications, see the INFORMIX-ESQL/C
Programmer’s Manual.
1-346 Informix Guide to SQL: Syntax

DROP CAST
DROP CAST
Use the DROP CAST statement to remove a previously defined cast from the
database.

Syntax

Usage
You must be the owner of the cast or have the DBA privilege to use the DROP
CAST statement.

Element Purpose Restrictions Syntax
source data type The data type on which the cast

operates
The type must exist at the time
the cast is dropped.

Data Type, p. 1-855

target data type The data type that results when
the cast is invoked

The type must exist at the time
the cast is dropped.

Data Type, p. 1-855

DROP CAST
source
data
type

target
data
type

((AS

+

E/C

DB

SQLE
SQL Statements 1-347

DROP CAST
What Happens When You Drop a Cast

When you drop a cast, the cast definition is removed from the database. Once
you drop a cast, it cannot be invoked either explicitly or implicitly. Dropping
a cast has no effect on the function associated with the cast. Use the DROP
FUNCTION statement to remove a function from the database.

Warning: Do not drop the system-defined casts, which are owned by user informix.
The database server uses system-defined casts for automatic conversions between
built-in data types.

A cast that is defined on a particular data type can also be used on any
distinct types created from that type. When you drop the cast, you can no
longer invoke it for the distinct types. Dropping a cast that is defined for a
distinct type has no effect on casts for its source type.

When you create a distinct type, the database server automatically defines an
explicit cast from the distinct type to its source type and another explicit cast
from the source type to the distinct type. When you drop the distinct type, the
database server automatically drops these two casts.

References
See the CREATE CAST statement in this manual for information about
creating a cast.

See the DROP FUNCTION statement in this manual for information about how
to remove a function that is used to implement a cast.

See the Data Types segment in this manual and Chapter 3, “Environment
Variables” in the Informix Guide to SQL: Reference for information about data
types.
1-348 Informix Guide to SQL: Syntax

DROP DATABASE
DROP DATABASE
Use the DROP DATABASE statement to delete an entire database, including all
system catalog tables, indexes, and data.

Syntax

Usage
You must have the DBA privilege or be user informix to run the DROP
DATABASE statement successfully. Otherwise, the database server issues an
error message and does not drop the database.

You cannot drop the current database or a database that is being used by
another user. All the database users must first execute the CLOSE DATABASE
statement.

The DROP DATABASE statement cannot appear in a multistatement PREPARE
statement.

The following statement drops the stores7 database:

DROP DATABASE stores7

When you drop a database with transactions, the transaction-log file that is
associated with the database is removed.

The DROP DATABASE statement does not remove the database directory if it
includes any files other than those created for database tables and their
indexes.

DROP DATABASE
Database

Name
p. 1-852

+

E/C

DB

SQLE
SQL Statements 1-349

DROP DATABASE
You can specify the full pathname of the database in quotes, as the following
example shows:

DROP DATABASE '/u/training/stores7'

You cannot use a ROLLBACK WORK statement to undo a DROP DATABASE
statement. If you roll back a transaction that contains a DROP DATABASE
statement, the database is not re-created, and you do not receive an error
message.

Use this statement with caution. DB-Access does not prompt you to verify
that you want to delete the entire database. ♦

You can use a simple database name in a program or host variable, or you can
use the full database server and database name. See “Database Name” on
page 1-852 for more information. ♦

References
See the CREATE DATABASE and CLOSE DATABASE statements in this manual.

DB

ESQL
1-350 Informix Guide to SQL: Syntax

DROP FUNCTION
DROP FUNCTION
Use the DROP FUNCTION statement to remove an external function or anSPL
function from the database.

Syntax

Usage
A function is a user-defined routine that returns one or more values. In
INFORMIX-Universal Server, you can write functions in Stored Procedure
Language (SPL) or in an external language, such as C.

Element Purpose Restrictions Syntax
parameter data
type

The data type of the parameter The data type must be the data
type (or list of data types)
specified in the CREATE
FUNCTION statement when the
function was created.

Identifier, p. 1-962

DROP
,

FUNCTION

SPECIFIC FUNCTION

(

;

parameter
data type

Specific
Name

p. 1-1034

Function
Name

p. 1-959

+

E/C

DB

SQLE

)

SQL Statements 1-351

DROP FUNCTION
Because you can overload routines in INFORMIX-Universal Server, you can
define more than one function with the same name but with different
parameter lists. Therefore, a function name alone might not identify a
function. In that case, you must specify one of the following in the DROP
FUNCTION statement:

■ The SPECIFIC keyword and a specific name

■ The parameter data types after the function name

The keyword FUNCTION, the function name, and the number, type, and
order of parameters (as they appear from left to right in the DROP FUNCTION
statement) make up the function signature. The function signature unambig-
uously identifies the function. For a given function, at least one item in the
signature must be unique among all the functions stored in a name space or
database.

Dropping a function removes the text and executable versions of the
function.

You cannot use DROP FUNCTION to drop any type of procedure.

You can also use DROP ROUTINE to drop a function. For more information on
DROP ROUTINE, see page 1-365.

Function Name

The function name can be the name of any user-defined function stored on
the local database server. You can use a fully qualified function name to drop
a function stored on a remote server, if either of the following conditions is
true:

■ The fully qualified function name uniquely identifies the function
and you do not need to specify a parameter list to drop the function.

■ All of the parameters the function accepts are of built-in data types.

You cannot drop a remote function if any of its parameters are opaque,
distinct, collection, or row types.

The syntax of the function name is described in the Function Name segment
on page 1-959.
1-352 Informix Guide to SQL: Syntax

DROP FUNCTION
Specific Name

A specific name uniquely identifies the function within the database. If you
use the DROP SPECIFIC FUNCTION statement, you must use the function’s
specific name as it is defined in the CREATE FUNCTION statement.

With DROP SPECIFIC FUNCTION, you must use the specific name of a
function. You cannot use the specific name of a procedure.

The syntax of the specific name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the function or have the DBA privilege to use the
DROP FUNCTION statement.

Examples

If you use parameter data types to identify a function, they follow the
function name, as in the following example:

DROP FUNCTION compare(int, int)

If you use the specific name for the function, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC FUNCTION compare_point

SPL Functions

Because you cannot change the text of an SPL function, you must drop it
using DROP FUNCTION or DROP ROUTINE and then re-create it using
CREATE FUNCTION. Make sure that you have a copy of the SPL function text
somewhere outside the database, in case you want to re-create it after it is
dropped.

You cannot drop an SPL function within the same SPL function. ♦

SPL
SQL Statements 1-353

DROP FUNCTION
References
In this manual, see the CREATE FUNCTION, CREATE FUNCTION FROM, DROP
FUNCTION, DROP ROUTINE, and EXECUTE FUNCTION statements.

In the Informix Guide to SQL: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.
1-354 Informix Guide to SQL: Syntax

DROP INDEX
DROP INDEX
Use the DROP INDEX statement to remove a previously defined index from
the database.

Syntax

Usage
You must be the owner of the index or have the DBA privilege to use the
DROP INDEX statement.

The following example drops the index o_num_ix that joed owns. The
stores7 database must be the current database.

DROP INDEX stores7:joed.o_num_ix

You cannot use the DROP INDEX statement on a column or columns to drop
a unique constraint that is created with a CREATE TABLE statement; you must
use the ALTER TABLE statement to remove indexes that are created as
constraints with a CREATE TABLE or ALTER TABLE statement.

The index is not actually dropped if it is shared by constraints. Instead, it is
renamed in the sysindexes system catalog table with the following format:

[space]<tabid>_<constraint id>

DROP INDEX Index
Name

p. 1-980

+

E/C

DB

SQLE
SQL Statements 1-355

DROP INDEX
In this example, tabid and constraint_id are from the systables and
sysconstraints system catalog tables, respectively. The idxname (index
name) column in the sysconstraints table is then updated to reflect this
change. For example, the renamed index name might be something like the
following (quotes used to show the spaces):

“121_13”

If this index is a unique index with only referential constraints sharing it, the
index is downgraded to a duplicate index after it is renamed.

References
See the ALTER TABLE, CREATE INDEX, and CREATE TABLE statements in this
manual.

In the INFORMIX-Universal Server Performance Guide, see the discussion of
indexes.
1-356 Informix Guide to SQL: Syntax

DROP OPCLASS
DROP OPCLASS
Use the DROP OPCLASS statement to remove an existing operator class from
the database.

Syntax

Usage
You must be the owner of the operator class or have DBA privilege to use the
DROP OPCLASS statement.

The RESTRICT keyword is required with the DROP OPCLASS statement.
RESTRICT causes DROP OPCLASS to fail if the database contains indexes or
secondary access methods that use the opclass name operator class. The DROP
OPCLASS statement cannot drop these indexes or the access methods.

The following DROP OPCLASS statement drops an operator class called
abs_btree_ops:

DROP OPCLASS abs_btree_ops RESTRICT

Element Purpose Restrictions Syntax
opclass
name

Name of the operator class being
dropped

The operator class must have
been created with the CREATE
OPCLASS statement. You must
remove all dependent objects
(such as indexes) defined on this
operator class, before you can
drop the operator class.

Identifier, p. 1-962

+ DROP OPCLASS RESTRICTopclass
name
SQL Statements 1-357

DROP OPCLASS
References
See CREATE OPCLASS in this manual.

For information on how to create or extend an operator class, see the
Extending INFORMIX-Universal Server: Data Types manual.
1-358 Informix Guide to SQL: Syntax

DROP PROCEDURE
DROP PROCEDURE
Use the DROP PROCEDURE statement to remove an external procedure or an
SPL procedure from the database.

Syntax

Usage
A procedure is a user-defined routine that does not return a value. In
INFORMIX-Universal Server, you can write procedures in Stored Procedure
Language (SPL) or in an external language, such as C.

Element Purpose Restrictions Syntax
parameter data
type

The data type of the parameter The data type must be the data
type (or list of data types)
specified in the CREATE
PROCEDURE statement when the
procedure was created.

Identifier, p. 1-962

Specific
Name

p. 1-1034

DROP PROCEDURE

SPECIFIC PROCEDURE

Procedure
Name

p. 1-1004

Function
Name

p. 1-959

;,

(parameter
data type

)SPL

+

E/C

DB

SQLE
SQL Statements 1-359

DROP PROCEDURE
Because you can overload routines in INFORMIX-Universal Server, you can
define more than one procedure with the same name but with different
parameter lists. Therefore, a procedure name alone might not identify a
procedure. In that case, you must specify one of the following in the DROP
PROCEDURE statement:

■ The SPECIFIC keyword and a specific name

■ The parameter data types after the procedure name

The keyword PROCEDURE, the procedure name, and the number, type, and
order of parameters (as they appear from left to right in the DROP
PROCEDURE statement) make up the signature for the procedure. The
procedure signature unambiguously identifies the procedure. For a given
procedure, at least one item in the signature must be unique among all the
procedures stored in a name space or database.

Dropping a procedure removes the text and executable versions of the
procedure.

You can also use DROP ROUTINE to drop a procedure. For more information
on DROP ROUTINE, see page 1-365.

Procedure Name

The procedure name can be the name of any user-defined procedure stored
on the local database server. You can use a fully qualified procedure name to
drop a procedure stored on a remote server, if either of the following condi-
tions is true:

■ The fully qualified procedure name uniquely identifies the
procedure and you do not need to specify a parameter list to drop the
procedure.

■ All of the parameters the procedure accepts are built-in data types.

You cannot drop a remote procedure if any of its parameters are opaque,
distinct, collection, or row types.

The syntax of a procedure name, including a fully qualified procedure name,
is described in the Procedure Name segment on page 1-1004.
1-360 Informix Guide to SQL: Syntax

DROP PROCEDURE
Specific Name

A specific name uniquely identifies the procedure within the database. If you
use the DROP SPECIFIC PROCEDURE statement, you must use the specific
name for the procedure as it is defined in the CREATE PROCEDURE statement.

When you use DROP SPECIFIC PROCEDURE with SPL routines, you can use
the name of an SPL procedure or SPL function. This feature provides
backward compatibility with earlier Informix products and is described in
“SPL Backward Compatibility Option” on page 1-362. ♦

When you use DROP SPECIFIC PROCEDURE with external routines, you must
use the specific name of a procedure. You cannot use the specific name of a
function. ♦

The syntax of the specific name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the procedure or have the DBA privilege to use the
DROP PROCEDURE statement.

Examples

If you use parameter data types to identify a procedure, they follow the
procedure name, as in the following example:

DROP PROCEDURE compare(int, int)

If you use the specific name for the procedure, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC PROCEDURE compare_point

SPL

EXT
SQL Statements 1-361

DROP PROCEDURE
SPL Procedures

Because you cannot change the text of an SPL function, you must drop it
using DROP PROCEDURE or DROP ROUTINE and then recreate it using
CREATE PROCEDURE. If you want to recreate it after it is dropped, make sure
that you have a copy of the SPL procedure text somewhere outside the
database.

You cannot drop an SPL procedure within the same SPL procedure. ♦

SPL Backward Compatibility Option

For backward compatibility with earlier Informix products, you can use
DROP PROCEDURE to drop an SPL function (that is, an SPL routine that
returns a value). However, Informix recommends that you use DROP
PROCEDURE only with procedures. You can also use DROP FUNCTION or
DROP ROUTINE to drop an SPL function. ♦

References
In this manual, see the CREATE PROCEDURE, CREATE PROCEDURE FROM,
DROP PROCEDURE, DROP ROUTINE, and EXECUTE PROCEDURE statements.

In the Informix Guide to SQL: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.

SPL

SPL
1-362 Informix Guide to SQL: Syntax

DROP ROLE
DROP ROLE
Use the DROP ROLE statement to remove a previously created role from the
database.

Syntax

Usage
The DROP ROLE statement is used to remove an existing role. Either the DBA
or a user to whom the role was granted with the WITH GRANT OPTION can
issue the DROP ROLE statement.

After a role is dropped, the privileges associated with that role, such as table-
level privileges or fragment-level privileges, are dropped, and a user cannot
grant or enable a role. If a user is using the privileges of a role when the role
is dropped, the user automatically loses those privileges.

A role exists until either the DBA or a user to whom the role was granted with
the WITH GRANT OPTION uses the DROP ROLE statement to drop the role.

The following statement drops the role engineer:

DROP ROLE engineer

Element Purpose Restrictions Syntax

role name Name of the role being dropped The role name must have been
created with the CREATE ROLE
statement

Identifier, p. 1-962

DROP ROLE role name

+

E/C

DB

SQLE
SQL Statements 1-363

DROP ROLE
References
See the CREATE ROLE, GRANT, REVOKE, and SET ROLE statements in this
manual.
1-364 Informix Guide to SQL: Syntax

DROP ROUTINE
DROP ROUTINE
Use the DROP ROUTINE statement to remove any type of user-defined
routine from the database.

Syntax

Usage
You can use DROP ROUTINE with any type of routine—an external function,
an external procedure, an SPL function, or an SPL procedure. The DROP
ROUTINE statement is useful when you do not know whether a routine is a
function or a procedure.

Element Purpose Restrictions Syntax
parameter data
type

The data type of the parameter The data type must be the data
type (or list of data types)
specified in the CREATE
FUNCTION or CREATE
PROCEDURE statement when the
routine was created.

Identifier, p. 1-962

Specific
Name

p. 1-1034

DROP ROUTINE

SPECIFIC ROUTINE

Procedure
Name

p. 1-1004

Function Name
p. 1-959

;,

(parameter
data type

)

+

E/C

DB

SQLE
SQL Statements 1-365

DROP ROUTINE
Because you can overload routines in INFORMIX-Universal Server, you can
define more than one routine with the same name but with different
parameter lists. Therefore, a routine name alone might not uniquely identify
a routine. In that case, you must specify one of the following in the DROP
ROUTINE statement:

■ The SPECIFIC keyword and a specific name

■ The parameter data types after the routine name

The keyword PROCEDURE or FUNCTION, the routine name, and the number,
type, and order of parameters (as they appear from left to right in the DROP
ROUTINE statement) make up the routine signature. The routine signature
unambiguously identifies the routine. For a given routine, at least one item in
the signature must be unique among all the routines stored in a name space
or database.

Dropping a routine removes the text and executable versions of the routine.

You can also use DROP FUNCTION to drop a function and DROP PROCEDURE
to drop a procedure. The DROP FUNCTION statement is described on
page 1-351, and the DROP PROCEDURE statement is described on page 1-359.

Procedure Name or Function Name

A procedure name identifies a routine registered with the CREATE
PROCEDURE statement and a function name identifies a function registered
with the CREATE FUNCTION statement. Without a database qualifier, the
routine must reside on the local database server.

You can use a fully qualified procedure name to drop a routine stored on a
remote server, if either of the following conditions is true:

■ The fully qualified name uniquely identifies the routine, and you do
not need to specify a parameter list to drop the procedure.

■ The parameter list contains only built-in data types.

■ No ambiguity is caused by both a procedure and a function having
the same name.
1-366 Informix Guide to SQL: Syntax

DROP ROUTINE
You cannot drop a remote procedure if any of its parameters are opaque,
distinct, collection, or row types.

For the syntax of a fully qualified name, see “Procedure Name” on
page 1-1004 or “Function Name” on page 1-959.

Specific Name

A specific name uniquely identifies a routine within the database. If you use
the DROP SPECIFIC ROUTINE statement, you must use the identifier assigned
with the SPECIFIC clause of the CREATE PROCEDURE or CREATE FUNCTION
statement.

The syntax of Specific Name is described in the Specific Name segment on
page 1-1034.

Required Permissions

You must be the owner of the routine or have the DBA privilege to use the
DROP ROUTINE statement.

Examples

If you use parameter data types to identify a routine, they follow the routine
name, as in the following example:

DROP ROUTINE compare(int, int)

If you use the specific name for the routine, you must use the keyword
SPECIFIC, as in the following example:

DROP SPECIFIC ROUTINE compare_point
SQL Statements 1-367

DROP ROUTINE
SPL Routines

Because you cannot change the text of an SPL routine, you must drop it with
DROP PROCEDURE, DROP FUNCTION, or DROP ROUTINE and then re-create
it with CREATE PROCEDURE or CREATE FUNCTION. If you want to recreate it
after it is dropped, make sure that you have a copy of the SPL routine text
somewhere outside the database.

You cannot drop an SPL routine from within the same SPL routine. ♦

References
In this manual, see the CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, EXECUTE FUNCTION, and EXECUTE
PROCEDURE statements.

In the Informix Guide to SQL: Tutorial, see the discussion of user-defined
routines in Chapter 14 and the discussion of SPL routines in Chapter 14.

SPL
1-368 Informix Guide to SQL: Syntax

DROP ROW TYPE
DROP ROW TYPE
Use the DROP ROW TYPE statement to remove an existing named row type
from the database.

Syntax

 Usage
You must be the owner of the row type or have the DBA privilege to use the
DROP ROW TYPE statement.

You cannot drop a named row type if the row type name is in use. You cannot
drop a named row type when any of the following conditions are true:

■ Any existing tables or columns are using the row type.

■ The row type is a supertype in an inheritance hierarchy.

■ A view is defined on the row type.

Element Purpose Restrictions Syntax
row type name The name of the named row type

to be dropped
The type must have been created
with the CREATE ROW TYPE
statement. The named row type
must already exist.

The named row type cannot be
dropped if it is currently used in
any columns, tables or inher-
itance hierarchies.

Data Type, p. 1-855

Identifier, p. 1-962

The named row type
can be of the form
owner.type.

DROP ROW TYPE row type name RESTRICT

+

E/C

DB

SQLE
SQL Statements 1-369

DROP ROW TYPE
To drop a named row type column from a table, use ALTER TABLE.

The DROP ROW TYPE statement does not drop unnamed row types.

The Restrict Keyword

The RESTRICT keyword is required with the DROP ROW TYPE statement.
RESTRICT causes DROP ROW TYPE to fail if dependencies on that named row
type exist.

The DROP ROW TYPE statement fails and returns an error message if:

■ the named row type is used for an existing table or column.

Check the systables and syscolumns system catalog tables to find
out whether any tables or types use the named row type.

■ the named row type is the supertype in an inheritance hierarchy.

Look in the sysinherits system catalog table to see which types have
child types.

Example
The following statement drops the row type named employee_t:

DROP ROW TYPE employee_t RESTRICT

References
See the CREATE ROW TYPE statement in this manual to learn how to create
row types.

See the Informix Guide to SQL: Reference for a description of the system catalog
tables.

See Chapter 10 of the Informix Guide to SQL: Tutorial for a discussion of named
row types.
1-370 Informix Guide to SQL: Syntax

DROP SYNONYM
DROP SYNONYM
Use the DROP SYNONYM statement to remove a previously defined synonym
from the database.

Syntax

Usage
You must be the owner of the synonym or have the DBA privilege to use the
DROP SYNONYM statement.

The following statement drops the synonym nj_cust, which cathyg owns:

DROP SYNONYM cathyg.nj_cust

If a table is dropped, any synonyms that are in the same database as the table
and that refer to the table are also dropped.

If a synonym refers to an external table, and the table is dropped, the
synonym remains in place until you explicitly drop it using DROP SYNONYM.
You can create another table or synonym in place of the dropped table and
give the new object the name of the dropped table. The old synonym then
refers to the new object. See the CREATE SYNONYM statement for a complete
discussion of synonym chaining.

DROP SYNONYM
Synonym

Name
p. 1-1042

+

E/C

DB

SQLE
SQL Statements 1-371

DROP SYNONYM
References
See the CREATE SYNONYM statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of synonyms in
Chapter 11.
1-372 Informix Guide to SQL: Syntax

DROP TABLE
DROP TABLE
Use the DROP TABLE statement to remove a previously defined table, along
with its associated indexes and data from the database.

Syntax

Usage
You must be the owner of the table or have the DBA privilege to use the DROP
TABLE statement.

If you issue a DROP TABLE statement, you are not prompted to verify that you
want to delete an entire table. ♦

Effects of DROP TABLE Statement

Use the DROP TABLE statement with caution. When you remove a table, you
also delete the data stored in it, the indexes or constraints on the columns
(including all the referential constraints placed on its columns), any local
synonyms assigned to it, any triggers created for it, and any authorizations
you have granted on the table. You also drop all views based on the table and
any violations and diagnostics tables associated with the table. You do not
remove any synonyms for the table that have been created in an external
database.

DROP TABLE

CASCADE

RESTRICT

+

E/C

DB

SQLE

Table
Name

p. 1-1044

Synonym
Name

p. 1-1042

DB
SQL Statements 1-373

DROP TABLE
Specifying CASCADE Mode

The CASCADE mode means that a DROP TABLE statement removes the table
and all related database objects, including referential constraints built on the
table, views defined on the table, and any violations and diagnostics tables
associated with the table. If the table is the supertable in an inheritance
hierarchy, CASCADE drops all of the subtables as well as the supertable.

The CASCADE mode is the default mode of the DROP TABLE statement. You
can also specify this mode explicitly with the CASCADE keyword.

Specifying RESTRICT Mode

With the RESTRICT keyword, you can control the success or failure of the
drop operation for supertables, for tables that have referential constraints
and views defined on the table, and for tables that have violations and
diagnostics tables associated with the table. Using the RESTRICT option
causes the drop operation to fail and an error message to be returned if any
of the following conditions are true:

■ Existing referential constraints reference table name.

■ Existing views are defined on table name.

■ Any violations and diagnostics tables are associated with table name.

■ The table name is the supertable in an inheritance hierarchy.

Dropping a Table with Rows That Contain Opaque Data Types

Some opaque data types require special processing when they are deleted.
For example, if an opaque data type contains spatial or multi-
representational data, it might provide a choice of how to store the data:
inside the internal structure or, for very large objects, in a smart large object.

The database server removes opaque types by calling a user-defined support
function called destroy(). When you execute the DROP TABLE statement on a
table whose rows contain an opaque type, the database server automatically
invokes the destroy() function for the type. The destroy() function can
perform certain operations on columns of the opaque data type before the
table is dropped. For more information about the destroy() support function,
see the Extending INFORMIX-Universal Server: Data Types manual.
1-374 Informix Guide to SQL: Syntax

DROP TABLE
Tables That Cannot Be Dropped

You cannot drop the following types of tables:

■ You cannot drop any system catalog tables.

■ You cannot drop a table that is not in the current database.

■ You cannot drop a violations or diagnostics table. Before you can
drop such a table, you must first issue a STOP VIOLATIONS TABLE
statement on the base table with which the violations and
diagnostics tables are associated.

Examples of Dropping a Table

The following example deletes two tables. Both tables are within the current
database and are owned by the current user. Neither table has a violations or
diagnostics table associated with it. Neither table has a referential constraint
or view defined on it.

DROP TABLE customer
DROP TABLE stores7@accntg:joed.state

References
See the CREATE TABLE and DROP DATABASE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of data integrity and
creating a table in Chapter 4 and Chapter 9, respectively.
SQL Statements 1-375

DROP TRIGGER
DROP TRIGGER
Use the DROP TRIGGER statement to remove a previously defined trigger
definition from the database.

Syntax

Usage
You must be the owner of the trigger or have the DBA privilege to use the
DROP TRIGGER statement.

Dropping a trigger removes the text of the trigger definition and the
executable trigger from the database.

The following statement drops the items_pct trigger:

DROP TRIGGER items_pct

You cannot drop a trigger inside a stored procedure if the procedure is called
within a data manipulation statement. For example, in the following INSERT
statement, a DROP TRIGGER statement is illegal inside the stored procedure
proc1:

INSERT INTO orders EXECUTE PROCEDURE proc1(vala, valb)

DROP TRIGGER
Trigger
Name

p. 1-258

+

E/C

DB

SQLE
1-376 Informix Guide to SQL: Syntax

DROP TRIGGER
References
See the CREATE PROCEDURE statement in this manual for more information
about a stored procedure that is called within a data manipulation statement.

For more information about triggers, see the CREATE TRIGGER statement in
this manual.
SQL Statements 1-377

DROP TYPE
DROP TYPE
Use the DROP TYPE statement to remove an existing distinct or opaque data
type from the database.

Syntax

Usage
To drop a distinct or opaque type with the DROP TYPE statement, you must
be the owner of the data type or have the DBA privilege.

When use the DROP TYPE statement, you remove the type definition from the
database (in the sysxtdtypes system catalog table). In general, this statement
does not remove any definitions for casts or support functions associated
with that data type.

Important: When you drop a distinct type, the database server automatically drops
the two explicit casts between the distinct type and the type on which it is based.

Element Purpose Restrictions Syntax
data type The distinct or opaque data type

to be removed from the database
The type must have been created
with the CREATE DISTINCT TYPE
or CREATE OPAQUE TYPE
statement. Do not remove built-
in types.

Data Type, p. 1-855

The distinct type or
opaque type can be
of the form
owner.type.

DROP TYPE data type RESTRICT

+

E/C

DB

SQLE
1-378 Informix Guide to SQL: Syntax

DROP TYPE
You cannot drop a distinct or opaque type if the database contains any casts,
columns, or functions whose definitions reference the type.

The following statement drops the new_type type:

DROP TYPE new_type RESTRICT

References
See the CREATE DISTINCT TYPE and CREATE OPAQUE TYPE statements in this
manual for information. See the CREATE ROW TYPE and DROP ROW TYPE
statements in this manual for information about how to define and remove
row types from the database. See the CREATE TABLE statement in this manual
for more information about creating tables that reference a data type.

See the Data Types segment in this manual for more information about data
types.
SQL Statements 1-379

DROP VIEW
DROP VIEW
Use the DROP VIEW statement to remove a previously defined view from the
database.

Syntax

Usage
You must own the view or have the DBA privilege to use the DROP VIEW
statement.

When you drop view name, you also drop all views that have been defined in
terms of that view. You can also specify this default condition with the
CASCADE keyword.

When you use the RESTRICT keyword in the DROP VIEW statement, the drop
operation fails if any existing views are defined on view name, which would
be abandoned in the drop operation.

You can query the sysdepend system catalog table to determine which views,
if any, depend on another view.

The following statement drops the view that is named cust1:

DROP VIEW cust1

Synonym
Name

p. 1-1042

DROP VIEW View
Name

p. 1-1047
CASCADE

RESTRICT

+

E/C

DB

SQLE
1-380 Informix Guide to SQL: Syntax

DROP VIEW
References
See the CREATE VIEW and DROP TABLE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of views in
Chapter 11.
SQL Statements 1-381

1-382 Informix Guide to SQL: Syntax

EXECUTE
EXECUTE
Use the EXECUTE statement to run a previously prepared statement or set of
statements.

Syntax

Element Purpose Restrictions Syntax
statement id Identifier for an SQL statement You must have defined the

statement identifier in a
previous PREPARE statement.
After you release the database
server resources (using a FREE
statement), you cannot use the
statement identifier with a
DECLARE cursor or with the
EXECUTE statement until you
prepare the statement again.

PREPARE, p. 1-538

statement id
variable

Host variable that identifies an
SQL statement

You must have defined the host
variable in a previous PREPARE
statement. The host variable
must be a character data type.

PREPARE, p. 1-538

EXECUTE statement id

statement
id variable INTO

Clause
p. 1-384

USING
Clause
p. 1-389

ESQL

EXECUTE
Usage
The EXECUTE statement passes a prepared SQL statement to the database
server for execution. The following example shows an EXECUTE statement
within an INFORMIX-ESQL/C program:

EXEC SQL prepare del_1 from
'delete from customer

where customer_num = 119';
EXEC SQL execute del_1;

Once prepared, an SQL statement can be executed as often as needed.

If the statement contained question mark (?) placeholders, you use the USING
clause to provide specific values for them before execution.For more infor-
mation, see the “USING Clause” on page 1-389.

You can execute any prepared statement except the following:

■ A prepared SELECT statement that returns more than one row

When you use a prepared SELECT statement to return multiple rows
of data, you can use the DECLARE, OPEN, and FETCH cursor state-
ments to retrieve the data rows. In addition, you can use EXECUTE on
a prepared SELECT INTO TEMP statement to achieve the same result.

■ A prepared EXECUTE FUNCTION statement for an SPL function that
returns more than one row

When you prepare an EXECUTE FUNCTION statement for a SPL
function that returns multiple rows, you need to use the DECLARE,
OPEN and FETCH cursor statements just as you would with a SELECT
statement that returns multiple rows.

For more information on how to execute a SELECT or an EXECUTE
FUNCTION, see “PREPARE” on page 1-538.

If you create or drop a trigger after you prepared a triggering INSERT,
DELETE, or UPDATE statement, the prepared statement returns an error when
you execute it.

Scope of Statement Identifiers

A program can consist of one or more source-code files. By default, the scope
of a statement identifier is global to the program, so a statement identifier
created in one file can be referenced from another file.
SQL Statements 1-383

EXECUTE
In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is executed, you can preprocess all the files
with the -local command-line option. See your SQL API product manual for
more information, restrictions, and performance issues when you preprocess
files with the -local option.

INTO Clause

Element Purpose Restrictions Syntax
output
descriptor

Quoted string that identifies a
system-descriptor area

System-descriptor area must
already be allocated.

Quoted String,
p. 1-1010

output
descriptor
variable

Host variable name that
identifies the system-descriptor
area

System-descriptor area must
already be allocated.

Quoted String,
p. 1-1010

output
indicator
variable

Host variable that receives a
return code if null data is placed
in the corresponding output
variable

Variable cannot be DATETIME or
INTERVAL data type.

Variable name must
conform to
language-specific
rules for variable
names.

 (1 of 2)

DESCRIPTOR output sqlda pointer

,

E/C

SQL DESCRIPTOR 'output descriptor '

: output
indicator
variable

+

output
indicator
variable

INDICATOR

E/C

INTO
Clause

INTO
output

variable
name

output descriptor variable
1-384 Informix Guide to SQL: Syntax

EXECUTE
The INTO clause allows you to save the return values of the following SQL
statements:

■ A prepared singleton SELECT statement that returns only one row of
column values for the columns in the select list

■ A prepared EXECUTE FUNCTION statement for an SPL function that
returns only one group of values

The INTO clause provides a concise and efficient alternative to more compli-
cated and lengthy syntax. In addition, by placing values into variables that
can be displayed, the INTO clause simplifies and enhances your ability to
retrieve and display data values. For example, if you use the INTO clause, you
do not have to use the PREPARE, DECLARE, OPEN, and FETCH sequence of
statements to retrieve values.

Important: If you execute a prepared SELECT statement that returns more than one
row of data or a prepared EXECUTE FUNCTION for an SPL function that returns
more than one group of return values, you receive an error message. In addition, if
you prepare and declare a statement, and then attempt to execute that statement, you
receive an error message.

You cannot select a null value from a table column and place that value into an
output variable. If you know in advance that a table column contains a null value,
make sure after you select the data that you check the indicator variable that is
associated with the column to determine if the value is null.

output
sqlda
pointer

Points to an sqlda structure that
defines the data type and
memory location of values that
correspond to the question-mark
(?) placeholder in a prepared
statement.

You cannot begin an output
sqlda pointer with a dollar sign
($) or a colon (:). You must use an
sqlda structure if you are using
dynamic SQL statements.

DESCRIBE, p. 1-335

output
variable
name

Host variable whose contents
replace a question-mark (?)
placeholder in a prepared
statement

Variable must be a character
data type.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-385

EXECUTE
The following list describes how to use the INTO clause with the EXECUTE
statement:

1. Declare the output variables that the EXECUTE statement uses in its
INTO clause.

2. Use the PREPARE statement to prepare your SELECT or EXECUTE
FUNCTION statement.

3. Use the EXECUTE statement, with the INTO clause, to execute your
SELECT or EXECUTE FUNCTION statement.

You can specify any of the following items to store return values from a
SELECT or EXECUTE FUNCTION statement before you execute it:

■ A host variable name (if the number and data type of the return val-
ues are known at compile time)

■ A system-descriptor area that identifies a dynamically generated
descriptor for the value

■ An sqlda structure that is a pointer to a dynamically generated
descriptor for the value. ♦

Saving Values In Host or Program Variables

If you know the number of return values to be supplied at runtime and their
data types, you can define the values that the SELECT or EXECUTE FUNCTION
statement returns as host variables in your program. You use these host
variables with the INTO keyword, followed by the names of the variables.
These variables are matched with the return values in a one-to-one corre-
spondence, from left to right.

You must supply one variable name for each value that the SELECT or
EXECUTE FUNCTION returns. The data type of each variable must be
compatible with the corresponding return value of the prepared statement.

The following example shows how to use the INTO clause of an EXECUTE
statement to execute a singleton SELECT and store the column values in host
variables:

EXEC SQL prepare sel1 from
'select fname, lname from customer \
where customer_num =123';

EXEC SQL execute sel1 into :fname, :lname;

E/C
1-386 Informix Guide to SQL: Syntax

EXECUTE
The following example shows how to use the INTO clause to execute a
SELECT statement that returns multiple rows of data:

EXEC SQL BEGIN DECLARE SECTION;
int customer_num =100;
char fname[25];
EXEC SQL END DECLARE SECTION;

EXEC SQL prepare sel1 from 'select fname from customer
where customer_num=?';

for (;customer_num < 200; customer_num++)
{
EXEC SQL execute sel1 into :fname using :customer_num;
printf("Customer number is %d\n", customer_num);
printf("Customer first name is %s\n\n", fname);
}

For more information on how to use input parameters, see “USING Clause”
on page 1-389.

Saving Values in a System-Descriptor Area

If you do not know the number of return values to be supplied at runtime or
their data types, you can associate output values with a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure (page 1-388) to supply parameters
dynamically. However, a system-descriptor area conforms to the X/Open
standards. ♦

To specify a system-descriptor area as the location of output values, use the
INTO SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are stored in the system-descriptor area.

The following example show how to use system-descriptor area to execute
prepared statements in INFORMIX-ESQL/C:

EXEC SQL allocate descriptor 'desc1';
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL execute sel1 into sql descriptor 'desc1';

X/O
SQL Statements 1-387

EXECUTE
The COUNT field corresponds to the number of values that the prepared
statement returns. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement. You can obtain the
value of a field with the GET DESCRIPTOR statement and set the value with
the SET DESCRIPTOR statement.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

Saving Values in an sqlda Structure

If you do not know the number of output values to be returned at runtime or
their data types, you can associate output values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more return
values. To specify an sqlda structure as the location of return values, use the
INTO DESCRIPTOR clause of the EXECUTE statement. Each time the EXECUTE
statement is run, the database server places the returns values that the sqlda
structure describes into the sqlda structure.

The following example shows how to use an sqlda structure to execute a
prepared statement in INFORMIX-ESQL/C:

struct sqlda *pointer2;
...
sprintf(sel_stmt, "%s %s %s",

"select fname, lname from customer",
"where customer_num =",
cust_num);

EXEC SQL prepare sel1 from :sel_stmt;
EXEC SQL describe sel1 into pointer2;
EXEC SQL execute sel1 into descriptor pointer2;

The sqld value specifies the number of output values that are described in
occurrences of sqlvar. This number must correspond to the number of values
that the SELECT or EXECUTE FUNCTION statement returns.

For more information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. ♦

E/C
1-388 Informix Guide to SQL: Syntax

EXECUTE
USING Clause

Element Purpose Restrictions Syntax
storage
descriptor

Quoted string that identifies a
system-descriptor area

System-descriptor area must
already be allocated. Make sure
surrounding quotes are single.

Quoted String,
p. 1-1010

storage
descriptor
variable

Host variable name that
identifies a system-descriptor
area

System-descriptor area must
already be allocated.

Variable name must
conform to
language-specific
rules for variable
names.

storage
indicator
variable

Host variable that receives a
return code if null data is placed
in the corresponding data
variable. It receives truncation
information if truncation occurs.

Variable cannot be DATETIME or
INTERVAL data type.

Variable name must
conform to
language-specific
rules for variable
names.

 (1 of 2)

DESCRIPTOR storage sqlda pointer

storage descriptor variable

,

E/C

SQL DESCRIPTOR

storage
variable
name

'storage descriptor '

+

INDICATOR

E/C

USING
Clause

storage
indicator
variable

storage
indicator
variable

:

USING
SQL Statements 1-389

EXECUTE
The USING clause specifies values that are to replace question-mark (?)
placeholders in the prepared statement. Providing values in the EXECUTE
statement that replace the question-mark placeholders in the prepared
statement is sometimes called parameterizing the prepared statement.

You can specify any of the following items to replace the question-mark
placeholders in a statement before you execute it:

■ A host variable name (if the number and data type of the question
marks are known at compile time)

■ A system-descriptor area that identifies a dynamically-generated
descriptor for the value

■ An sqlda structure that is a pointer to a dynamically-generated
descriptor for the value ♦

Supplying Parameters Through Host or Program Variables

If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the statement
as host variables in your program. You pass parameters to the database
server by opening the cursor with the USING keyword, followed by the
names of the variables. These variables are matched with prepared statement
question-mark (?) parameters in a one-to-one correspondence, from left to
right.

storage
sqlda
pointer

Points to an sqlda structure that
defines the data type and
memory location of values that
correspond to the question-mark
(?) placeholder in a prepared
statement.

You cannot begin storage sqlda
pointer with a dollar sign ($) or a
colon (:). You must use an sqlda
structure if you are using
dynamic SQL statements.

DESCRIBE, p. 1-335

storage
variable
name

Host variable whose contents
replace a question-mark (?)
placeholder in a prepared
statement

Variable must be a character
data type.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)

E/C
1-390 Informix Guide to SQL: Syntax

EXECUTE
You must supply one storage variable name for each placeholder. The data
type of each variable must be compatible with the corresponding value that
the prepared statement requires.

The following example executes the prepared UPDATE statement in
INFORMIX-ESQL/C:

stcopy ("update orders set order_date = ? where po_num = ?", stm1);
EXEC SQL prepare statement_1 from :stm1;
EXEC SQL execute statement_1 using :order_date,:po_num;

Supplying Parameters Through a System-Descriptor Area

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure (page 1-392) to dynamically supply
parameters. However, a system-descriptor area conforms to the X/Open
standards. ♦

To specify a system-descriptor area as the location of parameters, use the
USING SQL DESCRIPTOR clause of the EXECUTE statement. Each time that the
EXECUTE statement is run, the values that the system-descriptor area
describes are used to replace question-mark (?) placeholders in the PREPARE
statement.

The following example show how to use system-descriptor area to execute
prepared statements in INFORMIX-ESQL/C:

EXEC SQL allocate descriptor 'desc1';
...
EXEC SQL execute prep_stmt using sql descriptor 'desc1';

The COUNT field corresponds to the number of dynamic parameters in the
prepared statement. The value of COUNT must be less than or equal to the
value of the occurrences that were specified when the system-descriptor area
was allocated with the ALLOCATE DESCRIPTOR statement. You can obtain the
value of a field with the GET DESCRIPTOR statement and set the value with
the SET DESCRIPTOR statement.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

X/O
SQL Statements 1-391

EXECUTE
Supplying INFORMIX-ESQL/C Parameters Through an sqlda Structure

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more values
to replace question-mark (?) placeholders. To specify an sqlda structure as
the location of parameters, use the USING DESCRIPTOR clause of the
EXECUTE statement. Each time the EXECUTE statement is run, the values that
the sqlda structure describes are used to replace question-mark (?) place-
holders in the PREPARE statement.

The following example shows how to use an sqlda structure to execute a
prepared statement in INFORMIX-ESQL/C:

struct sqlda *pointer2;
...
EXEC SQL execute prep_stmt using descriptor pointer2;

The sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

For more information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. ♦

Error Conditions with EXECUTE
Following an EXECUTE statement, the sqlca record (see the
INFORMIX-ESQL/C Programmer’s Manual) can reflect two results:

■ The sqlca record can reflect an exception within the EXECUTE
statement.

■ The sqlca structure can also reflect the success or failure of the
prepared statement that EXECUTE runs. For example, when an
UPDATE ... WHERE ... statement within a prepared object processes
zero rows, the database server sets sqlca.sqlcode to 100.

In a database that is not ANSI compliant, if any statement fails to access any
rows, the database server returns an SQLCODE value of zero(0).

E/C
1-392 Informix Guide to SQL: Syntax

EXECUTE
In an ANSI-compliant database, if you prepare and execute any of the
following statements, and no rows are returned, the database server returns
an SQLCODE value of SQLNOTFOUND (100):

■ INSERT INTO table-name SELECT ... WHERE ...

■ SELECT INTO TEMP ... WHERE ...
■ DELETE ... WHERE

■ UPDATE ... WHERE ... ♦

In a multistatement prepare, if any statement in the preceding list fails to
access rows, in either ANSI databases or databases that are not ANSI
compliant, the database server returns SQLNOTFOUND (100).

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

References
See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
EXECUTE IMMEDIATE, GET DESCRIPTOR, GET DIAGNOSTICS, PREPARE, PUT,
and SET DESCRIPTOR statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of the EXECUTE
statement in Chapter 5.

ANSI
SQL Statements 1-393

EXECUTE FUNCTION
EXECUTE FUNCTION
Use the EXECUTE FUNCTION statement to execute an SPL function or external
function.

Syntax

Usage
The EXECUTE FUNCTION statement invokes the named user-defined
function, specifies its arguments, and determines where the results are
returned. A function is a user-defined routine that returns one or more
values. An external function, written in a language other than SPL, returns
exactly one value. An SPL function can return one or more values.

Element Purpose Restrictions Syntax
SPL
variable

A variable created with
the DEFINE statement
that contains the name of
an SPL routine to be
executed

The SPL variable must be CHAR,
VARCHAR, NCHAR, or NVARCHAR
data type.

The name assigned to SPL variable
must be non-null and the name of an
existing SPL function.

 Identifier, p. 1-962

EXECUTE
FUNCTION

,

()

SPL

SPL variable Argument
p. 1-824

+

E/C

DB

SQLE

Function
Name

p. 1-959

INTO
Clause
p. 1-396

SPL

ESQL
1-394 Informix Guide to SQL: Syntax

EXECUTE FUNCTION
You can use EXECUTE FUNCTION to execute an SPL function or an external
function. You cannot use EXECUTE FUNCTION to execute any type of user-
defined procedure. Instead, use the EXECUTE PROCEDURE statement to
execute procedures.

How EXECUTE FUNCTION Works

For a function to be executed with the EXECUTE FUNCTION statement, the
following conditions must exist:

■ The qualified function name or the function signature (the function
name with its parameter list) must be unique within the name space
or database.

■ The function must exist.

■ The function must not have any OUT parameters.

If an EXECUTE FUNCTION statement specifies fewer arguments than the
called function expects, the unspecified arguments are said to be missing.
Missing arguments are initialized to their corresponding parameter default
values, if you specified default values. The syntax of specifying default
values for parameters in described in “Routine Parameter List” on
page 1-1028.

The EXECUTE FUNCTION statement returns an error under the following
conditions:

■ It specifies more arguments than the called function expects.

■ One or more arguments are missing and do not have default values.
In this case, the arguments are initialized to the value of UNDEFINED.

■ The fully qualified function name or the function signature is not
unique.

■ No function with the specified name or signature that you specify is
found.

■ You use it to try to execute a user-defined procedure.
SQL Statements 1-395

EXECUTE FUNCTION
Function Name

With EXECUTE FUNCTION, you can use either of the following types of
names to execute a remote function:

■ If you use a fully qualified function name, the database server deter-
mines which function to use based only on the routine type (which is
FUNCTION) and the function name.

■ If you use a function signature, the database server uses the function
name and its full parameter list during routine resolution to
determine which function to use.

For more detailed information, see the Function Name segment on page
1-959.

INTO Clause

INTO
Clause ,

data variable

indicator variableINDICATOR

INTO

data structure

indicator
variable

indicator
variable:

$

ESQL

+

1-396 Informix Guide to SQL: Syntax

EXECUTE FUNCTION
You must specify an INTO clause with EXECUTE FUNCTION to name the
variables that receive the values that the function returns. If the function
returns more than one value, the values are returned into the list of variables
in the order in which you specify them.

If the EXECUTE FUNCTION statement stands alone (that is, it is not part of a
DECLARE statement and does not use the INTO clause), it must execute a
noncursor function. A noncursor function returns only one row of values.
The following example shows a SELECT statement in INFORMIX-ESQL/C:

EXEC SQL execute function cust_num(fname, lname, company_name)
into :c_num;

Element Purpose Restrictions Syntax
data
variable

A variable that receives the
value returned by a function

If you issue this statement
within an ESQL/C program, the
data variable must be a host
variable.

If you issue this statement
within an SPL routine, the data
variable must be an SPL variable.

If you issue this statement
within a CREATE TRIGGER
statement, the data variable must
be column names within the
triggering table or another table.

The name of a
receiving variable
must conform to
language-specific
rules for variable
names.

For the syntax of SPL
variables, see
Identifier, p. 1-962.

For the syntax of
column names, see
Identifier, p. 1-962.

data structure A structure that has been
declared as a host variable

The individual elements of the
structure must be matched
appropriately to the data type of
values being selected.

The name of the data
structure must
conform to
language-specific
rules for data
structures.

indicator
variable

A program variable that receives
a return code if null data is
placed in the corresponding data
variable

This parameter is optional, but
you should use an indicator
variable if the possibility exists
that the value of the corre-
sponding data variable is null.

The name of the
indicator variable
must conform to
language-specific
rules for indicator
variables.
SQL Statements 1-397

EXECUTE FUNCTION
INTO Clause with Indicator Variables

You should use an indicator variable if the possibility exists that data
returned from the user-defined function statement is null. See the
INFORMIX-ESQL/C Programmer’s Manual for more information about
indicator variables. ♦

INTO Clause with Cursors

If the EXECUTE FUNCTION statement executes a user-defined function that
returns more than one row of values, it must execute a cursor function. A
cursor function can return one or more rows of values and must be associated
with a function cursor to execute.

To return more than one row of values, an external function must be defined
as an iterator function. For more information on how to write iterator
functions, see the DataBlade API Programmer’s Manual. ♦

To return more than one row of values, an SPL function must include the
WITH RESUME keywords in its RETURN statement. For more information on
how to write SPL functions, see Chapter 14 in the Informix Guide to SQL:
Tutorial. ♦

In an INFORMIX-ESQL/C program, use the DECLARE statement to declare the
function cursor and the FETCH statement to fetch the rows individually from
the function cursor. You can put the INTO clause in the FETCH statement
rather than in the EXECUTE FUNCTION statement, but you cannot put it in
both. The following INFORMIX-ESQL/C code examples show different ways
you can use the INTO clause:

Using the INTO clause in the EXECUTE FUNCTION statement

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num)
into :ord_num, :ord_date;

EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs;
EXEC SQL close f_curs;

ESQL

EXT

SPL

E/C
1-398 Informix Guide to SQL: Syntax

EXECUTE FUNCTION
Using the INTO clause in the FETCH statement

EXEC SQL declare f_curs cursor for
execute function get_orders(customer_num);

EXEC SQL open f_curs;
while (SQLCODE == 0)

EXEC SQL fetch f_curs into :ord_num, :ord_date;
EXEC SQL close f_curs;

♦

In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see the
FOREACH statement on page 2-27. ♦

Preparing an EXECUTE FUNCTION...INTO Statement

You cannot prepare an EXECUTE FUNCTION statement that has an INTO
clause. You can prepare the EXECUTE FUNCTION without the INTO clause,
declare a function cursor for the prepared statement, open the cursor, and
then use the FETCH statement with an INTO clause to fetch the return values
into the program variable(s). Alternatively, you can declare a cursor for the
EXECUTE FUNCTION statement without first preparing the statement and
include the INTO clause in the EXECUTE FUNCTION when you declare the
cursor. Then open the cursor, and fetch the return values from the cursor
without using the INTO clause of the FETCH statement. ♦

Dynamic Routine-Name Specification of SPL Functions
Dynamic routine-name specification simplifies the writing of an SPL function
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement, you
can use an SPL variable to hold the routine name, instead of listing the explicit
name of an SPL routine.

For more information about how to execute SPL functions dynamically, see
Chapter 14 in the Informix Guide to SQL: Tutorial. ♦

SPL

ESQL

SPL
SQL Statements 1-399

EXECUTE FUNCTION
References
See the CREATE FUNCTION, CREATE FUNCTION FROM, DROP FUNCTION,
DROP ROUTINE, and EXECUTE PROCEDURE statements in Chapter 1 of this
manual. Also see the CALL and FOREACH statements in Chapter 2 of this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of writing SPL
routines in Chapter 14.
1-400 Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE
Use the EXECUTE IMMEDIATE statement to perform the functions of the
PREPARE, EXECUTE, and FREE statements.

Syntax

Usage
The quoted string is a character string that includes one or more SQL
statements. The string, or the contents of statement variable name, is parsed
and executed if correct; then all data structures and memory resources are
released immediately. In the usual method of dynamic execution, these
functions are distributed among the PREPARE, EXECUTE, and FREE
statements.

Element Purpose Restrictions Syntax
statement
variable name

Host variable whose value is a
character string that consists of
one or more SQL statements

The host variable must have
been defined within the
program. The variable must be
character data type. For
additional restrictions, see
“EXECUTE IMMEDIATE and
Restricted Statements” on
page 1-402 and “Restrictions on
Allowed Statements” on
page 1-403.

Variable name must
conform to
language-specific
rules for variable
names.

statement variable name

EXECUTE IMMEDIATE
Quoted
String

p. 1-1010

+
ESQL
SQL Statements 1-401

EXECUTE IMMEDIATE
The EXECUTE IMMEDIATE statement makes it easy to execute dynamically a
single simple SQL statement, which is constructed during program execution.
For example, you could obtain the name of a database from program input,
construct the DATABASE statement as a program variable, and then use
EXECUTE IMMEDIATE to execute the statement, which opens the database.

The following example shows the EXECUTE IMMEDIATE statement in
INFORMIX-ESQL/C:

sprintf(cdb_text, "create database %s", usr_db_id);
EXEC SQL execute immediate :cdb_text;

EXECUTE IMMEDIATE and Restricted Statements

You cannot use the EXECUTE IMMEDIATE statement to execute the following
SQL statements.

Use a PREPARE statement and either a cursor or the EXECUTE statement to
execute a dynamically constructed SELECT statement.

CLOSE GET DIAGNOSTICS
CONNECT GET DESCRIPTOR
CREATE FUNCTION FROM OPEN
CREATE PROCEDURE FROM OUTPUT
DECLARE PREPARE
DISCONNECT SELECT
EXECUTE SET CONNECTION
EXECUTE FUNCTION SET DESCRIPTOR

EXECUTE PROCEDURE (if the SPL
routine returns values)

WHENEVER

FETCH
1-402 Informix Guide to SQL: Syntax

EXECUTE IMMEDIATE
Restrictions on Allowed Statements

The following restrictions apply to the statement that is contained in the
quoted string or in statement variable name:

■ The statement cannot contain a host-language comment.

■ Names of host-language variables are not recognized as such in
prepared text. The only identifiers that you can use are names
defined in the database, such as table names and columns.

■ The statement cannot reference a host variable list or a descriptor; it
must not contain any question-mark (?) placeholders, which are
allowed with a PREPARE statement.

■ The text must not include any embedded SQL statement prefix or
terminator, such as the dollar sign ($), colon (:), or the words EXEC
SQL.

■ A SELECT or INSERT statement cannot contain a Collection Derived
Table clause. EXECUTE IMMEDIATE cannot process input host
variables, which are required for a collection variable. Use EXECUTE
or a cursor to process prepared accesses to collection variables.

References
See the EXECUTE, FREE, and PREPARE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of quick execution in
Chapter 5.
SQL Statements 1-403

EXECUTE PROCEDURE
EXECUTE PROCEDURE
Use the EXECUTE PROCEDURE statement to execute an SPL procedure or an
external procedure.

 Syntax

,
()EXECUTE PROCEDURE

Argument
p. 1-824

Procedure
Name

p. 1-1004

Function
Name

p.1-959

SPL
variable

SPL
,

;

+

E/C

DB

SQLE

receiving
variableINTO

SPL
1-404 Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
Usage
The EXECUTE PROCEDURE statement invokes the named user-defined
procedure and specifies its arguments. A procedure is a user-defined routine
that does not return a value. Use EXECUTE PROCEDURE to execute an SPL
procedure or an external procedure.

For backward compatibility with earlier Informix products, INFORMIX-
Universal Server continues to support the INTO clause of the EXECUTE
PROCEDURE statement to save values that a stored procedure returns.
However, Informix recommends that you use EXECUTE PROCEDURE only
with procedures and EXECUTE FUNCTION with functions. For more infor-
mation, see “INTO Clause” on page 1-407. ♦

Element Purpose Restrictions Syntax
receiving
variable

A variable that receives
the value returned by an
SPL function that you
execute with EXECUTE
PROCEDURE.

If you issue this statement within an
ESQL/C program, the receiving
variable must be a host variable.

If you issue this statement within an
SPL routine, the receiving variable
must be an SPL variable.

If you issue this statement within a
CREATE TRIGGER statement, the
receiving variable must be a column
name within the triggering table or
another table.

The name of a receiving variable
must conform to language-
specific rules for variable
names.

For the syntax of SPL variables,
see Identifier, p. 1-962.

For the syntax of column names,
see Identifier, p. 1-962.

SPL
variable

A variable created with
the DEFINE statement
that contains the name of
an SPL routine to be
executed.

The SPL variable must have the data
type CHAR, VARCHAR, NCHAR, or
NVARCHAR.

The name you assign to SPL variable
must be non-null and the name of an
existing routine.

 Identifier, p. 1-962

SPL
SQL Statements 1-405

EXECUTE PROCEDURE
How EXECUTE PROCEDURE Works

For a procedure to be executed with the EXECUTE PROCEDURE statement, the
following conditions must exist:

■ The qualified procedure name or the procedure signature (the
procedure name with its parameter list) must be unique within the
name space or database.

■ The procedure must exist.

If an EXECUTE PROCEDURE statement has fewer arguments than the called
procedure expects, the unspecified arguments are said to be missing. Missing
arguments are initialized to their corresponding parameter default values, if
you specified default values. The syntax of specifying default values for
parameters in described in “Routine Parameter List” on page 1-1028.

The EXECUTE PROCEDURE statement returns an error under the following
conditions:

■ It has more arguments than the called procedure expects.

■ One or more arguments are missing and do not have default values.
In this case the arguments are initialized to the value of UNDEFINED.

■ The fully qualified procedure name or the procedure signature is not
unique.

■ No procedure with the specified name or signature is found.

Procedure Name

With EXECUTE PROCEDURE, you can use either of the following types of
names to execute a remote procedure:

■ If you use a fully qualified procedure name, the database server deter-
mines which procedure to use based only on the routine type (which
is PROCEDURE) and the procedure name.

■ If you use a procedure signature, the database server uses the
procedure name and its full parameter list during routine resolution
to determine which procedure to use.

For more detailed information, see the Procedure Name segment on page
1-1004.
1-406 Informix Guide to SQL: Syntax

EXECUTE PROCEDURE
INTO Clause

For backward compatibility with earlier Informix products, you can use
EXECUTE PROCEDURE to execute a stored procedure that returns a value. To
save the return values of a stored procedure, specify an INTO clause of
EXECUTE PROCEDURE to name the variables that receive the return values.

If the stored procedure (or SPL function) returns more than one value, the
values are returned into the list of variables in the order in which you specify
them. If the stored procedure returns more than one row or a collection data
type, you must access the rows or collection elements with a cursor.

For more information on stored procedures of earlier Informix products, see
the CREATE PROCEDURE statement. ♦

Dynamic Routine-Name Specification of SPL Procedures

Dynamic routine-name specification simplifies the writing of an SPL procedure
that calls another SPL routine whose name is not known until runtime. To
specify the name of an SPL routine in the EXECUTE FUNCTION statement, you
can use an SPL variable to hold the routine name, instead of listing the explicit
name of an SPL routine.

If the SPL variable names a stored procedure that returns a value, include the
INTO clause of EXECUTE PROCEDURE to specify a receiving variable (or
variables) to hold the value (or values) that the stored procedure returns.

For more information on how to execute SPL procedures dynamically, see
Chapter 14 in the Informix Guide to SQL: Tutorial. ♦

References
See the CREATE PROCEDURE, CREATE PROCEDURE FROM, DROP
PROCEDURE, DROP ROUTINE, and EXECUTE FUNCTION statements in
Chapter 1 of this manual. Also see the CALL statement in Chapter 2of this
manual.

In the Informix Guide to SQL: Tutorial, see the discussion of writing SPL
routines in Chapter 14.

SPL

SPL
SQL Statements 1-407

1-408 Informix Guide to SQL: Syntax

FETCH
FETCH
Use the FETCH statement to move a cursor to a new row in the active set and
to retrieve the row values from memory.

Syntax

+

+

NEXT

cursor
variable

USING 'descriptor'SQL
DESCRIPTOR

descriptor
variable

DESCRIPTOR sqlda
pointer

E/C

,

+

INDICATOR

+

PRIOR

row
position

RELATIVE

ABSOLUTE

row
position

-

PREVIOUS

FIRST

LAST

CURRENT

data structure

indicator
variable

indicator
variable

FETCH

ESQL

cursor id INTO
data

variable

FETCH
Element Purpose Restrictions Syntax
cursor id Identifier for a select or function

cursor from which rows are to be
retrieved

A DECLARE statement must
have previously created the
cursor and the OPEN statement
must have previously open it.

Identifier, p. 1-962

cursor variable Host variable that holds the
value of cursor id

The host variable must be a
character data type. The cursor
identified in cursor variable must
have been created in an earlier
DECLARE statement and opened
in an earlier OPEN statement.

Variable name must
conform to
language-specific
rules for variable
names.

data structure Structure that has been declared
as a host variable

The individual members of the
data structure must be matched
appropriately to the type of
values that are being fetched. If
you use a program array, you
must list both the array name
and a specific element of the
array in data structure.

Data-structure name
must conform to
language-specific
rules for data-
structure names.

data variable Host variable that receives one
value from the fetched row

The host variable must have a
data type that is appropriate for
the value that is fetched into it.

Variable name must
conform to
language-specific
rules for variable
names.

descriptor Quoted string that identifies the
system-descriptor area into
which you fetch the contents of a
row

The system-descriptor area must
have been allocated with the
ALLOCATE DESCRIPTOR
statement.

Quoted String,
p. 1-1010

descriptor
variable

Host variable name that holds
the value of descriptor

The system-descriptor area that
is identified in descriptor variable
must have been allocated with
the ALLOCATE DESCRIPTOR
statement.

Variable name must
conform to
language-specific
rules for variable
names.

 (1 of 2)
SQL Statements 1-409

FETCH
Usage
The FETCH statement is one of four statements that are used for queries that
return more than one row from the database. The four statements, DECLARE,
OPEN, FETCH, and CLOSE, are used in the following sequence:

1. Declare a select or function cursor to control the active set of rows.

2. Open the cursor to begin execution of the query.

indicator
variable

Host variable that receives a
return code if null data is placed
in the corresponding data
variable

This parameter is optional, but
use an indicator variable if the
possibility exists that the value
of data variable is null. If you
specify the indicator variable
without the INDICATOR
keyword, you cannot put a space
between data variable and
indicator variable. The rules for
placing a prefix before indicator
variable are language-specific.
See your SQL API manual for
further information on indicator
variables.

Variable cannot be a DATETIME
or INTERVAL data type.

Variable name must
conform to
language-specific
rules for variable
names.

row position Integer value or host variable
that contains an integer value.
The integer value gives the
position of the desired row in the
active set of rows. See “FETCH
with a Scroll Cursor” on
page 1-412 for a discussion of the
RELATIVE and ABSOLUTE
keywords and the meaning of
row position with each keyword.

A value of 0 for row position is
allowed with the RELATIVE
keyword. A value of 0 fetches
the current row. The value of row
position must be 1 or higher with
the ABSOLUTE keyword.

If you are using a
host variable,
variable name must
conform to
language-specific
rules for variable
names. If you are
using a literal
number, see Literal
Number, p. 1-997.

sqlda pointer Pointer to an sqlda structure that
receives the values from the
fetched row

You cannot begin an sqlda
pointer with a dollar sign ($) or a
colon (:).

See the discussion of
sqlda structure in the
INFORMIX-ESQL/C
Programmer’s Manual.

Element Purpose Restrictions Syntax

 (2 of 2)
1-410 Informix Guide to SQL: Syntax

FETCH
3. Fetch from the cursor to retrieve the contents of each row.

4. Close the cursor to break the association between the cursor and the
active set.

You can declare a select or function cursor with either of the following cursor
characteristics: a sequential cursor or a scroll cursor. The way the database
server creates and stores members of the active set and then fetches rows
from the active set differs depending on whether the cursor is a sequential
cursor or a scroll cursor. (For more information, see “Cursor Characteristics”
on page 1-313 in the DECLARE statement)

In X/Open mode, if a cursor-direction value (such as NEXT or RELATIVE) is
specified, a warning message is issued, indicating that the statement does not
conform to X/Open standards. ♦

FETCH with a Sequential Cursor
A sequential select or function cursor can fetch only the next row in sequence
from the active set. The sole cursor-direction option that is available to a
sequential cursor is the default value, NEXT. A sequential cursor can read
through a table only once each time it is opened. The following example in
INFORMIX-ESQL/C illustrates a FETCH statement with a sequential cursor:

EXEC SQL fetch seq_curs into :fname, :lname;

When the program opens a sequential cursor, the database server processes
the query to the point of locating or constructing the first row of data. The
goal of the database server is to tie up as few resources as possible.

Because the sequential cursor can retrieve only the next row, the database
server can frequently create the active set one row at a time. On each FETCH
operation, the database server returns the contents of the current row and
locates the next row. This one-row-at-a-time strategy is not possible if the
database server must create the entire active set to determine which row is
the first row (as would be the case if the SELECT statement included an
ORDER BY clause).

X/O
SQL Statements 1-411

FETCH
FETCH with a Scroll Cursor
A scroll select or function cursor can fetch any row in the active set, either by
specifying an absolute row position or a relative offset. Use the following
cursor-position options to specify a particular row that you want to retrieve.

The following INFORMIX-ESQL/C examples illustrate a FETCH statement
with a scroll cursor:

EXEC SQL fetch previous q_curs into :orders;

EXEC SQL fetch last q_curs into :orders;

EXEC SQL fetch relative -10 q_curs into :orders;

printf("Which row? ");
scanf("%d",row_num);
EXEC SQL fetch absolute :row_num q_curs into :orders;

Keyword Effect

NEXT Retrieves the next row in the active set.

PREVIOUS Retrieves the previous row in the active set.

PRIOR Is synonymous with PREVIOUS; it retrieves the previous row
in the active set.

FIRST Retrieves the first row in the active set.

LAST Retrieves the last row in the active set.

CURRENT Retrieves the current row in the active set (the same row as
returned by the preceding FETCH statement from the scroll
cursor).

RELATIVE Retrieves the nth row, relative to the current cursor position in
the active set, where row position supplies n. A negative value
indicates the nth row prior to the current cursor position. If
row position is 0, the current row is fetched.

ABSOLUTE Retrieves the nth row in the active set, where row position
supplies n. Absolute row positions are numbered from 1.
1-412 Informix Guide to SQL: Syntax

FETCH
Row Numbers

The row numbers that are used with the ABSOLUTE keyword are valid only
while the cursor is open. Do not confuse them with rowid values. A rowid
value is based on the position of a row in its table and remains valid until the
table is rebuilt. A row number for a FETCH statement is based on the position
of the row in the active set of the cursor; the next time the cursor is opened,
different rows might be selected.

How the Database Server Stores Rows

The database server must retain all the rows in the active set for a scroll
cursor until the cursor closes, because it cannot be sure which row the
program asks for next. When a scroll cursor opens, the database server imple-
ments the active set as a temporary table although it might not fill this table
immediately.

The first time a row is fetched, the database server copies it into the
temporary table as well as returning it to the program. When a row is fetched
for the second time, it can be taken from the temporary table. This scheme
uses the fewest resources in case the program abandons the query before it
fetches all the rows. Rows that are never fetched are usually not created or are
saved in a temporary table.

Specifying Where Values Go in Memory
Each value from the select list of the query or the output of a user-defined
function must be returned into a memory location. You can specify these
destinations in one of the following ways:

■ In the INTO clause of a SELECT statement

■ In the INTO clause of a EXECUTE FUNCTION statement

■ In the INTO clause of a FETCH statement

■ In a system-descriptor area

■ In an sqlda structure ♦E/C
SQL Statements 1-413

FETCH
INTO Clause of SELECT

When you associate a SELECT statement with the cursor (a select cursor), the
SELECT can contain an INTO clause to specify the program variables that are
to receive the column values. In this case, the FETCH statement cannot contain
an INTO clause. You can use this method only when the SELECT statement is
written as part of the declaration of a cursor (see the DECLARE statement on
page 1-300). The following example uses the INTO clause of the SELECT
statement to specify program variables in INFORMIX-ESQL/C:

EXEC SQL declare ord_date cursor for
select order_num, order_date, po_num

into :o_num, :o_date, :o_po FROM orders;
EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

Use an indicator variable if the data that is returned from the SELECT
statement might be null. See your SQL API manual for more information
about indicator variables.

If you prepare a SELECT statement, the SELECT cannot include the INTO clause
so you must use the INTO clause of the FETCH statement. For more infor-
mation, see page 1-415.

INTO Clause of EXECUTE FUNCTION

When you associate an EXECUTE FUNCTION statement with the cursor (a
function cursor), the EXECUTE FUNCTION can contain an INTO clause to
specify the program variables that are to receive the return values. In this
case, the FETCH statement cannot contain an INTO clause. You can use this
method only when the EXECUTE FUNCTION statement is written as part of
the declaration of a cursor (see the DECLARE statement on page 1-300).

Tip: In earlier versions of Informix products, you could use the EXECUTE PROCE-
DURE statement to execute a stored procedure that returned values (an SPL
function). For backward compatibility, the EXECUTE PROCEDURE statement still
supports the INTO clause to receive return values. However, Informix recommends
that new SPL functions use EXECUTE FUNCTION and the INTO clause. For more
information, see “EXECUTE PROCEDURE” on page 1-404.
1-414 Informix Guide to SQL: Syntax

FETCH
The following example uses the INTO clause of the EXECUTE FUNCTION
statement to specify program variables in INFORMIX-ESQL/C:

EXEC SQL declare ord_date cursor for
execute function func1(20)

into :o_num, :o_date, :o_po;
EXEC SQL open ord_date;
EXEC SQL fetch next ord_date;

Use an indicator variable if the data that is returned from the EXECUTE
FUNCTION statement might be null. See INFORMIX-ESQL/C Programmer’s
Manual for more information about indicator variables.

INTO Clause of FETCH

When the SELECT or EXECUTE FUNCTION statement omits the INTO clause,
you must specify the destination of the data whenever a row is fetched. For
example, to dynamically execute a SELECT or EXECUTE FUNCTION
statement, the SELECT or EXECUTE FUNCTION cannot include its INTO clause
in the PREPARE statement. Therefore, the FETCH statement must include an
INTO clause to retrieve data into a set of variables. This method lets you store
different rows in different memory locations.

In the following INFORMIX-ESQL/C example, a series of complete rows is
fetched into a program array. The INTO clause of each FETCH statement
specifies an array element as well as the array name.

EXEC SQL BEGIN DECLARE SECTION;
char wanted_state[2];
short int row_count = 0;
struct customer_t{
{

int c_no;
char fname[15];
char lname[15];

} cust_rec[100];
EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to'stores7';
printf("Enter 2-letter state code: ");
scanf ("%s", wanted_state);

EXEC SQL declare cust cursor for
select * from customer where state = :wanted_state;

EXEC SQL open cust;
SQL Statements 1-415

FETCH
EXEC SQL fetch cust into :cust_rec[row_count];
while (SQLCODE == 0)
{

printf("\n%s %s", cust_rec[row_count].fname,
cust_rec[row_count].lname);

row_count++;
EXEC SQL fetch cust into :cust_rec[row_count];

}
printf ("\n");
EXEC SQL close cust;
EXEC SQL free cust;

}

You can fetch into a program-array element only by using an INTO clause in
the FETCH statement. When you are declaring a cursor, do not refer to an
array element within the SQL statement.

Using a System-Descriptor Area

If you do not know the number of return values or their data types that a
SELECT or EXECUTE FUNCTION statement returns at runtime, you can store
output values in a system-descriptor area. A system-descriptor area
describes the data type and memory location of one or more return values.

You can also use an sqlda structure to dynamically supply parameters
(page 1-417). However, a system-descriptor area conforms to the X/Open
standards. ♦

Tip: If you are certain of the number and data type of values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see page 1-415.

To specify a system-descriptor area as the location of output values, use the
USING SQL DESCRIPTOR clause of the FETCH statement. This clause intro-
duces the name of the system-descriptor area into which you fetch the
contents of a row or the return values of a user-defined function. You can then
use the GET DESCRIPTOR statement to transfer the values that the FETCH
statement returns from the system-descriptor area into host variables.

X/O
1-416 Informix Guide to SQL: Syntax

FETCH
The following example shows the FETCH USING SQL DESCRIPTOR statement:

EXEC SQL allocate descriptor 'desc';
...
EXEC SQL declare selcurs cursor for

select * from customer where state = 'CA';
EXEC SQL describe selcurs using sql descriptor 'desc';
EXEC SQL open selcurs;
while (1)

{
EXEC SQL fetch selcurs using sql descriptor 'desc';
...

The COUNT field in the system-descriptor area corresponds to the number of
return values of the prepared statement. The value of COUNT must be less
than or equal to the value of the occurrences that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

For more information on how to use a system-descriptor area, see the
INFORMIX-ESQL/C Programmer’s Manual.

Using an sqlda Structure

If you do not know the number of return values or their data types that a
SELECT or EXECUTE FUNCTION statement returns at runtime, you can store
output values in an sqlda structure. An sqlda structure lists the data type and
memory location of one or more return values.

Tip: If you are certain of the number and data type of values in the select list, you can
use an INTO clause in the FETCH statement. For more information, see page 1-415.

To specify an sqlda structure as the location of parameters, follow these steps:

1. Declare an sqlda pointer variable.

2. Use the DESCRIBE statement to fill in the sqlda structure.

3. Allocate memory to hold the data values.

4. Use the USING DESCRIPTOR clause of the FETCH statement to name
the sqlda structure as the location into which you fetch the return
values.
SQL Statements 1-417

FETCH
The following example shows a FETCH USING DESCRIPTOR statement:

struct sqlda *sqlda_ptr;
...
EXEC SQL declare selcurs2 cursor for

select * from customer where state = 'CA';
EXEC SQL describe selcurs2 into sqlda_ptr;
...
EXEC SQL open selcurs2;
while (1)

{
EXEC SQL fetch selcurs2 using descriptor sqlda_ptr;
...

The sqld value specifies the number of output values that are described in
occurrences of the sqlvar structures of the sqlda structure. This number must
correspond to the number of return values from the prepared statement. For
further information, refer to the sqlda discussion in the INFORMIX-ESQL/C
Programmer’s Manual.

Fetching a Row for Update
The FETCH statement does not ordinarily lock a row that is fetched. Thus,
another process can modify (update or delete) the fetched row immediately
after your program receives it. A fetched row is locked in the following cases:

■ When you set the isolation level to Repeatable Read, each row you
fetch is locked with a read lock to keep it from changing until the
cursor closes or the current transaction ends. Other programs can
also read the locked rows.

■ When you set the isolation level to Cursor Stability, the current row
is locked.

■ In an ANSI-compliant database, an isolation level of Repeatable Read
is the default; you can set it to something else. ♦

■ When you are fetching through an update cursor (one that is
declared FOR UPDATE), each row you fetch is locked with a
promotable lock. Other programs can read the locked row, but no
other program can place a promotable or write lock; therefore, the
row is unchanged if another user tries to modify it using the WHERE
CURRENT OF clause of UPDATE or DELETE statement.

ANSI
1-418 Informix Guide to SQL: Syntax

FETCH
When you modify a row, the lock is upgraded to a write lock and remains
until the cursor is closed or the transaction ends. If you do not modify it, the
lock might or might not be released when you fetch another row, depending
on the isolation level you have set. The lock on an unchanged row is released
as soon as another row is fetched, unless you are using Repeatable Read
isolation (see the SET ISOLATION statement on page 1-719).

Important: You can hold locks on additional rows even when Repeatable Read
isolation is not in use or is unavailable. Update the row with unchanged data to hold
it locked while your program is reading other rows. You must evaluate the effect of
this technique on performance in the context of your application, and you must be
aware of the increased potential for deadlock.

When you use explicit transactions, be sure that a row is both fetched and
modified within a single transaction; that is, both the FETCH statement and
the subsequent UPDATE or DELETE statement must fall between a BEGIN
WORK statement and the next COMMIT WORK statement.

Fetching From a Collection Cursor
A collection cursor allows you to access the individual elements of an
ESQL/C collection variable. To declare a collection cursor, use the DECLARE
statement and include the Collection Derived Table segment in the SELECT
statement that you associate with the cursor. Once you open the collection
cursor with the OPEN statement, the cursor allows you to access the elements
of the collection variable.

For more information, see the Collection Derived Table segment on
page 1-827. For more information on how to declare a collection cursor for a
SELECT statement, see “A Select Cursor for a Collection Variable” on
page 1-318.

To fetch elements, one at a time, from a collection cursor, use the FETCH
statement and the INTO clause. The FETCH statement identifies the collection
cursor that is associated with the collection variable. The INTO clause
identifies the host variable that holds the element value that is fetched from
the collection cursor. The data type of the host variable in the INTO clause
must match the element type of the collection.
SQL Statements 1-419

FETCH
Suppose you have a table called children with the following structure:

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20) NOT NULL),

)

The following ESQL/C code fragment shows how to fetch elements from the
child_colors collection variable:

EXEC SQL BEGIN DECLARE SECTION;
client collection child_colors;
varchar one_favorite[21];
char child_name[31] = "marybeth";

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :child_colors;

/* Get structure of fav_colors column for untyped
* child_colors collection variable */

EXEC SQL select fav_colors into :child_colors
from children
where name = :child_name;

/* Declare select cursor for child_colors collection
* variable */

EXEC SQL declare colors_curs cursor for
select * from table(:child_colors);

EXEC SQL open colors_curs;

do
{

EXEC SQL fetch colors_curs into :one_favorite;
...

} while (SQLCODE == 0)

EXEC SQL close colors_curs;
EXEC SQL free colors_curs;
EXEC SQL deallocate collection :child_colors;

Once you have fetched a collection element, you can modify the element with
the UPDATE or DELETE statements. For more information, see the UPDATE
and DELETE statements in this manual. You can also insert new elements into
the collection variable with an INSERT statement. For more information, see
the INSERT statement.
1-420 Informix Guide to SQL: Syntax

FETCH
Important: The collection variable stores the elements of the collection. However, it
has no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the collection
column with the INSERT or UPDATE statement.

Checking the Result of FETCH
You can use the SQLSTATE variable to check the result of each FETCH
statement. The database server sets the SQLSTATE variable after each SQL
statement. If a row is returned successfully, the SQLSTATE variable contains
the value '00000'. If no row is found, the database server sets the SQLSTATE
code to '02000', which indicates no data found, and the current row is
unchanged. The following conditions set the SQLSTATE code to '02000',
indicating no data found:

■ The active set contains no rows.

■ You issue a FETCH NEXT statement when the cursor points to the last
row in the active set or points past it.

■ You issue a FETCH PRIOR or FETCH PREVIOUS statement when the
cursor points to the first row in the active set.

■ You issue a FETCH RELATIVE n statement when no nth row exists in
the active set.

■ You issue a FETCH ABSOLUTE n statement when no nth row exists in
the active set.

The database server copies the SQLSTATE code from the
RETURNED_SQLSTATE field of the system-diagnostics area. You can use the
GET DIAGNOSTICS statement to examine the RETURNED_SQLSTATE field
directly. The system-diagnostics area can also contain additional error infor-
mation. See the GET DIAGNOSTICS statement in this manual for more
information.

Tip: When you encounter an SQLSTATE (sqlca.sqlcode) error, a corresponding
SQLCODE error might also exist. The SQLCODE variable contains the
Informix-specific error code. For more information about SQLCODE, see the
“Informix Guide to SQL: Tutorial” and the “INFORMIX-ESQL/C Programmer’s
Manual.”
SQL Statements 1-421

FETCH
References
See the ALLOCATE DESCRIPTOR, CLOSE, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, GET DESCRIPTOR, OPEN, PREPARE, and SET
DESCRIPTOR statements in this manual for further information about using
the FETCH statement with dynamic management statements.

In the Informix Guide to SQL: Tutorial, see the discussion of the FETCH
statement in Chapter 5.

For further information about error checking, the system-descriptor area and
the sqlda structure, see INFORMIX-ESQL/C Programmer’s Manual.
1-422 Informix Guide to SQL: Syntax

FLUSH
FLUSH
Use the FLUSH statement to force rows that a PUT statement buffered to be
written to the database.

Syntax

Usage
The PUT statement adds a row to a buffer, and the buffer is written to the
database when it is full. Use the FLUSH statement to force the insertion when
the buffer is not full.

If the program terminates without closing the cursor, the buffer is left
unflushed. Rows placed into the buffer since the last flush are lost. Do not
expect the end of the program to close the cursor and flush the buffer.

Element Purpose Restrictions Syntax
cursor id Identifier for a cursor A DECLARE statement must

have previously created the
cursor.

Identifier, p. 1-962

cursor variable Host variable that identifies a
cursor

Host variable must be a
character data type. A DECLARE
statement must have previously
created the cursor.

Variable name must
conform to
language-specific
rules for variable
names.

cursor
variable

FLUSH cursor
id

ESQL
+

SQL Statements 1-423

FLUSH
The following example shows a FLUSH statement:

FLUSH icurs

Error Checking FLUSH Statements
The sqlca structure contains information on the success of each FLUSH
statement and the number of rows that are inserted successfully. The result of
each FLUSH statement is contained in the SQLCODE variable (sqlca.sqlcode)
and the sqlerrd[2] field of the sqlca structure.

When you use data buffering with an insert cursor, you do not discover
errors until the buffer is flushed. For example, an input value that is incom-
patible with the data type of the column for which it is intended is discovered
only when the buffer is flushed. When an error is discovered, rows in the
buffer that are located after the error are not inserted; they are lost from
memory.

The SQLCODE field is set either to an error code or to zero if no error occurs.
The third element of the sqlerrd array is set to the number of rows that are
successfully inserted into the database:

■ If a block of rows is successfully inserted into the database,
SQLCODE is set to zero and sqlerrd to the count of rows.

■ If an error occurs while the FLUSH statement is inserting a block of
rows, SQLCODE shows which error, and sqlerrd[2] contains the
number of rows that were successfully inserted. (Uninserted rows
are discarded from the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. Check the GET DIAGNOSTICS statement for information about
getting the SQLSTATE value and using the GET DIAGNOSTICS statement to
interpret the SQLSTATE value.
1-424 Informix Guide to SQL: Syntax

FLUSH
Counting Total and Pending Rows

To count the number of rows actually inserted into the database as well as the
number not yet inserted, perform the following steps:

1. Prepare two integer variables, such as total and pending.

2. When the cursor opens, set both variables to 0.

3. Each time a PUT statement executes, increment both total and
pending.

4. Whenever a FLUSH statement executes or the cursor is closed,
subtract the third field of the SQLERRD array from pending.

References
See the CLOSE, DECLARE, OPEN, and PUT statements in this manual.

For information about the sqlca structure, see the INFORMIX-ESQL/C
Programmer’s Manual.

In the Informix Guide to SQL: Tutorial, see the discussion of FLUSH in
Chapter 6.
SQL Statements 1-425

FREE
FREE
The FREE statement releases resources that are allocated to a prepared
statement or to a cursor.

Syntax

Element Purpose Restrictions Syntax
cursor id Identifier for a cursor A DECLARE statement must

have previously created the
cursor.

Identifier, p. 1-962

cursor variable Host variable that identifies a
cursor

Variable must be a character data
type. Cursor must have been
previously created by a
DECLARE statement.

Variable name must
conform to
language-specific
rules for variable
names

 (1 of 2)

cursor
variable

FREE cursor id

statement
id variable

statement
id

+
ESQL
1-426 Informix Guide to SQL: Syntax

FREE
Usage
The FREE statement releases the resources that were allocated for a prepared
statement or a declared cursor in the application-development tool and the
database server. Resources are allocated when you prepare a statement or
when you open a cursor (see the DECLARE and OPEN statements on pages
1-300 and 1-525, respectively.)

The amount of available memory in the system limits the total number of
open cursors and prepared statements that are allowed at one time in one
process. Use FREE statement id or FREE statement id variable to release the
resources that a prepared statement holds; use FREE cursor id or FREE cursor
variable to release resources that a cursor holds.

Freeing a Statement
If you prepared a statement (but did not declare a cursor for it), FREE
statement id (or statement id variable) releases the resources in both the
application development tool and the database server.

If you declared a cursor for a prepared statement, FREE statement id (or
statement id variable) releases only the resources in the application devel-
opment tool; the cursor can still be used. The resources in the database server
are released only when you free the cursor.

statement id Identifier for an SQL statement The statement identifier must be
defined in a previous PREPARE
statement. After you release the
database-server resources, you
cannot use the statement
identifier with a DECLARE
cursor or with the EXECUTE
statement until you prepare the
statement again.

PREPARE, p. 1-538

statement id
variable

A host variable that identifies an
SQL statement

This variable must be defined in
a previous PREPARE statement.
Variable must be a character
data type.

PREPARE, p. 1-538

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-427

FREE
After you free a statement, you cannot execute it or declare a cursor for it
until you prepare it again.

The following INFORMIX-ESQL/C example shows the sequence of statements
that is used to free an implicitly prepared statement:

EXEC SQL prepare sel_stmt from 'select * from orders';
.
.
.
EXEC SQL free sel_stmt;

The following INFORMIX-ESQL/C example shows the sequence of statements
that are used to release the resources of an explicitly prepared statement. The
first FREE statement in this example frees the cursor. The second FREE
statement in this example frees the prepared statement.

sprintf(demoselect, "%s %s",
"select * from customer ",
"where customer_num between 100 and 200");

EXEC SQL prepare sel_stmt from :demoselect;
EXEC SQL declare sel_curs cursor for sel_stmt;
EXEC SQL open sel_curs;
.
.
.

EXEC SQL close sel_curs;
EXEC SQL free sel_curs;
EXEC SQL free sel_stmt;

Freeing a Cursor
If you declared a cursor for a prepared statement, freeing the cursor releases
only the resources in the database server. To release the resources for the
statement in the application-development tool, use FREE statement id (or
statement id variable).

If a cursor is not declared for a prepared statement, freeing the cursor releases
the resources in both the application-development tool and the database
server.

After a cursor is freed, it cannot be opened until it is declared again. The
cursor should be explicitly closed before it is freed.

For an example of a FREE statement that frees a cursor, see the second
example in “Freeing a Statement” on page 1-427.
1-428 Informix Guide to SQL: Syntax

FREE
References
See the CLOSE, DECLARE, EXECUTE, EXECUTE IMMEDIATE, and PREPARE
statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of the FREE statement
in Chapter 5.
SQL Statements 1-429

GET DESCRIPTOR
GET DESCRIPTOR
Use the GET DESCRIPTOR statement to obtain values from a system-
descriptor area.

Syntax

,
item

number
VALUE

descriptor
 variable

item
number
variable

Item
Descriptor
Information

field host
variable = TYPE

GET DESCRIPTOR descriptor host variable = COUNT

E/C

+

Item
Descriptor
Information

EXTYPEID

EXTYPENAME

EXTYPELENGTH

EXTYPOWNERLENGTH

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

NAME

DATA

ITYPE

IDATA

ILENGTH

EXTYPEOWNERNAME

' '

SOURCEID

SOURCETYPE
1-430 Informix Guide to SQL: Syntax

GET DESCRIPTOR
Element Purpose Restrictions Syntax
descriptor A quoted string that identifies a

system-descriptor area from
which information is to be
obtained

The system-descriptor area must
have been allocated in an
ALLOCATE DESCRIPTOR
statement.

Quoted String,
p. 1-1010

descriptor
variable

An embedded variable name
that holds the value of descriptor

The system-descriptor area
identified in descriptor variable
must have been allocated in an
ALLOCATE DESCRIPTOR
statement.

The name of the
embedded variable
must conform to
language-specific
rules for variable
names.

field host
variable

The name of a host variable that
receives the contents of the
specified field from the system-
descriptor area

The field host variable must be an
appropriate type to receive the
value of the specified field from
the system-descriptor area

The name of the field
host variable must
conform to
language-specific
rules for variable
names.

host variable The name of a host variable that
indicates how many values are
described in the system-
descriptor area

The host variable must be an
integer data type.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

item number An unsigned integer that repre-
sents one of the occurrences
(item descriptors) in the system-
descriptor area

The value of item number must be
greater than zero and less than
the number of occurrences that
were specified when the system-
descriptor area was allocated
with the ALLOCATE
DESCRIPTOR statement.

Literal Number,
p. 1-997

item number
variable

The name of a host variable that
holds the value of item number

The item number variable must be
an integer data type.

The name of the item
number variable must
conform to
language-specific
rules for variable
names.
SQL Statements 1-431

GET DESCRIPTOR
Usage
The GET DESCRIPTOR statement can be used after you have described
SELECT, EXECUTE FUNCTION, and INSERT statements with the
DESCRIBE...USING SQL DESCRIPTOR statement. The GET DESCRIPTOR
statement can obtain values from a system-descriptor area in the following
instances:

■ Determine how many values are described in a system-descriptor
area by retrieving the value in the COUNT field.

■ Determine the characteristics of each column or expression that is
described in the system-descriptor area.

■ Copy a value from the system-descriptor area into a host variable
after a FETCH statement.

If an error occurs during the assignment to any identified host variable, the
contents of the host variable are undefined. The host variables that are used
in the GET DESCRIPTOR statement must be declared in the
INFORMIX-ESQL/C program. See the INFORMIX-ESQL/C Programmer’s
Manual for information on the role and contents of each field in the system-
descriptor area and on how to declare host variables.

Using the COUNT Keyword

Use the COUNT keyword to determine how many values are described in the
system-descriptor area. The following INFORMIX-ESQL/C example shows
how to use a GET DESCRIPTOR statement with a host variable to determine
how many values are described in the system-descriptor area called desc1:

main()
{
EXEC SQL BEGIN DECLARE SECTION;

int h_count;
EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor 'desc1' with max occurrences 20;

/* This section of program would prepare a SELECT or INSERT
 * statement into the s_id statement id.
*/
EXEC SQL describe s_id using sql descriptor 'desc1';

EXEC SQL get descriptor 'desc1' :h_count = count;
...
}

1-432 Informix Guide to SQL: Syntax

GET DESCRIPTOR
VALUE Clause

Use the VALUE clause to obtain information about a described column or
expression or to retrieve values that the database server returns in a system-
descriptor area. You can modify values for items after you use the DESCRIBE
statement to fill the fields for a SELECT, EXECUTE FUNCTION, or INSERT
statement, or you can obtain values for items for which you are providing a
description (such as parameters in a WHERE clause).

The item number must be greater than zero and less than the number of
occurrences that were specified when you allocated the system-descriptor
area with the ALLOCATE DESCRIPTOR statement.

Using the VALUE Clause After a DESCRIBE

After you describe a SELECT, EXECUTE FUNCTION, or INSERT statement with
the DESCRIBE...USING SQL DESCRIPTOR statement, the characteristics of each
column or expression in the select list of the SELECT statement, the character-
istics of the values returned by the EXECUTE FUNCTION statement, or the
characteristics of each column in the INSERT statement are returned to the
system-descriptor area. Each value in the system-descriptor area describes
the characteristics of one returned column or expression. Each field and its
possible contents are described in the INFORMIX-ESQL/C Programmer’s
Manual.

The following INFORMIX-ESQL/C example shows how to use a GET
DESCRIPTOR statement to obtain data type information from the demodesc
system-descriptor area:

EXEC SQL get descriptor 'demodesc' value :index
 :type = TYPE,
 :len = LENGTH,
 :name = NAME;

printf("Column %d: type = %d, len = %d, name = %s\n",
index, type, len, name);

The value that the database server returns into the TYPE field is a defined
integer. To evaluate the data type that is returned, test for a specific integer
value. The codes for the TYPE field are listed in the description of the SET
DESCRIPTOR statement on page 1-699.
SQL Statements 1-433

GET DESCRIPTOR
In X/Open mode, the X/Open code is returned to the TYPE field. You cannot
mix the two modes because errors can result. For example, if a particular data
type is not defined under X/Open mode but is defined for Informix products,
executing a GET DESCRIPTOR statement can result in an error.

In X/Open mode, a warning message appears if ILENGTH, DATA, or ITYPE is
used. It indicates that these fields are not standard X/Open fields for a
system-descriptor area.

For more information about TYPE, ILENGTH, IDATA, and ITYPE, see the
dynamic management chapter in the INFORMIX-ESQL/C Programmer’s
Manual. For more information about programming in X/Open mode, see the
preprocessing and compilation syntax in the appropriate Informix SQL API
programmer’s manual. ♦

If the TYPE field for a fetched value is DECIMAL or MONEY, the database
server returns the precision and scale information for a column into the
PRECISION and SCALE fields after a DESCRIBE statement is executed. If the
TYPE is not DECIMAL or MONEY, the SCALE and PRECISION fields are
undefined.

Using the VALUE Clause After a FETCH

Each time your program fetches a row, it must copy the fetched value into
host variables so that the data can be used. To accomplish this task, use a GET
DESCRIPTOR statement after each fetch of each value in the select list. If three
values exist in the select list, you need to use three GET DESCRIPTOR state-
ments after each fetch (assuming you want to read all three values). The item
numbers for each of the three GET DESCRIPTOR statements are 1, 2, and 3.

The following INFORMIX-ESQL/C example shows how you can copy data
from the DATA field into a host variable (result) after a fetch. For this
example, it is predetermined that all returned values are the same data type.

EXEC SQL get descriptor 'demodesc' :desc_count = count;
.
.
.
EXEC SQL fetch democursor using sql descriptor 'demodesc';
for (i = 1; i <= desc_count; i++)

{
if (sqlca.sqlcode != 0) break;
EXEC SQL get descriptor 'demodesc' value :i :result = DATA;
printf("%s ", result);
}

printf("\n");

X/O
1-434 Informix Guide to SQL: Syntax

GET DESCRIPTOR
Fetching a Null Value

When you use GET DESCRIPTOR after a fetch, and the fetched value is null,
the INDICATOR field is set to -1 (NULL). The value of DATA is undefined if
INDICATOR indicates a null value. The host variable into which DATA is
copied has an unpredictable value.

Using LENGTH or ILENGTH

If your DATA or IDATA field contains a character string, you must specify a
value for LENGTH. If you specify LENGTH=0, LENGTH is automatically set to
the maximum length of the string. The DATA or IDATA field might contain a
literal character string or a character string that is derived from a character
variable of CHAR or VARCHAR data type. This provides a method to
determine dynamically the length of a string in the DATA or IDATA field.

If a DESCRIBE statement precedes a GET DESCRIPTOR statement, LENGTH is
automatically set to the maximum length of the character field that is
specified in your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.

Describing an Opaque-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an opaque type as its data type:

■ The EXTYPEID field stores the extended ID for the opaque type.

This integer value corresponds to a value in the extended_id column
of the sysxtdtypes system catalog table.

■ The EXTYPENAME field stores the name of the opaque type.

This character value corresponds to a value in the name column of
the row with the matching extended_id value in the sysxtdtypes
system catalog table.

■ The EXTYPELENGTH field stores the length of the opaque-type name.

This integer value is the length, in bytes, of the name of the opaque
type.
SQL Statements 1-435

GET DESCRIPTOR
■ The EXTYPEOWNERNAME field stores the name of the opaque-type
owner.

This character value corresponds to a value in the owner column of
the row with the matching extended_id value in the sysxtdtypes
system catalog table.

■ The EXTYPEOWNERLENGTH field stores the length of the value in
the EXTTYPEOWNERNAME field.

This integer value is the length, in bytes, of the owner name for the
opaque type.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about an opaque column. For more information on the sysxtdtypes
system catalog table, see Chapter 1 of the Informix Guide to SQL: Reference.

Describing a Distinct-Type Column

The DESCRIBE statement sets the following item-descriptor fields when the
column to fetch has an distinct type as its data type:

■ The SOURCEID field stores the extended identifier for the source data
type.

This integer value corresponds to a value in the source column for
the row of the sysxtdtypes system catalog table whose extended_id
value matches that of the distinct type you are setting. This field is
only set if the source data type is an opaque data type.

■ The SOURCETYPE field stores the data-type constant for the source
data type.

This value is the data-type constant (from the sqltypes.h file) for the
data type of the source type for the distinct type. The codes for the
SOURCETYPE field are listed in the description of the TYPE field in the
SET DESCRIPTOR statement (page 1-699). This integer value must
correspond to the value in the type column for the row of the
sysxtdtypes system catalog table whose extended_id value matches
that of the distinct type you are setting.

Use these field names with the GET DESCRIPTOR statement to obtain infor-
mation about a distinct-type column. For more information on the
sysxtdtypes system catalog table, see Chapter 1 of the Informix Guide to SQL:
Reference.
1-436 Informix Guide to SQL: Syntax

GET DESCRIPTOR
References
See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, PUT, and SET DESCRIPTOR
statements in this manual for more information about using dynamic SQL
statements.

For more information about the system-descriptor area, see the
INFORMIX-ESQL/C Programmer’s Manual.
SQL Statements 1-437

GET DIAGNOSTICS
GET DIAGNOSTICS
Use the GET DIAGNOSTICS statement to return diagnostic information about
executing an SQL statement. The GET DIAGNOSTICS statement uses one of
two clauses, as the following list describes:

■ The Statement clause determines count and overflow information
about errors and warnings generated by the most recent SQL
statement.

■ The EXCEPTION clause provides specific information about errors
and warnings generated by the most recent SQL statement.

Syntax

Usage
The GET DIAGNOSTICS statement retrieves selected status information from
the diagnostics area and retrieves either count and overflow information or
information on a specific exception. The diagnostics area is a data structure
that stores diagnostic information about an executed SQL statement.

The GET DIAGNOSTICS statement never changes the contents of the
diagnostics area.

GET DIAGNOSTICS
Statement

Clause
p. 1-446

EXCEPTION
Clause
p. 1-448

+

ESQL
1-438 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Using the SQLSTATE Status Code

When an SQL statement executes, the database server sets a status code is
automatically generated. This code represents one of the following excep-
tions:

■ Success to indicate that the SQL executed without exceptions

■ Warning to indicate that the SQL statement executed successfully but
the database server encountered some condition that might limit the
statement

■ End of Data or Not Found to indicate that the SQL statement executed
successfully but it either found no matching rows (Not Found) or it
did not operate on a row (End of Data)

■ Error to indicate that the SQL statement did not execute successfully

The database server stores this status code in a variable called SQLSTATE.

The SQLSTATE status variable conforms to the ANSI and X/Open
standards. ♦

Tip: Informix database servers also store a status code in an Informix-specific vari-
able called SQLCODE and exception information in the SQLCA structure. For more
information, see the “INFORMIX-ESQL/C Programmer’s Manual.”

X/O

ANSI
SQL Statements 1-439

GET DIAGNOSTICS
Class and Subclass Codes

The SQLSTATE status code is a a five-character string that can contain only
digits and capital letters. This string has the following two parts:

■ The first two characters of the SQLSTATE status code indicate a class.

■ The last three characters of the SQLSTATE status code indicate a
subclass.

Figure 1-1 shows the structure of the SQLSTATE code. This example uses the
value 08001, where 08 is the class code and 001 is the subclass code. The
value 08001 represents the error server rejected the connection.

The following table is a quick reference for interpreting class code values.

Figure 1-1
The Structure of the

SQLSTATE Status
Code

Class
code

Subclass code

0 8 0 0 1

SQLSTATE Class Code Value Outcome

00 Success

01 Success with warning

02 End of data
not found

> 02 Errors
1-440 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Support for ANSI Standards

All status codes returned to the SQLSTATE variable are ANSI compliant except
in the following cases:

■ SQLSTATE codes with a class code of 01 and a subclass code that
begins with a I are Informix-specific warning messages.

■ SQLSTATE code with a class code of 01 and a subclass code of U01
indicates that the a user-defined routine has returned a warning
message that has been defined by a user-defined routine.

■ SQLSTATE codes with a class code of IX and any subclass code are
Informix-specific error messages.

■ SQLSTATE codes whose class code begins with a digit in the range 5
to 9 or with a capital letter in the range I to Z indicate conditions that
are currently undefined by ANSI. The only exception is that
SQLSTATE codes whose class code is IX are Informix-specific error
messages.

■ SQLSTATE code of U0001 indicates that a user-defined routine has
returned an error message that has been defined by a user-defined
routine.
SQL Statements 1-441

GET DIAGNOSTICS
List of SQLSTATE Codes

The following table describes the class codes, subclass codes, and the
meaning of all valid warning and error codes associated with the SQLSTATE
status variable.

Class Subclass Meaning

00 000 Success

01

01

01

01

01

01

01

000

002

003

004

005

006

007

Success with warning

Disconnect error. Transaction rolled back

Null value eliminated in set function

String data, right truncation

Insufficient item descriptor areas

Privilege not revoked

Privilege not granted

01

01

01

01

01

01

01

01

01

01

I01

I03

I04

I05

I06

I07

I08

I09

I10

I11

Database has transactions

ANSI-compliant database selected

INFORMIX-Universal Server database selected

Float to decimal conversion has been used

Informix extension to ANSI-compliant standard syntax

UPDATE/DELETE statement does not have a WHERE clause

An ANSI keyword has been used as a cursor name

Number of items in the select list is not equal to the number in
the into list

Database server running in secondary mode

Dataskip is turned on

01 U01 User-defined routine has defined the warning message text

02 000 No data found

 (1 of 4)
1-442 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
07

07

07

07

07

07

07

07

07

000

001

002

003

004

005

006

008

009

Dynamic SQL error

USING clause does not match dynamic parameters

USING clause does not match target specifications

Cursor specification cannot be executed

USING clause is required for dynamic parameters

Prepared statement is not a cursor specification

Restricted data type attribute violation

Invalid descriptor count

Invalid descriptor index

08

08

08

08

08

08

08

08

000

001

002

003

004

006

007

S01

Connection exception

Server rejected the connection

Connection name in use

Connection does not exist

Client unable to establish connection

Transaction rolled back

Transaction state unknown

Communication failure

0A

0A

000

001

Feature not supported

Multiple server transactions

21

21

21

000

S01

S02

Cardinality violation

Insert value list does not match column list

Degree of derived table does not match column list

Class Subclass Meaning

 (2 of 4)
SQL Statements 1-443

GET DIAGNOSTICS
22

22

22

22

22

22

22

22

22

22

000

001

002

003

005

027

012

019

024

025

Data exception

String data, right truncation

Null value, no indicator parameter

Numeric value out of range

Error in assignment

Data exception trim error

Division by zero

Invalid escape character

Unterminated string

Invalid escape sequence

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

2B 000 Dependent privilege descriptors still exist

2D 000 Invalid transaction termination

26 000 Invalid SQL statement identifier

2E 000 Invalid connection name

28 000 Invalid user-authorization specification

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

37 000 Syntax error or access violation in PREPARE or EXECUTE
IMMEDIATE

3C 000 Duplicate cursor name

40

40

000

003

Transaction rollback

Statement completion unknown

Class Subclass Meaning

 (3 of 4)
1-444 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Using SQLSTATE in Applications

You can use a variable, called SQLSTATE, that you do not have to declare in
your program. SQLSTATE contains the status code that is generated every
time your program executes an SQL statement. This status code is essential
for exception handling. You can examine the SQLSTATE variable to
determine whether an SQL statement was successful. If the SQLSTATE
variable indicates that the statement failed, you can execute a GET
DIAGNOSTICS statement to obtain additional error information from the
diagnostics area.

For an example of how to use an SQLSTATE variable in a program, see “Using
GET DIAGNOSTICS for Error Checking” on page 1-456.

42 000 Syntax error or access violation

S0

S0

S0

S0

S0

000

001

002

011

021

Invalid name

Base table or view table already exists

Base table not found

Index already exists

Column already exists

S1 001 Memory allocation failure

IX 000 Informix reserved error message

U0 001 User-defined routine has defined the error message text

Class Subclass Meaning

 (4 of 4)
SQL Statements 1-445

GET DIAGNOSTICS
Statement Clause

When retrieving count and overflow information, GET DIAGNOSTICS can
deposit the values of the three statement fields into a corresponding host
variable. The host-variable data type must be the same as that of the
requested field. These three fields are represented by the following
keywords.

Element Purpose Restrictions Syntax
st_var Host variable that receives status

information about the most
recent SQL statement. It receives
information for the specified
status field name.

Data type must match that of the
requested field.

Variable name must
conform to
language-specific
rules for variable
names.

MORE

NUMBER

st_var

,

ROW_COUNT

Statement
Clause

=

Field Name
Keyword

Field
Data Type

Field
Contents

ESQL/C
Host Variable
Data Type

MORE Character Y or N char[2]

NUMBER Integer 1 to 35,000 int

ROW_COUNT Integer 0 to 999,999,999 int
1-446 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Using the MORE Keyword

Use the MORE keyword to determine if the most recently executed SQL
statement performed the following actions:

■ Stored all the exceptions it detected in the diagnostics area.

The GET DIAGNOSTICS statement returns a value of N.

■ Detected more exceptions than it stored in the diagnostics area.

The GET DIAGNOSTICS statement returns a value of Y.

The value of MORE is always N.

Using the NUMBER Keyword

Use the NUMBER keyword to count the number of exceptions that the most
recently executed SQL statement placed into the diagnostics area. The
NUMBER field can hold a value from 1 to 35,000, to indicate how many
exceptions are counted.

Using the ROW_COUNT Keyword

Use the ROW_COUNT keyword to count the number of rows the most
recently executed statement processed. The ROW_COUNT field counts the
following number of rows:

■ Inserted into a table

■ Updated in a table

■ Deleted from a table
SQL Statements 1-447

GET DIAGNOSTICS
EXCEPTION Clause

Element Purpose Restrictions Syntax
en_var Host variable that specifies an

exception number for a GET
DIAGNOSTICS statement

Variable must contain an integer
value limited to a range from 1 to
35,000. Variable data type must
be INT or SMALLINT.

Variable name must
conform to
language-specific
rules for variable
names.

except_num Literal integer value that
specifies the exception number
for a GET DIAGNOSTICS
statement. The except_num literal
indicates one of the exception
values from the number of
exceptions returned by the
NUMBER field in the Statement
clause.

Integer value is limited to a
range from 1 to 35,000.

Literal Number,
p. 1-997

ex_var Host variable that you declare,
which receives EXCEPTION
information about the most
recent SQL statement. Receives
information for a specified
exception field name.

Data type must match that of the
requested field.

Variable name must
conform to
language-specific
rules for variable
names.

CLASS_ORIGIN

RETURNED_SQLSTATE

SERVER_NAME

en_var

except_num ex_var

,

EXCEPTION

SUBCLASS_ORIGIN

MESSAGE_TEXT

CONNECTION_NAME

MESSAGE_LENGTH

INFORMIX_SQLSTATE

Exception
Clause

=

1-448 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
When GET DIAGNOSTICS retrieves exception information, it deposits the
values of each of the seven fields into corresponding host variables. These
fields are located in the diagnostics area and are derived from an exception
raised by the most recent SQL statement.

The host-variable data type must be the same as that of the requested field.
The seven exception information fields are represented by the keywords
described in the following table.

The application specifies the exception by number, using either an unsigned
integer, except_num, or an integer host variable (an exact numeric with a scale
of 0), en_var. An exception with a value of 1 corresponds to the SQLSTATE
value set by the most recent SQL statement other than GET DIAGNOSTICS.
The association between other exception numbers and other exceptions
raised by that SQL statement is undefined. Thus, no set order exists in which
the diagnostic area can be filled with exception values. You always get at least
one exception, even if the SQLSTATE value indicates success.

If an error occurs within the GET DIAGNOSTICS statement (that is, if an illegal
exception number is requested), the Informix internal SQLCODE and
SQLSTATE variables are set to the value of that exception. In addition, the
GET DIAGNOSTICS fields are undefined.

Field Name
Keyword

Field
Data Type

Field
Contents

ESQL/C Host
Variable
Data Type

RETURNED_SQLSTATE Character SQLSTATE
value

char[6]

CLASS_ORIGIN Character String char[255]

SUBCLASS_ORIGIN Character String char[255]

INFORMIX_SQLCODE Integer SQLCODE
value

long int

MESSAGE_TEXT Character String char[8191]

MESSAGE_LENGTH Integer Numeric value int

SERVER_NAME Character String char[255]

CONNECTION_NAME Character String char[255]
SQL Statements 1-449

GET DIAGNOSTICS
Using the RETURNED_SQLSTATE Keyword

Use the RETURNED_SQLSTATE keyword to determine the SQLSTATE value
that describes the exception.

Using the INFORMIX_SQLCODE Keyword

Use the INFORMIX_SQLCODE keyword to retrieve the value of the Informix-
specific status code (SQLCODE) for the associated SQLSTATE (and
RETURNED_SQLSTATE) value. The Informix Error Messages manual describes
Informix-specific codes.

Using the CLASS_ORIGIN Keyword

Use the CLASS_ORIGIN keyword to retrieve the source of the class portion of
the RETURNED_SQLSTATE (and SQLSTATE) value. Possible class origins
include the following:

■ If the International Standards Organization (ISO) standard defines
the class, the value of CLASS_ORIGIN is equal to 'ISO 9075'. ANSI
SQL and ISO SQL are synonymous.

■ If Informix defines the class value, the value of CLASS_ORIGIN is
equal to 'IX000'.

■ If a user-defined routine has defined the message in the
MESSAGE_TEXT field, the value of CLASS_ORIGIN is 'U0001'. A
routine can be an SPL routine or an external routine.
1-450 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
Using the SUBCLASS_ORIGIN Keyword

Use the SUBCLASS_ORIGIN keyword to define the source of the subclass
portion of the RETURNED_SQLSTATE (and SQLSTATE) value. Possible
subclass origins include the following:

■ If the International Standards Organization (ISO) standard defines
the subclass value, the value of SUBCLASS_ORIGIN is equal to
'ISO 9075'. ANSI SQL and ISO SQL are synonymous.

■ If Informix defines the subclass value, the value of
SUBCLASS_ORIGIN is equal to 'IX000'.

■ If a user-defined routine has defined the message in the
MESSAGE_TEXT field, the value of SUBCLASS_ORIGIN is 'U0001'. A
routine can be an SPL routine or an external routine.

Using the MESSAGE_TEXT Keyword

Use the MESSAGE_TEXT keyword to determine the message text of the
exception (for example, an error message). User-defined routines (such as
stored routines and external routines) can define their own message text,
which you can access text through the MESSAGE_TEXT field.

The following values indicate that a user-defined routine has returned a
message that the routine has defined:

■ The RETURNED_SQLSTATE field and SQLSTATE are as follows:

❑ "01U01": when the user-defined routine returns a user-defined
warning message

❑ "U0001": when the user-defined routine returns a user-defined
error message

■ The CLASS_ORIGIN and SUBCLASS_ORIGIN fields are set to
"U0001".

Using the MESSAGE_LENGTH Keyword

Use the MESSAGE_LENGTH keyword to determine the length of the current
string in the MESSAGE_TEXT field.
SQL Statements 1-451

GET DIAGNOSTICS
Using the SERVER_NAME Keyword

Use the SERVER_NAME keyword to determine the name of the database
server associated with the actions of a CONNECT or DATABASE statement.

When the SERVER_NAME Field Is Updated

The GET DIAGNOSTICS statement updates the SERVER_NAME field when the
following situations occur:

■ A CONNECT statement successfully executes.

■ A SET CONNECTION statement successfully executes.

■ A DISCONNECT statement successfully executes at the current
connection.

■ A DISCONNECT ALL statement fails.

When the SERVER_NAME Field Is Not Updated

The SERVER_NAME field is not updated when:

■ a CONNECT statement fails.

■ a DISCONNECT statement fails (this does not include the
DISCONNECT ALL statement).

■ a SET CONNECTION statement fails.

The SERVER_NAME field retains the value set in the previous SQL statement.
If any of the preceding conditions occur on the first SQL statement that
executes, the SERVER_NAME field is blank.
1-452 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The Contents of the SERVER_NAME Field

The SERVER_NAME field contains different information after you execute the
following statements.

If the CONNECT statement is successful, the SERVER_NAME field is set to one
of the following values:

■ The INFORMIXSERVER value if the connection is to a default
database server (that is, the CONNECT statement does not list a
database server)

■ The name of the specific database server if the connection is to a
specific database server

The DATABASE Statement

When you execute a DATABASE statement, the SERVER_NAME field contains
the name of the server on which the database resides.

Executed Statement SERVER_NAME Field Contents

CONNECT It contains the name of the database server to which you
connect or fail to connect. Field is blank if you do not have
a current connection or if you make a default connection.

SET CONNECTION It contains the name of the database server to which you
switch or fail to switch.

DISCONNECT It contains the name of the database server from which
you disconnect or fail to disconnect. If you disconnect and
then you execute a DISCONNECT statement for a
connection that is not current, the SERVER_NAME field
remains unchanged.

DISCONNECT ALL It sets the field to blank if the statement executes success-
fully. If the statement does not execute successfully, the
SERVER_NAME field contains the names of all the
database servers from which you did not disconnect.
However, this information does not mean that the
connection still exists.
SQL Statements 1-453

GET DIAGNOSTICS
Using the CONNECTION_NAME Keyword

Use the CONNECTION_NAME keyword to specify a name for the connection
used in your CONNECT or DATABASE statements.

When the CONNECTION_NAME Keyword Is Updated

GET DIAGNOSTICS updates the CONNECTION_NAME field when the
following situations occur:

■ A CONNECT statement successfully executes.

■ A SET CONNECTION statement successfully executes.

■ A DISCONNECT statement successfully executes at the current
connection. GET DIAGNOSTICS fills the CONNECTION_NAME field
with blanks because no current connection exists.

■ A DISCONNECT ALL statement fails.

When CONNECTION_NAME Is Not Updated

The CONNECTION_NAME field is not updated when the following situations
occur:

■ A CONNECT statement fails.

■ A DISCONNECT statement fails (this does not include the
DISCONNECT ALL statement).

■ A SET CONNECTION statement fails.

The CONNECTION_NAME field retains the value set in the previous SQL
statement. If any of the preceding conditions occur on the first SQL statement
that executes, the CONNECTION_NAME field is blank.
1-454 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
The Contents of the CONNECTION_NAME Field

The CONNECTION_NAME field contains different information after you
execute the following statements.

If the CONNECT is successful, the CONNECTION_NAME field is set to the
following values:

■ The name of the database environment as specified in the CONNECT
statement if the CONNECT does not include the AS clause

■ The name of the connection (identifier after the AS keyword) if the
CONNECT includes the AS clause

The DATABASE Statement

When you execute a DATABASE statement, the CONNECTION_NAME field is
blank.

Executed Statement CONNECTION_NAME Field Contents

CONNECT It contains the name of the connection, specified in the
CONNECT statement, to which you connect or fail to
connect. The field is blank if you do not have a current
connection or if you make a default connection.

SET CONNECTION It contains the name of the connection, specified in the
CONNECT statement, to which you switch or fail to switch.

DISCONNECT It contains the name of the connection, specified in the
CONNECT statement, from which you disconnect or fail to
disconnect. If you disconnect, and then you execute a
DISCONNECT statement for a connection that is not current,
the CONNECTION_NAME field remains unchanged.

DISCONNECT ALL The CONNECTION_NAME field is blank if the statement
executes successfully. If the statement does not execute
successfully, the CONNECTION_NAME field contains the
names of all the connections, specified in your CONNECT
statement, from which you did not disconnect. However,
this information does not mean that the connection still
exists.
SQL Statements 1-455

GET DIAGNOSTICS
Using GET DIAGNOSTICS for Error Checking
The GET DIAGNOSTICS statement returns information held in various fields
of the diagnostic area. For each field in the diagnostic area that you want to
access, you must supply a host variable with a compatible data type.

The following examples illustrate using the GET DIAGNOSTICS statement to
display error information. The first example shows an ESQL/C error display
routine called disp_sqlstate_err().

void disp_sqlstate_err()
{
int j;

EXEC SQL BEGIN DECLARE SECTION;
 int exception_count;
 char overflow[2];
 int exception_num=1;
 char class_id[255];
 char subclass_id[255];
 char message[8191];
 int messlen;
 char sqlstate_code[6];
 int i;
EXEC SQL END DECLARE SECTION;

 printf("---------------------------------");
 printf("-------------------------\n");
 printf("SQLSTATE: %s\n",SQLSTATE);
 printf("SQLCODE: %d\n", SQLCODE);
 printf("\n");

 EXEC SQL get diagnostics :exception_count = NUMBER,
 :overflow = MORE;
 printf("EXCEPTIONS: Number=%d\t", exception_count);
 printf("More? %s\n", overflow);
 for (i = 1; i <= exception_count; i++)
 {
 EXEC SQL get diagnostics exception :i
 :sqlstate_code = RETURNED_SQLSTATE,
 :class_id = CLASS_ORIGIN, :subclass_id = SUBCLASS_ORIGIN,
 :message = MESSAGE_TEXT, :messlen = MESSAGE_LENGTH;
 printf("- - - - - - - - - - - - - - - - - - - -\n");
 printf("EXCEPTION %d: SQLSTATE=%s\n", i,
 sqlstate_code);
 message[messlen-1] ='\0';
 printf("MESSAGE TEXT: %s\n", message);
1-456 Informix Guide to SQL: Syntax

GET DIAGNOSTICS
 j = stleng(class_id);
 while((class_id[j] == '\0') ||
 (class_id[j] == ' '))
 j--;
 class_id[j+1] = '\0';
 printf("CLASS ORIGIN: %s\n",class_id);

 j = stleng(subclass_id);
 while((subclass_id[j] == '\0') ||
 (subclass_id[j] == ' '))
 j--;
 subclass_id[j+1] = '\0';
 printf("SUBCLASS ORIGIN: %s\n",subclass_id);
 }

 printf("---------------------------------");
 printf("-------------------------\n");
}

References
In Chapter 5 of the Informix Guide to SQL: Tutorial, see the discussion about
error-code handling. In addition, refer to the exception-handling chapter of
the INFORMIX-ESQL/C Programmer’s Manual.
SQL Statements 1-457

1-458 Informix Guide to SQL: Syntax

GRANT
GRANT
Use the GRANT statement to:

■ authorize others to use, develop, or administrate a database that you
create.

■ allow others to view, alter, or drop a table, synonym, or view that you
create.

■ allow others to use a data type or execute a routine that you create.

■ give a role name and its privileges to one or more users.

 Syntax

Database-Level
Privileges
p. 1-460

WITH GRANT
OPTION

TO

TO

GRANT

Table-Level
Privileges
p. 1-462

Type-Level
Privileges
p. 1-468

User List
p. 1-471

User List
p. 1-471

AS
grantor

+

+

+

role
name

+

E/C

DB

SQLE

Routine-Level
Privileges
p. 1-469

role
name

GRANT
Usage
The GRANT statement extends privileges to other users that would normally
accrue only to the DBA or to the creator of an object. Later GRANT statements
do not affect privileges already granted to a user.

You can grant privileges to a previously created role. You can grant a role to
individual users or to another role.

Privileges you grant remain in effect until you cancel them with a REVOKE
statement. Only the grantor of a privilege or a DBA can revoke that privilege.
The grantor is normally the person who issues the GRANT statement. To
transfer the right to revoke, name another user as grantor when you issue a
GRANT statement.

The keyword PUBLIC extends a GRANT to all users. If you want to restrict
privileges to a particular user that public already has, you must first revoke
the right of public to those privileges.

Element Purpose Restrictions Syntax
role name A name that identifies users by

their function.

Use GRANT to:

■ give privileges to a role name.

■ specify the users who can use
the privileges granted to the
role.

The role must have been created
with the CREATE ROLE
statement.

Identifier, p. 1-962

grantor A name that identifies who can
REVOKE the effects of the current
GRANT. By default, the login of
the person who issues the
GRANT statement identifies the
grantor. To override the default,
include the AS keyword
followed by the login of your
appointed grantor.

If you specify someone else as
the grantor of the specified
privilege, you cannot later
revoke that privilege.

Identifier, p. 1-962
SQL Statements 1-459

GRANT
Database-Level Privileges
When you create a database with the CREATE DATABASE statement, you are
the owner. As the database owner, you automatically receive all database-
level privileges. The database remains inaccessible to other users until you,
as DBA, grant database privileges.

As database owner, you also automatically receive table-level privileges on
all tables in the database. For more information about table-level privileges,
see “Table-Level Privileges” on page 1-462.

Database access levels are, from lowest to highest, Connect, Resource, and
DBA. Use the corresponding keyword to grant a level of access privilege.

Database-Level
Privileges

CONNECT

RESOURCE

DBA

Privilege Permissible Tasks

CONNECT Any user with the Connect privilege can perform the following tasks:

■ Connect to the database with the CONNECT statement or another
connection statement

■ Execute SELECT, INSERT, UPDATE, and DELETE statements,
provided the user has the necessary table-level privileges

■ Create views, provided the user has the Select privilege on the
underlying tables

■ Create synonyms

■ Create temporary tables and create indexes on the temporary
tables

A user with the Connect privilege and appropriate table-level privi-
leges can also do the following:

■ Alter or drop a table or index

■ Grant table-level privileges

 (1 of 2)
1-460 Informix Guide to SQL: Syntax

GRANT
Warning: Informix strongly recommends that you do not update, delete, or alter any
rows in the system catalog tables. Modifying the system catalog tables can destroy
the integrity of the database.

RESOURCE Gives you the ability to extend the structure of the database. In
addition to the capabilities of the Connect privilege, the holder of the
Resource privilege can perform the following tasks:

■ Create new tables

■ Create new indexes

■ Create new routines

■ Create new data types

DBA Has all the capabilities of the Resource privilege as well as the ability
to perform the following tasks:

■ Grant any database-level privilege, including the DBA privilege, to
another user

■ Grant any table-level privilege to another user

■ Grant any table-level privilege to a role

■ Grant a role to a user or to another role

■ Execute the SET SESSION AUTHORIZATION statement

■ Use the NEXT SIZE keyword to alter extent sizes in the system
catalog

■ Drop any object, regardless of its owner

■ Create tables, views, and indexes, and specify another user as
owner of the objects

■ Restrict the Execute privilege to DBAs when registering a routine

■ Execute the DROP DATABASE statement

■ Execute the DROP DISTRIBUTIONS option of the UPDATE
STATISTICS statement

■ Insert, delete, or update rows of any system catalog table except
systables

Only user informix can update systables. You cannot grant this
privilege.

Privilege Permissible Tasks

 (2 of 2)
SQL Statements 1-461

GRANT
Table-Level Privileges
When you create a table with the CREATE TABLE statement, you are the table
owner and automatically receive all table-level privileges. You cannot
transfer table ownership to another user, but you can grant table-level privi-
leges to another user or to a role.

A person with the database-level DBA privilege automatically receives all
table-level privileges on every table in that database.

,
column
name

ALL

PRIVILEGES

DELETE

SELECT

UPDATE

REFERENCES

INDEX

ALTER

()

+

+

INSERT

,

Table-Level Privileges

,
column
name()

,

column
name

()

+

ON Table
Reference
p. 1-466
1-462 Informix Guide to SQL: Syntax

GRANT
The table that follows lists keywords for granting table-level privileges.

Element Purpose Restrictions Syntax
column name The name of the column or

columns to which a Select,
Update, or References privilege
is granted. If you omit column
name, the privilege applies to all
columns in the specified table.

The specified column or
columns must exist.

Identifier, p. 1-962

Privilege Functions

INSERT Enables the grantee to insert rows into a table, view, or
synonym.

DELETE Enables the grantee to delete rows from a table, view, or
synonym.

SELECT Enables the grantee to select and view data. By default, the
grantee can specify any column names from your table in a
SELECT statement or SELECT *. You can limit selection to only
certain columns from your table if you explicitly list their
column names in the GRANT SELECT statement.

UPDATE Enables the grantee to change data. By default, the grantee can
specify any column names from your table in an UPDATE
statement. To enable the grantee to update only certain
columns, explicitly list their column names in the GRANT
UPDATE statement.

REFERENCES Enables the grantee to:

■ reference columns of your table as foreign keys.

■ create constraints that cascade deletes to foreign keys.

By default, a grantee can specify any column names from your
table as a foreign key. To enable the grantee to reference only
certain columns, explicitly list their column names in the
GRANT REFERENCES statement.

A grantee must also have the appropriate additional privi-
leges to invoke the statement that creates, adds, or modifies a
column to contain foreign keys. (For example, CREATE TABLE
requires the Resource privilege.)

 (1 of 2)
SQL Statements 1-463

GRANT
You can narrow the scope of a Select, Update, or References privilege by
naming the specific columns to which the privilege applies.

Specify keyword PUBLIC as user if you want a GRANT statement to apply to
all users.

INDEX Enables the grantee to create permanent indexes on a table.
Has no effect unless the grantee also has database-level
Resource privilege.

ALTER Enables the grantee to perform all the functions provided by
the ALTER TABLE statement, such as:

■ add or delete columns.

■ modify column data types.

■ add or delete constraints on column values.

■ set the object mode of indexes, constraints, and triggers.

■ change the locking mode of the table from PAGE to ROW.

■ add or drop a corresponding row type name for your table.

The Alter privilege has no effect unless the grantee also has
the database-level Resource privilege. The Usage privilege is
also required for any user-defined type effected by the ALTER
TABLE statement.

ALL Provides all table-level privileges with a single keyword. You
can optionally use the longer form ALL PRIVILEGES.

For some of the individual table-level privileges covered by
ALL to take effect, the recipient needs additional authori-
zation. (See “Behavior of the ALL Keyword” on page 1-465 for
details.)

Privilege Functions

 (2 of 2)
1-464 Informix Guide to SQL: Syntax

GRANT
Examples

The following statement grants the privilege to delete and select values in
any column in the table customer to users mary and john. It also grants the
Update privilege, but only for columns customer_num, fname, and lname.

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO mary, john

To grant the same privileges as those above to all authorized users, use the
keyword PUBLIC as shown in the following example:

GRANT DELETE, SELECT, UPDATE (customer_num, fname, lname)
ON customer TO PUBLIC

Behavior of the ALL Keyword

The ALL keyword grants all table-level privileges to the specified user. If any
a grantee lacks additional privileges required to use a table-level privilege,
the GRANT statement with the ALL keyword succeeds, but the following
SQLSTATE warning is returned:

01007 - Privilege not granted.

For example, assume that the user ted has the Select and Insert privileges on
the customer table with the authority to grant those privileges to other users.
User ted wants to grant all table-level privileges to user tania. So user ted
issues the following GRANT statement:

GRANT ALL ON customer TO tania

This statement executes successfully but returns SQLSTATE code 01007 for the
following reasons:

■ The statement succeeds in granting the Select and Insert privileges to
user tania. User ted has those privileges and the right to grant those
privileges to other users.

■ User ted can not grant the Delete, Update, References, Index, and
Alter privileges because he does not have them. User tania does not
have them either.
SQL Statements 1-465

GRANT
Table Reference
You grant table-level privileges directly by referencing the table name or an
existing synonym. You can also grant table-level privileges on a view.

Privileges on Table Name and Synonym Name

Normally, when you create a table in a database that is not ANSI compliant,
public receives Select, Insert, Delete, Under, and Update privileges for that
table and its synonyms. (The NODEFDAC environment variable, when set to
yes, prevents public from automatically receiving table-level privileges.)

To allow access to only certain users, explicitly revoke those privileges public
automatically receives and then grant only those you want, as the following
example shows:

REVOKE ALL ON customer FROM PUBLIC
GRANT ALL ON customer TO john, mary
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC

 If you create a table in an ANSI-compliant database, only you, as table owner,
have any table-level privileges until you explicitly grant privileges to
others.♦

As explained in the next section, “Privileges on a View,” public does not
automatically receive any privileges for a view that you create.

Table
Name

p. 1-1044

Table Reference

View
Name

p. 1-1047

Synonym
Name

p. 1-1042

ANSI
1-466 Informix Guide to SQL: Syntax

GRANT
Privileges on a View

You must have at least the Select privilege on a table or columns to create a
view on that table. You have the same privileges for the view that you have
for the table or tables contributing data to the view. For example, if you create
a view from a table to which you have only Select privileges, you can select
data from your view but you cannot delete or update data.

For detailed information on how to create a view, see “CREATE VIEW” on
page 1-286.

When you create a view, only you have access to table data through that view.
Even users who have privileges on the base table of the view do not automat-
ically receive privileges for the view.

You can grant (or revoke) privileges on a view only if you are the owner of
the underlying tables or if you received these privileges on the table with the
right to grant them (the WITH GRANT OPTION keyword). You must explicitly
grant those privileges within your authority; public does not automatically
receive privileges on a view.

The creator of a view can explicitly grant Select, Insert, Delete, and Update
privileges for the view to other users or to a role name. You cannot grant
Index, Alter, or References privileges on a view (or the All privilege because
All includes Index, References, and Alter).
SQL Statements 1-467

GRANT
Type-Level Privileges
You own a user-defined data type that you create. As owner, you automati-
cally receive the Usage privilege on that data type and can grant the Usage
privilege to others so that they can reference the type name or reference data
of that type in SQL statements. DBAs can also grant the Usage privilege for
user-defined data types.

If you grant the Usage privilege to a user or role that has Alter privileges, that
person can add a column to the table that contains data of your user-defined
type.

Without a GRANT statement, any user can create SQL statements that contain
built-in data types. By contrast, a user must receive an explicit Usage
privilege from a GRANT statement to use a distinct data type, even if the
distinct type is based on a built-in type.

For more information about user-defined types, see CREATE OPAQUE TYPE
and CREATE DISTINCT TYPE in this manual, the Chapter 2, “Data Types” in
the Informix Guide to SQL: Reference, and Chapter 10, “Understanding
Complex Data Types” in the Informix Guide to SQL: Tutorial.

Element Purpose Restrictions Syntax
type name The name of the user-defined

data type to which the Usage
privilege is granted

The specified data type must
exist.

Data Type, p. 1-855

Type-Level Privileges

USAGE ON TYPE type
name
1-468 Informix Guide to SQL: Syntax

GRANT
Routine-Level Privileges
The generic term user-defined routine refers to both a user-defined function
and a user-defined procedure. A function returns one or more values; a
procedure does not.

When you create a user-defined routine with the CREATE FUNCTION or
CREATE PROCEDURE statement, you own, and automatically receive the
Execute privilege on, that routine. The Execute privilege allows you to invoke
the user-defined routine with an EXECUTE FUNCTION or EXECUTE
PROCEDURE statement, or with a CALL statement in an SPL routine. The
Execute privilege also permits use of a function in an expression, as in the
following example:

SELECT * FROM table WHERE in_stock(partnum) < 20

Element Purpose Restrictions Syntax
routine name The name given to the user-

defined routine in a CREATE
FUNCTION or CREATE
PROCEDURE statement

The identifier must refer to an
existing user-defined routine.

In an ANSI-compliant database,
specify the owner as the prefix to
the routine name.

Function Name,
p. 1-959 or Procedure
Name, p. 1-1004

Routine-Level
Privileges

EXECUTE
ON

Specific
Name

p.1-1034
SPECIFIC

PROCEDURE

ROUTINE

()

Routine
Parameter List

p. 1-1028

FUNCTION

routine
name
SQL Statements 1-469

GRANT
If both a function and a procedure have the same name and list of parameter
types, you can grant the Execute privilege to both with the keyword
ROUTINE. To limit the Execute privilege to one version of the same routine
name, use keyword FUNCTION, PROCEDURE, or SPECIFIC.

To limit the Execute privilege to a user-defined routine that accepts particular
data types as arguments, include the data types as the routine parameter list
in the GRANT statement or use the SPECIFIC keyword if a specific name exists
for that routine and parameter list.

Privilege Functions

SPECIFIC Grants the Execute privilege for the routine identified by
specific name.

FUNCTION Grants the Execute privilege for any user-defined function
with the specified routine name (and parameter types that
match routine parameter list, if supplied).

PROCEDURE Grants the Execute privilege for any user-defined procedure
with the specified routine name (and parameter types that
match routine parameter list, if supplied).

ROUTINE Grants Execution privilege for user-defined functions and
user-defined procedures with the specified routine name (and
parameter types that match routine parameter list, if supplied).
1-470 Informix Guide to SQL: Syntax

GRANT
The requirement to grant the Execute privilege explicitly depends on the
following conditions:

■ If you have DBA-level privileges, you can use the DBA keyword of
CREATE FUNCTION or CREATE PROCEDURE to restrict the default
Execute privilege to users with the DBA database-level privilege. You
must explicitly grant the Execute privilege on that routine to users
who do not have the DBA privilege.

■ If you have the Resource database-level privilege, but not the DBA
privilege, you cannot use the DBA keyword when you create a
routine:

❑ When you create a routine in a database that is not ANSI
compliant, public can execute that routine. You do not need to
issue a GRANT statement for the Execute privilege.

❑ The NODEFDAC environment variable, when set to yes,
prevents public from executing your routine until you explicitly
grant the Execute privilege.

■ In an ANSI-compliant database, the creator of a routine must
explicitly grant the Execute privilege on that routine. ♦

User List
You can grant privileges to an individual user or a list of users. You can also
use the PUBLIC keyword to grant privileges to all users.

ANSI

,
user

User List

PUBLIC

user ''
SQL Statements 1-471

GRANT
The following example grants the table-level privilege Insert on table1 to the
user named mary in a database that is not ANSI compliant:

GRANT INSERT ON table1 TO mary

In an ANSI-compliant database, if you do not use quotes around user, the
name of the user is stored in uppercase letters.♦

Role Name
You can identify one or more users by a name that describes their function,
or role. You create the role then grant the role to one or more users. You can
also grant a role to another role.

After you create and grant a role, you can grant certain privileges to the one
or more users associated with that role name.

Element Purpose Restrictions Syntax
user The login name to receive the

role or privilege granted
Put quotes around user to ensure
that the name of the user is
stored exactly as you type it.

Use the single keyword PUBLIC
for user to grant a role or
privilege to all authorized users.

Identifier, p. 1-962

ANSI

Element Purpose Restrictions Syntax
role name The name of the role that is

granted, or the name of the role
to which a privilege or another
role is granted

The role must have been created
with the CREATE ROLE
statement.

Identifier, p. 1-962

Role Name

' role name '

role name
1-472 Informix Guide to SQL: Syntax

GRANT
Granting a Role to a User or Another Role

The CREATE ROLE statement (page 1-190) must add a role name to the
database before anyone can use that role name in a GRANT statement.

A DBA has the authority to grant a new role to another user. If a user receives
a role WITH GRANT OPTION (page 1-474), that user can grant the role to other
users or to another role. Users keep a role granted to them until a REVOKE
statement breaks the association between their login names and the role
name.

Important: CREATE ROLE and GRANT do not activate the role. A role has no effect
until the SET ROLE statement enables it. A role grantor or a role grantee can issue
the SET ROLE.

The following example shows the sequence required to grant and activate the
role payables to a group of employees who perform account payables
functions. First the DBA creates role payables, then grants it to maryf.

CREATE ROLE payables;
GRANT payables TO maryf WITH GRANT OPTION

The DBA or maryf can activate the role with the following statement:

SET ROLE payables

User maryf has the WITH GRANT OPTION authorization to grant payables to
other employees who pay accounts.

GRANT payables TO charly, gene, marvin, raoul

If you grant privileges for one role to another role, the recipient role has a
combined set of privileges. The following example grants the role petty_cash
to the role payables:

CREATE ROLE petty_cash
SET ROLE petty_cash
GRANT petty_cash TO payables

If you attempt to grant a role to itself, either directly or indirectly, the
database server generates an error.
SQL Statements 1-473

GRANT
Granting a Privilege to a Role

You can grant table-, type-, and routine-level privileges to a role if you have
the authority to grant these same privileges to login names or PUBLIC. A role
cannot have database-level privileges.

When you grant a privilege to a role:

■ you can specify the AS grantor clause (page 1-475). In this way, the
people who have the role can revoke these same privileges.

■ you cannot include the WITH GRANT OPTION clause. A role cannot,
in turn, grant the same table-, type-, or routine-level privileges to
another user.

The following example grants the table-level privilege Insert on the supplier
table to the role payables:

GRANT INSERT ON supplier TO payables

Anyone granted the role of payables can now insert into supplier.

WITH GRANT OPTION Clause
The WITH GRANT OPTION clause creates a chain of grantors. When you
include this clause to a GRANT statement, you grant privileges to user and
authorize user to grant the same privileges to others.

If you use the WITH GRANT OPTION to grant privileges, you forfeit control
over the future dissemination of those privileges.

If you revoke a privilege you granted with the WITH GRANT OPTION, you
revoke the privilege from all users who received it as a result of the WITH
GRANT OPTION chain that you initiated. (See “Revoking Privileges Granted
WITH GRANT OPTION” on page 1-584 for examples.)

If you want to create a chain of privileges with another user as the source of
the privilege, use the AS grantor clause. In that case, grantor can revoke all
privileges along the WITH GRANT OPTION chain.
1-474 Informix Guide to SQL: Syntax

GRANT
AS grantor Clause
If you issue a GRANT command with the AS grantor clause, you relinquish the
right to revoke the privileges that you grant to the named grantor. The login
given in the AS grantor clause replaces your login in the systabauth system
catalog table.

Important: You cannot reverse the AS grantor clause. Once you commit a GRANT
naming another as grantor, that person retains the sole right to revoke that GRANT.

The remaining code fragments in this section illustrate the effects of AS
grantor.

As owner of the items table, you grant all privileges to the user tom.

REVOKE ALL ON items FROM PUBLIC;
GRANT ALL ON items TO tom

The system catalog systabauth shows your login as grantor; you retain the
right to revoke all privileges on items from the user tom.

You also grant Select and Update privileges to the user jim, but you specify
tom as grantor.

GRANT SELECT, UPDATE ON items TO jim AS tom

The system catalog systabauth shows tom as grantor; only tom can revoke
Select and Update privileges on items from the user jim. Later, you decide to
revoke privileges on the items table from the user tom, so you issue the
following statement:

REVOKE ALL ON items FROM tom

When you try to revoke the privileges on items from the user jim, the
database server returns an error, as the following example shows:

REVOKE SELECT, UPDATE ON items FROM jim

580: Cannot revoke permission.

The database server issues the error because it has tom recorded as the
original grantor, which you cannot change. Even a table owner cannot revoke
a privilege that another user granted.
SQL Statements 1-475

GRANT
References
See the GRANT FRAGMENT, REVOKE, and REVOKE FRAGMENT statements in
this manual.

For more information about routines and parameter lists, see the CREATE
FUNCTION and CREATE PROCEDURE in this manual.

For information on roles, see the CREATE ROLE, DROP ROLE, and SET ROLE
statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussions of database-level
privileges and table-level privileges in Chapter 4 and the discussion of
privileges and security in Chapter 11.
1-476 Informix Guide to SQL: Syntax

GRANT FRAGMENT
GRANT FRAGMENT
The GRANT FRAGMENT statement enables you to grant Insert, Update, and
Delete privileges on individual fragments of a fragmented table.

Syntax

Element Purpose Restrictions Syntax
dbspace The name of the dbspace where

the fragment is stored. Use this
parameter to specify the
fragment or fragments on which
privileges are to be granted.
There is no default value.

You must specify at least one
dbspace. The specified dbspaces
must exist.

Identifier, p. 1-962

grantor The name of the user who is to
be listed as the grantor of the
specified privileges in the
grantor column of the
sysfragauth system catalog
table. The user who issues the
GRANT FRAGMENT statement is
the default grantor of the
privileges.

The user specified in grantor
must be a valid user.

Identifier, p. 1-962

 (1 of 2)

ONGRANT
FRAGMENT

Fragment-Level
Privileges
p. 1-479

dbspace()table name

,

user

,

'user '

TO

WITH GRANT
OPTION

AS grantor

+

E/C

DB

SQLE
SQL Statements 1-477

GRANT FRAGMENT
Usage
The GRANT FRAGMENT statement is similar to the GRANT statement. Both
statements grant privileges to users. The difference between the two state-
ments is that you use GRANT to grant privileges on a table while you use
GRANT FRAGMENT to grant privileges on table fragments.

Use the GRANT FRAGMENT statement to grant the Insert, Update, or Delete
privilege on one or more fragments of a table to one or more users.

The GRANT FRAGMENT statement is valid only for tables that are fragmented
according to an expression-based distribution scheme. For an explanation of
expression-based distribution schemes, see the ALTER FRAGMENT statement
on page 1-27.

table name The name of the table that
contains the fragment or
fragments on which privileges
are to be granted. There is no
default value.

The specified table must exist
and must be fragmented by
expression.

Table Name,
p. 1-1044

user The name of the user or users to
whom the specified privileges
are to be granted. There is no
default value.

If you put quotes around user,
the name of the user is stored
exactly as you typed it. In an
ANSI-compliant database, the
name of the user is stored as
uppercase letters if you do not
use quotes around user.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
1-478 Informix Guide to SQL: Syntax

GRANT FRAGMENT
Fragment-Level Privileges

The following table defines each of the fragment-level privileges.

Definition of Fragment-Level Authority

When a fragmented table is created in an ANSI-compliant database, the table
owner implicitly receives all table-level privileges on the new table, but no
other users receive privileges.

When a fragmented table is created in a database that is not ANSI compliant,
the table owner implicitly receives all table-level privileges on the new table,
and other users (that is, PUBLIC) receive the following default set of privi-
leges on the table: Select, Update, Insert, Delete, and Index. The privileges
granted to PUBLIC are explicitly recorded in the systabauth system catalog
table.

ALL

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

Privilege Functions

ALL Grants Insert, Update, and Delete privileges on a table
fragment.

INSERT Grants Insert privilege on a table fragment. This privilege
gives the user the ability to insert rows in the fragment.

DELETE Grants Delete privilege on a table fragment. This privilege
gives the user the ability to delete rows in the fragment.

UPDATE Grants Update privilege on a table fragment. This privilege
gives the user the ability to update rows in the fragment and
to name any column of the table in an UPDATE statement.
SQL Statements 1-479

GRANT FRAGMENT
A user who has table privileges on a fragmented table has the privileges
implicitly on all fragments of the table. These privileges are not recorded in
the sysfragauth system catalog table.

Whether or not the database is ANSI compliant, you can use the GRANT
FRAGMENT statement to grant explicit Insert, Update, and Delete privileges
on one or more fragments of a table that is fragmented by expression. The
privileges granted by the GRANT FRAGMENT statement are explicitly
recorded in the sysfragauth system catalog table.

The Insert, Update, and Delete privileges that are conferred on table
fragments by the GRANT FRAGMENT statement are collectively known as
fragment-level privileges or fragment-level authority.

Role of Fragment-Level Authority in Command Validation

Fragment-level authority lets users execute INSERT, DELETE, and UPDATE
statements on table fragments even if they lack Insert, Update, and Delete
privileges on the table as a whole. Users who lack privileges at the table level
can insert, delete, and update rows in authorized fragments because of the
algorithm by which INFORMIX-Universal Server validates commands. This
algorithm consists of the following checks:

1. When a user executes an INSERT, DELETE, or UPDATE statement, the
database server first checks whether the user has the table authority
necessary for the operation attempted. If the table authority exists,
the command continues processing.

2. If the table authority does not exist, the database server checks
whether the table is fragmented by expression. If the table is not
fragmented by expression, the database server returns an error to the
user. This error indicates that the user does not have the privilege to
execute the command.

3. If the table is fragmented by expression, the database server checks
whether the user has the fragment authority necessary for the
operation attempted. If the fragment authority exists, the command
continues processing. If the fragment authority does not exist, the
database server returns an error to the user. This error indicates that
the user does not have the privilege to execute the command.
1-480 Informix Guide to SQL: Syntax

GRANT FRAGMENT
Duration of Fragment-Level Authority

The duration of fragment-level authority is tied to the duration of the
fragmentation strategy for the table as a whole.

If you drop a fragmentation strategy by means of a DROP TABLE statement or
the INIT, DROP, or DETACH clauses of an ALTER FRAGMENT statement, you
also drop any authorities that exist for the affected fragments. Similarly, if
you drop a dbspace, you also drop any authorities that exist for the fragment
that resides in that dbspace.

Tables that are created as a result of a DETACH or INIT clause of an ALTER
FRAGMENT statement do not keep the authorities that the former fragment
or fragments had when they were part of the fragmented table. Instead, such
tables assume the default table authorities.

If a table with fragment authorities defined on it is changed to a table with a
round-robin strategy or some other expression strategy, the fragment
authorities are also dropped, and the table assumes the default table
authorities.

Granting Privileges on One Fragment or a List of Fragments
You can grant fragment-level privileges on one fragment of a table or on a list
of fragments.

Granting Privileges on One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to the user larry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO larry

Granting Privileges on More Than One Fragment

The following statement grants the Insert, Update, and Delete privileges on
the fragments of the customer table in dbsp1 and dbsp2 to the user millie:

GRANT FRAGMENT ALL ON customer (dbsp1, dbsp2) TO millie
SQL Statements 1-481

GRANT FRAGMENT
Granting Privileges on All Fragments of a Table

If you want to grant privileges on all fragments of a table to the same user or
users, you can use the GRANT statement instead of the GRANT FRAGMENT
statement. However, you can also use the GRANT FRAGMENT statement for
this purpose.

Assume that the customer table is fragmented by expression into three
fragments, and these fragments reside in the dbspaces named dbsp1, dbsp2,
and dbsp3. You can use either of the following statements to grant the Insert
privilege on all fragments of the table to the user helen:

GRANT FRAGMENT INSERT ON customer (dbsp1, dbsp2, dbsp3)
TO helen;

GRANT INSERT ON customer TO helen;

Granting Privileges to One User or a List of Users
You can grant fragment-level privileges to a single user or to a list of users.

Granting Privileges to One User

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to the user oswald:

GRANT FRAGMENT ALL ON customer (dbsp3) TO oswald

Granting Privileges to a List of Users

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp3 to the users jerome and hilda:

GRANT FRAGMENT ALL ON customer (dbsp3) TO jerome, hilda

Granting One Privilege or a List of Privileges
When you specify fragment-level privileges in a GRANT FRAGMENT
statement, you can specify one privilege, a list of privileges, or all privileges.
1-482 Informix Guide to SQL: Syntax

GRANT FRAGMENT
Granting One Privilege

The following statement grants the Update privilege on the fragment of the
customer table in dbsp1 to the user ed:

GRANT FRAGMENT UPDATE ON customer (dbsp1) TO ed

Granting a List of Privileges

The following statement grants the Update and Insert privileges on the
fragment of the customer table in dbsp1 to the user susan:

GRANT FRAGMENT UPDATE, INSERT ON customer (dbsp1) TO susan

Granting All Privileges

The following statement grants the Insert, Update, and Delete privileges on
the fragment of the customer table in dbsp1 to the user harry:

GRANT FRAGMENT ALL ON customer (dbsp1) TO harry

WITH GRANT OPTION Clause
By including the WITH GRANT OPTION clause in the GRANT FRAGMENT
statement, you convey the specified fragment-level privileges to a user and
the right to grant those same privileges to other users.

The following statement grants the Update privilege on the fragment of the
customer table in dbsp3 to the user george and gives this user the right to
grant the Update privilege on the same fragment to other users:

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO george
WITH GRANT OPTION

AS grantor Clause
The AS grantor clause is optional in a GRANT FRAGMENT statement. Use this
clause to specify the grantor of the privilege.
SQL Statements 1-483

GRANT FRAGMENT
Including the AS grantor Clause

When you include the AS grantor clause in the GRANT FRAGMENT statement,
you specify that the user who is named in the grantor parameter is listed as
the grantor of the privilege in the grantor column of the sysfragauth system
catalog table.

In the following example, the DBA grants the Delete privilege on the
fragment of the customer table in dbsp3 to the user martha. In the GRANT
FRAGMENT statement, the DBA uses the AS grantor clause to specify that the
user jack is listed as the grantor of the privilege in the sysfragauth system
catalog table.

GRANT FRAGMENT DELETE ON customer (dbsp3) TO martha AS jack

Omitting the AS grantor Clause

When a GRANT FRAGMENT statement does not include the AS grantor clause,
the user who issues the statement is the default grantor of the privileges that
are specified in the statement.

In the following example, the user grants the Update privilege on the
fragment of the customer table in dbsp3 to the user fred. Because this
statement does not specify the AS grantor clause, the user who issues the
statement is listed by default as the grantor of the privilege in the sysfragauth
system catalog table.

GRANT FRAGMENT UPDATE ON customer (dbsp3) TO fred
1-484 Informix Guide to SQL: Syntax

GRANT FRAGMENT
Consequences of the AS grantor Clause

If you omit the AS grantor clause, or if you specify your own user name in the
grantor parameter, you can later revoke the privilege that you granted to the
specified user. However, if you specify someone other than yourself as the
grantor of the specified privilege to the specified user, only that grantor can
revoke the privilege from the user.

For example, if you grant the Delete privilege on the fragment of the
customer table in dbsp3 to user martha but specify user jack as the grantor
of the privilege, user jack can revoke that privilege from user martha, but you
cannot revoke that privilege from user martha.

References
See the GRANT and REVOKE FRAGMENT statements in this manual.
SQL Statements 1-485

1-486 Informix Guide to SQL: Syntax

INFO
INFO
Use the INFO statement to display a variety of information about databases
and tables.

Syntax

Usage
You can use keywords in the INFO statement to display the following
information.

INFO TABLES

COLUMNS

INDEXES

ACCESS

PRIVILEGES

FOR
Table
Name

p. 1-1044

STATUS

REFERENCES

FRAGMENTS

+

DB

Information Displayed INFO Keyword

List of tables in the current database TABLES

Column information for a specified table COLUMNS

Index information for a specified table INDEXES

Fragment strategy for a table FRAGMENTS

User access privileges for a specified table ACCESS or PRIVILEGE

 (1 of 2)

INFO
Instead of using the INFO statement, you can use the Info options on the SQL
menu or the TABLE menu to display the same and additional information.

TABLES Keyword

Use the TABLES keyword to display a list of the tables and views in the
current database. The name of a table can appear in one of the following
ways:

■ If you are the owner of the cust_calls table, it appears as cust_calls.

■ If you are not the owner of the cust_calls table, the owner’s name
precedes the table name, such as 'june'.cust_calls.

INFO statement requesting table information for the stores7 database

INFO TABLES

Display of table information

Table name

call_typecatalogcust_callscustomer
custviewitemslog_recordmanufact
orderssomeordersstatestock

In this display, the TABLES keyword provides information for the user-
defined tables and views of the stores7 database. It does not display the
system catalog tables and system catalog views.

Reference privileges for the columns of a
specified table

REFERENCES

Status information for a specified table STATUS

Information Displayed INFO Keyword

 (2 of 2)
SQL Statements 1-487

INFO
COLUMNS Keyword

Use the COLUMNS keyword to display the names and data types of the
columns in a specified table and whether null values are allowed. The
following examples show an INFO statement and the resulting display of
information about the columns in a table:

INFO statement requesting column information

INFO COLUMNS FOR cust_calls

Display of column information

Column name Type Nulls

customer_num integer yes
call_dtime datetime year to minute yes
user_id char(18) yes
call_code char(1) yes
call_descr char(240) yes
res_dtime datetime year to minute yes
res_descr char(240) yes

The COLUMNS keyword provides information for built-in data types (such as
INTEGER, CHAR, and DATETIME) as well as user-defined data types (such as
collection types, row types, and opaque types).

INDEXES Keyword

Use the INDEXES keyword to display the following information for each
index on a table: the index name, the index owner, the index type (unique or
duplicate), whether the index is clustered, the index access method used
(functional, B-tree, and so on), and the names of the columns that are
indexed.

The following examples show an INFO statement and the resulting display of
information about the indexes of a table.

INFO statement requesting index information

INFO INDEXES FOR cust_calls
1-488 Informix Guide to SQL: Syntax

INFO
Display of index information

Index name Owner Type/Clstr Access Method Columns

c_num_dt_ix velma unique/No B-Tree customer_num
call_dtime

c_num_cus_ix velma dupls/No B-Tree customer_num

FRAGMENTS Keyword

Use the FRAGMENTS keyword to display the dbspace names where
fragments are located for a specified table. The following examples show an
INFO statement and the resulting display of fragments for a table that is
fragmented with a round-robin distribution scheme. An INFO statement that
is executed on a table that is fragmented with an expression-based distri-
bution scheme would show the expressions and the dbspaces.

INFO statement requesting fragment information

INFO FRAGMENTS FOR new_accts

Display of fragment information

dbsp1

dbsp2

dbsp3

Displaying Privileges, References, and Status

You can use keywords in your INFO statement to display information about
the access privileges (including the References privilege) or the status of a
table.
SQL Statements 1-489

INFO
ACCESS or PRIVILEGES Keyword

Use the ACCESS or PRIVILEGES keywords to display user access privileges for
a specified table. The following examples show an INFO statement and the
resulting display of user privileges for a table:

INFO statement requesting privileges information

INFO PRIVILEGES FOR cust_calls

Display of privileges information

User Select Update Insert Delete Index Alter

public All All Yes Yes Yes No

REFERENCES Keyword

Use the REFERENCES keyword to display the References privilege for users
for the columns of a specified table. The following examples show an INFO
statement and the resulting display:

INFO statement requesting References privilege information

INFO REFERENCES FOR newtable

Display of References privilege information

User Column References

betty col1
col2
col3

wilma All
public None

The output indicates that the user betty can reference columns col1, col2, and
col3 of the specified table; the user wilma can reference all the columns in the
table; and public cannot access any columns in the table.

If you want information about database-level privileges, you must use a
SELECT statement to access the sysusers system catalog table.

See the GRANT and REVOKE statements for more information about database
and table-access privileges.
1-490 Informix Guide to SQL: Syntax

INFO
STATUS Keyword

Use the STATUS keyword to display information about the owner, row length,
number of rows and columns, and creation date for a specified table. The
following example displays status information for the cust_calls table:

INFO statement requesting status information

INFO STATUS FOR cust_calls

Display of status information

Table Name cust_calls
Owner velma
Row Size 517
Number of Rows 7
Number of Columns 7
Date Created 01/28/1993
SQL Statements 1-491

INSERT
INSERT
Use the INSERT statement to insert one or more new rows into a table or view,
or one or more elements into an SPL or INFORMIX-ESQL/C collection
variable.

Syntax

Synonym
Name

p. 1-1042

,

column
name()

 INTO
Table
Name

p. 1-1044

View
Name

p. 1-1047

VALUES Clause
p. 1-497

SELECT
Statement
(Subset)
p. 1-504

+

 INSERT
VALUES Clause

p. 1-497

SELECT
Statement
(Subset)
p. 1-504

 INTO

 AT position

,

field
name

E/C

DB

SQLE

E/C

+

Execute
User-Defined

Routine
p. 1-505

Collection
Derived Table

p. 1-827
1-492 Informix Guide to SQL: Syntax

INSERT
Usage
Use the INSERT statement to create either of the following types of objects:

■ A row in a table: either a single new row of column values or a group
of new rows using data selected from other tables

■ An element in a collection variable ♦

For information on how to insert an element into a collection variable, see
“Inserting Into a Collection Variable” on page 1-506. The other sections of this
INSERT statement describe how to create a row in a table.

To insert data into a table, you must either own the table or have the Insert
privilege for the table (see the GRANT statement on page 1-458). To insert
data into a view, you must have the required Insert privilege, and the view
must meet the requirements explained in “Inserting Rows Through a View”
on page 1-494.

Element Purpose Restrictions Syntax
column name The name of a column that

receives a new column value, or
a list of columns that receive
new values. If you specify a
column list, values are inserted
into columns in the order in
which you list the columns. If
you do not specify a column list,
values are inserted into columns
in the column order that was
established when the table was
created or last altered.

The number of columns you
specify must equal the number
of values supplied in the VALUES
clause or by the SELECT
statement, either implicitly or
explicitly. If you omit a column
from the column list, and the
column does not have a default
value associated with it, the
database server places a null
value in the column when the
INSERT statement is executed.

Identifier, p. 1-962

position The position at which you want
to insert an element in a LIST

The position can be a literal
number or a procedure variable
of type INT or SMALLINT.

field name The name of a field of a named
or unnamed row type

The row type must already be
defined in the database.

“Extended Field
Definition” on
page 1-199 and
“Unnamed Row
Types” on page 1-870

E/C

SPL
SQL Statements 1-493

INSERT
If you insert data into a table that has data integrity constraints associated
with it, the inserted data must meet the constraint criteria. If it does not, the
database server returns an error.

If you are using effective checking, and the checking mode is set to
IMMEDIATE, all specified constraints are checked at the end of each INSERT
statement. If the checking mode is set to DEFERRED, all specified constraints
are not checked until the transaction is committed.

Specifying Columns
If you do not explicitly specify one or more columns, data is inserted into
columns using the column order that was established when the table was
created or last altered. The column order is listed in the syscolumns system
catalog table.

You can use the DESCRIBE statement with an INSERT statement to determine
the column order and the data type of the columns in a table. (For more infor-
mation about the DESCRIBE statement, see page 1-335.) ♦

The number of columns specified in the INSERT INTO clause must equal the
number of values supplied in the VALUES clause or by the SELECT statement,
either implicitly or explicitly. If you specify columns, the columns receive
data in the order in which you list them. The first value following the VALUES
keyword is inserted into the first column listed, the second value is inserted
into the second column listed, and so on.

Inserting Rows Through a View
You can insert data through a single-table view if you have the Insert privilege
on the view. To do this, the defining SELECT statement can select from only
one table, and it cannot contain any of the following components:

■ DISTINCT keyword

■ GROUP BY clause

■ Derived value (also referred to as a virtual column)

■ Aggregate value

ESQL
1-494 Informix Guide to SQL: Syntax

INSERT
Columns in the underlying table that are unspecified in the view receive
either a default value or a null value if no default is specified. If one of these
columns does not specify a default value, and a null value is not allowed, the
insert fails.

You can use data-integrity constraints to prevent users from inserting values
into the underlying table that do not fit the view-defining SELECT statement.
For further information, refer to the WITH CHECK OPTION discussion under
the CREATE VIEW statement on page 1-286.

If several users are entering sensitive information into a single table, the USER
function can limit their view to only the specific rows that each user inserted.
The following example contains a view and an INSERT statement that achieve
this effect:

CREATE VIEW salary_view AS
SELECT lname, fname, current_salary

FROM salary
WHERE entered_by = USER

INSERT INTO salary
VALUES ('Smith', 'Pat', 75000, USER)

Inserting Rows with a Cursor
If you associate a cursor with an INSERT statement, you must use the OPEN,
PUT, and CLOSE statements to carry out the INSERT operation. For databases
that have transactions but are not ANSI compliant, you must issue these state-
ments within a transaction.

If you are using a cursor that is associated with an INSERT statement, the rows
are buffered before they are written to the disk. The insert buffer is flushed
under the following conditions:

■ The buffer becomes full.

■ A FLUSH statement executes.

■ A CLOSE statement closes the cursor.

■ In a database that is not ANSI compliant, an OPEN statement
implicitly closes and then reopens the cursor.

■ A COMMIT WORK statement ends the transaction.

ESQL
SQL Statements 1-495

INSERT
When the insert buffer is flushed, the client processor performs appropriate
data conversion before it sends the rows to the database server. When the
database server receives the buffer, it converts any user-defined data types
and then begins to insert the rows one at a time into the database. If an error
is encountered while the database server inserts the buffered rows into the
database, any buffered rows following the last successfully inserted rows are
discarded. ♦

Inserting Rows into a Database Without Transactions
If you are inserting rows into a database without transactions, you must take
explicit action to restore inserted rows after a failure. For example, if the
INSERT statement fails after you insert some rows, the successfully inserted
rows remain in the table. You cannot recover automatically from a failed
insert.

Inserting Rows into a Database with Transactions
If you are inserting rows into a database with transactions, and you are using
explicit transactions, use the ROLLBACK WORK statement to undo the
insertion. If you do not execute BEGIN WORK before the insert, and the insert
fails, the database server automatically rolls back any database modifications
made since the beginning of the insert.

If you are inserting rows into an ANSI-compliant database, transactions are
implicit, and all database modifications take place within a transaction. In
this case, if an INSERT statement fails, use the ROLLBACK WORK statement to
undo the insertions.

When you use INFORMIX-Universal Server within an explicit transaction, and
the update fails, the database server automatically undoes the effects of the
update. ♦

Rows that you insert within a transaction remain locked until the end of the
transaction. The end of a transaction is either a COMMIT WORK statement,
where all modifications are made to the database, or a ROLLBACK WORK
statement, where none of the modifications are made to the database. If many
rows are affected by a single INSERT statement, you can exceed the maximum
number of simultaneous locks permitted. To prevent this situation, either
insert fewer rows per transaction or lock the page, or the entire table, before
you execute the INSERT statement.

ANSI
1-496 Informix Guide to SQL: Syntax

INSERT
VALUES Clause

Quoted String
p. 1-1010

USER
p. 1-890

Literal Number
p. 1-997

Literal DATETIME
p. 1-991

Literal INTERVAL
p. 1-994

NULL

VALUES Clause

+

variable
nameVALUES

: indicator variable

$ indicator variable

)(
,

+

E/C

SPL

Literal Collection
p. 1-985

E/C

Literal Row
p. 1-999

literal opaque type

literal BOOLEAN

Expression
p. 1-876
SQL Statements 1-497

INSERT
When you use the VALUES clause, you can insert only one row at a time. Each
value that follows the VALUES keyword is assigned to the corresponding
column listed in the INSERT INTO clause (or in column order if a list of
columns is not specified).

If you are inserting a quoted string into a column, the maximum length of the
string is 256 bytes. If you insert a value greater than 256, the database server
returns an error.

If you are using variables, you can insert quoted strings longer than 256 bytes
into a table. ♦

Element Purpose Restrictions Syntax
indicator
variable

A program variable associated
with variable name that indicates
when an SQL API statement
returns a null value to variable
name

See your SQL API manual for the
restrictions that apply to
indicator variables in a
particular language.

The name of the
indicator variable
must conform to
language-specific
rules for naming
indicator variables.

literal opaque
type

The literal representation for an
opaque data type

Must be a literal that is recog-
nized by the input support
function for the associated
opaque type.

The literal represen-
tation is defined by
the developer of the
opaque type.

literal
BOOLEAN

The literal representation of a
BOOLEAN value

A literal BOOLEAN value can
only be 't' (TRUE) or 'f'
(FALSE) and must be specified as
a quoted string.

Quoted String,
p. 1-1010

variable name A host variable that specifies a
value to be inserted into a
column

You can specify in variable name
any other value option listed in
the VALUES clause (NULL,
Literal Number, and so on). If
you specify a quoted string in
variable name, the string can be
longer than the 32-kilobyte
maximum that applies to your
specified quoted strings.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

ESQL
1-498 Informix Guide to SQL: Syntax

INSERT
Data Type Compatibility and Casting

The value that you insert into a column does not have to be of the same data
type as the column that receives it. However, these two data types must be
compatible. Two data types are compatible if the database server has some
way to cast one data type to another. A cast is the mechanism by which the
database server converts one data type to another. For a summary of the
casting that the database server provides, see Chapter 2 of the Informix Guide
to SQL: Reference. For information on how to create a user-defined cast, see the
CREATE CAST statement in this manual and the Extending
INFORMIX-Universal Server: Data Types manual.

Inserting Values into Character Columns

With INFORMIX-ESQL/C, if you use a host variable to insert a value in a
character column (CHAR, VARCHAR, or LVARCHAR) of a database that is
ANSI compliant, the string within the host variable must be null terminated.
The database server generates an error if you try to insert a string that is not
null terminated. For more information, refer to the chapter on character data
types in the INFORMIX-ESQL/C Programmer’s Manual.

Inserting Values into TEXT and BYTE Columns

You can use the INSERT statement on tables with TEXT or BYTE columns if
you:

■ insert a NULL value into a TEXT or BYTE column.

For example, the following INSERT statement inserts a new row into
the catalog table:

INSERT INTO catalog
VALUES (0, 1, "HRO", NULL, NULL,

"description of new catalog item")

■ list all columns except the TEXT or BYTE columns before the VALUES
clause.

For example, the following INSERT statement inserts the same new
row into the catalog table:

INSERT INTO catalog (catalog_num, stock_num,
manu_code, cat_advert)

VALUES (0, 1, "HRO", "description of new catalog item")

E/C

ANSI
SQL Statements 1-499

INSERT
You cannot use literal values within an INSERT statement to put simple large-
object data within a TEXT or BYTE column. To insert values into a TEXT or
BYTE column, you can use any of the following methods:

■ Use the LOAD statement from within DB-Access to load the simple
large-object data from an operating system file.

For more information, see the description of LOAD in this chapter.

■ Use loc_t host variables within an INFORMIX-ESQL/C client
application.

For more information, see the chapter on simple large objects in the
INFORMIX-ESQL/C Programmer’s Manual.

Inserting Values into SERIAL and SERIAL8 Columns

If you want to insert consecutive serial values in a SERIAL or SERIAL8 column
in the table, specify a zero for a SERIAL or SERIAL8 column in the INSERT
statement. When a SERIAL or SERIAL8 column is set to zero, the database
server assigns the next highest value. If you want to enter an explicit value in
a SERIAL or SERIAL8 column, specify the nonzero value after you first verify
that the value does not duplicate one already in the table. If the SERIAL or
SERIAL8 column is uniquely indexed or has a unique constraint, and you try
to insert a value that duplicates one already in the table, an error occurs. For
more information about the SERIAL and SERIAL8 data types, see Chapter 2 of
the Informix Guide to SQL: Reference.

Inserting Values into Opaque-Type Columns

Some opaque data types require special processing when they are inserted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for very large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function
called assign(). When you execute the INSERT statement on a table whose
rows contains one of these opaque types, the database server automatically
invokes the assign() function for the type. The assign() function can make the
decision of how to store the data. For more information about the assign()
support function, see the Extending INFORMIX-Universal Server: Data Types
manual.
1-500 Informix Guide to SQL: Syntax

INSERT
Inserting Values into Collection Columns

You can use the VALUES clause to insert literal values into a collection
column, which can be a LIST, MULTISET, or SET. For example, suppose you
define the tab1 table as follows:

CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

)

The following INSERT statement adds literal values as a row in the tab1 table:

EXEC SQL insert into tab1 values
(

5,
"LIST{ROW(1, 'abcde'),

ROW(2, 'fghij'),
ROW(3, 'klmno')}",

3.5
)

The collection column, list1, in the tab1 row has three elements, each element
is an unnamed row type with an INTEGER field and a CHAR(5) field. For more
information on the syntax for literal collection values, see “Literal
DATETIME” on page 1-991.

You can use ESQL/C host variables to insert:

■ an entire collection into a column.

Use a collection variable as a variable name in the VALUES clause to
insert an entire collection. For example, the following ESQL/C code
fragment inserts the elements of the a_set host variable into the
set_col column of the tab_a table:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(smallint not null) a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL insert into tab_a (set_col) values (:a_set);

E/C
SQL Statements 1-501

INSERT
■ individual elements in a collection.

To insert non-literal values into a collection column, you must first
insert the elements in a collection variable and then specify the
collection variable in the SET clause of an UPDATE statement. For
information on how to insert values into a collection variable, see
“Inserting Into a Collection Variable” on page 1-506. ♦

Important: A collection column cannot contain NULL elements.

Inserting Values into Row-Type Columns

You can use the VALUES clause to insert literal and nonliteral values in a
named row type or unnamed row type column. For example, suppose you
define the following named row type and table:

CREATE ROW TYPE address_t
(

street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)

);

CREATE TABLE employee
(

name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

The following INSERT statement inserts literal values in the name and
address columns of the employee table:

INSERT INTO employee VALUES
(

ROW('John', 'Williams'),
ROW('103 Baker St', 'Tracy','CA', 94060)::address_t

)

The INSERT statement uses ROW constructors to generate values for the name
column (an unnamed row type) and the address column (a named row type).
When you specify a value for a named row type, you must use the CAST AS
keyword or the double colon (::) operator, in conjunction with the name of the
named row type, to cast the value to the named row type.
1-502 Informix Guide to SQL: Syntax

INSERT
For more information on the syntax for ROW constructors, see “Constructor
Expressions” on page 1-895 in the Expression segment. For information on
literal values for named row types and unnamed row types, see the Literal
Row segment on page 1-999.

You can use ESQL/C host variables to insert non-literal values as:

■ an entire row type into a column.

Use a row variable as a variable name in the VALUES clause to insert
values for all fields in a row column at one time.

■ individual fields of a row type.

To insert nonliteral values in a row-type column, you can first insert
the elements in a row variable and then specify the collection
variable in the SET clause of an UPDATE statement.

When you use a row variable in the VALUES clause, the row variable must
contain values for each field value. For information on how to insert values
in a row variable, see “Inserting into a Row Variable” on page 1-510. ♦

Using Expressions in the VALUES Clause

You can insert any type of expression into a column. For example, you can
insert a cast expression or a function that returns the current date, date and
time, login name of the current user, or database server name of the current
Universal Server instance.

The TODAY keyword returns the system date. The CURRENT keyword
returns the system date and time. The USER keyword returns an eight-
character string that contains the login account name of the current user. The
SITENAME or DBSERVERNAME keyword returns the database server name
where the current database resides. The following example uses the
CURRENT and USER keywords to insert a new row into the cust_calls table:

INSERT INTO cust_calls (customer_num, call_dtime, user_id,
call_code, call_descr)

VALUES (212, CURRENT, USER, 'L', '2 days')

For more information, see the Expression segment on page 1-876.

E/C
SQL Statements 1-503

INSERT
Inserting Nulls with the VALUES Clause

When you execute an INSERT statement, a null value is inserted into any
column for which you do not provide a value as well as for all columns that
do not have default values associated with them, which are not listed
explicitly. You also can use the NULL keyword to indicate that a column
should be assigned a null value. The following example inserts values into
three columns of the orders table:

INSERT INTO orders (orders_num, order_date, customer_num)
VALUES (0, NULL, 123)

In this example, a null value is explicitly entered in the order_date column,
and all other columns of the orders table that are not explicitly listed in the
INSERT INTO clause are also filled with null values.

Subset of SELECT Statement
You can insert the rows of data that result from a SELECT statement into a
table if the insert data is selected from another table or tables.

If this statement has a WHERE clause that does not return rows, sqlca returns
SQLNOTFOUND (100) for ANSI-compliant databases. In databases that are not
ANSI compliant, sqlca returns (0). When you insert as a part of a multi-
statement prepare, and no rows are inserted, sqlca returns SQLNOTFOUND
(100) for both ANSI databases and databases that are not ANSI compliant. The
following SELECT clauses are not supported:

■ INTO TEMP

■ ORDER BY

■ UNION

In addition, the FROM clause of the SELECT statement cannot contain the
same table name as the table into which you are inserting rows, as shown in
the following example:

INSERT INTO newtable
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price
FROM items

For detailed information on SELECT statement syntax, see page 1-593.
1-504 Informix Guide to SQL: Syntax

INSERT
Using INSERT as a Dynamic Management Statement
You can use the INSERT statement to handle situations where you need to
write code that can insert data whose structure is unknown at the time you
compile. For more information, refer to the dynamic management section of
the INFORMIX-ESQL/C Programmer’s Manual manual. ♦

Inserting Data with a User-Defined Routine

You can execute the following types of routines to generate values to be
inserted into a column:

■ A user-defined function

■ A legacy stored procedure

E/C

Element Purpose Restrictions Syntax
parameter name The name of an input parameter

to the procedure
The input parameter must have
been defined in the CREATE
FUNCTION or CREATE
PROCEDURE statement for the
specified user-defined routine.

Expression, p. 1-876

parameter
name

=
SELECT

Statement
(Singleton)

p. 1-593

Expression
p. 1-876

Argument

 EXECUTE
,

Argument

)(FUNCTION

 PROCEDURE Procedure
Name

p. 1-1004

Function
Name

p. 1-959
SQL Statements 1-505

INSERT
Inserting Data With a User-Defined Function

You can specify the EXECUTE FUNCTION statement instead of a VALUES
clause in the INSERT statement to insert into a table values that a user-defined
function returns. The values that the user-defined function returns must
match those expected by the column list in number and data type.

An external function can only return one value. Make sure that you specify
only one column in the column list of the INSERT statement. This column
must have a compatible data type with the value that the external function
returns.The external function can be an iterator function. ♦

An SPL function can return one or more values. Make sure that the number
of values that the function returns matches the number of columns in the
table or the number of columns that you list in the column list of the INSERT
statement. The columns into which you insert the values must have
compatible data types with the values that the SPL function returns. ♦

Inserting Data With a Legacy Stored Procedure

Universal Server supports use of the EXECUTE PROCEDURE statement in an
INSERT statement to insert the rows of data that result from a call to a legacy
stored procedure. The values that the stored procedure returns must match
those expected by the column list in number and data type. The number and
data types of the columns must match those that the column list expects.
Informix recommends that you use the EXECUTE FUNCTION statement to
insert data from all new user-defined functions. ♦

Inserting Into a Collection Variable
The INSERT statement with the Collection Derived Table segment allows you
to insert elements into a collection variable. The Collection Derived Table
segment identifies the collection variable in which to insert the elements. For
more information on syntax of the Collection Derived Table segment, see
page 1-827.

EXT

SPL

SPL

E/C

SPL
1-506 Informix Guide to SQL: Syntax

INSERT
In an INFORMIX-ESQL/C program, declare a host variable of type collection
for a collection variable. This collection variable can be typed or untyped. ♦

In an SPL routine, declare a variable of type COLLECTION, LIST, MULTISET, or
SET for a collection variable. This collection variable can be typed or
untyped. ♦

To insert new elements, follow these steps:

1. Create a collection variable in your SPL routine or ESQL/C program.

2. Add collection element(s) to the collection variable with the INSERT
statement and the Collection Derived Table segment.

3. Once the collection variable contains the correct elements, you then
use the INSERT or UPDATE statement on a table or view name to save
the collection variable in a collection column (SET, MULTISET, or LIST).

The INSERT statement and the Collection Derived Table segment allow you
to perform the following operations on a collection variable:

■ Insert one element into the collection

Use the INSERT statement with the Collection Derived Table
segment.

■ Insert one or more elements into the collection

Associate the INSERT statement and the Collection Derived Table
segment with a cursor to declare a collection cursor for the collection
variable.

For information on how to use a collection cursor to add one or more
elements to an ESQL/C collection variable, see “Inserting into a
Collection Cursor” on page 1-560 in the PUT statement. ♦

The INSERT statement and the Collection Derived Table segment allow you
to insert one element in a collection. For SET and MULTISET collections, the
position of the new element is undefined because the elements of these
collections are not ordered. However, LIST collections have elements that are
ordered. If the column is the LIST type, you can use the AT clause to specify
the position within the list at which you wish to add the new element. For
more information, see “AT Clause” on page 1-509.

E/C

SPL

E/C
SQL Statements 1-507

INSERT
Suppose the ESQL/C host variable a_multiset has the following declaration:

EXEC SQL BEGIN DECLARE SECTION;
client collection multiset(integer not null) a_multiset;

EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new MULTISET element of 142,323 to
a_multiset:

EXEC SQL allocate collection a_multiset;
EXEC SQL select multiset_col into :a_multiset from table1

where id = 107;
EXEC SQL insert into table(:a_multiset) values (142323);

When you insert elements into a client collection variable, you cannot specify
a SELECT statement or an EXECUTE FUNCTION statement in the VALUES
clause of the INSERT. For information on how to use collection host variables
in an ESQL/C program, see the INFORMIX-ESQL/C Programmer’s Manual. ♦

You can perform a similar insert with an SPL routine, as in the following
example:

CREATE PROCEDURE test2()

DEFINE a_multiset MULTISET(INT NOT NULL);

SELECT multiset_col INTO a_multiset FROM table1
WHERE id = 107;

INSERT INTO TABLE(a_multiset) VALUES(1423231);
.
.
.
END PROCEDURE;

You can insert into the collection variable a_multiset without using a cursor,
because the collection variable contains a MULTISET. The elements of a
MULTISET are not listed in a particular order, and the position of the new
element that is inserted is undefined. For more information on how to use
SPL collection variables, see Chapter 14 in the Informix Guide to SQL:
Tutorial.♦

After you insert a new value into a collection variable, you need to store the
new collection in the database. For more information, see “Saving the
Collection Variable” on page 1-510. You can also use a collection variable as
a variable name in the VALUES clause to insert elements into a collection. For
more information, see “Inserting Values into Collection Columns” on
page 1-501. ♦

E/C

SPL
1-508 Informix Guide to SQL: Syntax

INSERT
AT Clause

By default, Universal Server adds a new element at the end of a LIST
collection. The AT clause does provide the ability to insert LIST elements at a
specified position. If you specify a position that is greater than the number of
elements in the list, Universal Server adds the element to the end of the list.
You must specify a position value of at least one because the first element in
the list is at position 1.

Suppose the ESQL/C host variable a_list has the following declaration:

EXEC SQL BEGIN DECLARE SECTION;
client collection list(smallint NOT NULL) a_list;

EXEC SQL END DECLARE SECTION;

The following INSERT statement adds a new list element of 9 as the new third
element of a_list:

EXEC SQL insert at 3 into table(:a_list) values (9);

Suppose that before this INSERT, a_list contained the elements {1,8,4,5,2}.
After this INSERT, this variable contains the elements {1,8,9,4,5,2}. For
more information on how to insert values into ESQL/C collection variables ,
see the chapter on complex data types in the INFORMIX-ESQL/C
Programmer’s Manual. ♦

You can perform a similar insert with an SPL routine, as the following
example shows:

CREATE PROCEDURE test3()

DEFINE a_list LIST(SMALLINT NOT NULL);

SELECT list_col INTO a_list FROM table1
WHERE id = 201;

INSERT AT 3 INTO TABLE(a_list) VALUES(9);
.
.
.
END PROCEDURE;

Suppose that before this INSERT, a_list contained the elements {1,8,4,5,2}.
After this INSERT, a_list contains the elements {1,8,9,4,5,2}. The new
element 9 has been inserted at position 3 in the list. For more information on
how to insert values into SPL collection variables, see Chapter 14 in the
Informix Guide to SQL: Tutorial. ♦

E/C

SPL
SQL Statements 1-509

INSERT
After you insert a new value into a collection variable, you need to store the
new collection in the database. For more information, see “Saving the
Collection Variable”.

Saving the Collection Variable

The collection variable stores the elements of the collection. However, it has
no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the
collection column with one of the following SQL statements:

■ To update the collection column in the table with the collection
variable, use an UPDATE statement on a table or view name and
specify the collection variable in the SET clause.

For more information, see “Updating Collection Columns” on
page 1-786 in the UPDATE statement.

■ To insert a collection in a column, use the INSERT statement on a table
or view name and specify the collection variable in the VALUES
clause.

For more information, see “Inserting Values into Collection
Columns” on page 1-501.

Inserting into a Row Variable
The INSERT statement does not support a row variable in the Collection
Derived Table segment. However, you can use the UPDATE statement to
insert new field values into a row variable. For example, the following
ESQL/C code fragment inserts a new row into the rectangles table (which
“Inserting Values into Row-Type Columns” on page 1-502 defines):

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;

EXEC SQL END DECLARE SECTION;

...
EXEC SQL update table(:myrect)

set x=7, y=3, length=6, width=2;
EXEC SQL insert into rectangles values (12, :myrect);

For more information, see “Updating a Row Variable” on page 1-798. ♦

E/C

SPL
1-510 Informix Guide to SQL: Syntax

INSERT
References
See the SELECT statement in this manual. See also the CLOSE, DECLARE,
DESCRIBE, EXECUTE, FLUSH, OPEN, PREPARE, and PUT statements in
Chapter 1 of this manual for specific information about dynamic
management statements. See also the FOREACH statement in Chapter 2 of
this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of inserting data in
Chapter 4 and Chapter 6. In the Guide to GLS Functionality, see the discussion
of the GLS aspects of the INSERT statement.

For information on how to access row and collections with ESQL/C host
variables, see the chapter on complex types in the INFORMIX-ESQL/C
Programmer’s Manual. For information on how to access row and collections
with SPL variables, see Chapter 14 in the Informix Guide to SQL: Tutorial.
SQL Statements 1-511

LOAD
LOAD
Use the LOAD statement to insert data from an operating-system file into an
existing table, synonym, or view.

Syntax

Element Purpose Restrictions Syntax
column name The name of a column or

columns that receive data values
from the load file during the
load operation

You must specify the columns
that receive data if you are not
loading data into all columns.
You must also specify columns if
the order of the fields in the load
file does not match the default
order of the columns in the table
(the order established when the
table was created).

Identifier, p. 1-962

 (1 of 2)

,

INSERT INTO

DELIMITER 'delimiter '

column
name

Table
Name

p. 1-1044

LOAD FROM 'filename'

DB
+

))

View
Name

p. 1-1047

Synonym
Name

p. 1-1042
1-512 Informix Guide to SQL: Syntax

LOAD
Usage
The LOAD statement adds new rows to the table. It does not overwrite
existing data. You cannot add a row that has the same key as an existing row.

To use the LOAD statement, you must have Insert privileges for the table
where you want to insert data. For information on database-level and table-
level privileges, see the GRANT statement on page 1-458.

delimiter A quoted string that identifies
the character to use as the
delimiter in the LOAD FROM file.
The delimiter is a character that
separates the data values in each
line of the LOAD FROM file.

If you do not specify a delimiter
character, the database server
uses the value of the
DBDELIMITER environment
variable. If DBDELIMITER has
not been set, the default
delimiter is the vertical bar (|).

You cannot use the following
items as delimiter characters:
backslash (\), new-line character
(=CTRL-J), and hexadecimal
numbers (0 to 9, a to f, A to F).

Quoted String,
p. 1-1010

filename A quoted string that identifies
the pathname and filename of
the load file. The load file
contains the data to be loaded
into the specified table or view.
The default pathname for the
load file is the current directory.

If you do not include a list of
columns in the column name
parameter, the fields in the load
file must match the columns
specified for the table in number,
order, and type. You must also
observe restrictions about the
same number of fields in each
line, the relationship of field
lengths to column lengths, the
representation of data types in
the file, the use of the backslash
character (\) with certain special
characters, and special rules for
VARCHAR and BLOB data types.
See “The LOAD FROM File” on
page 1-514 for information on
these restrictions.

Quoted String,
p. 1-1010. The
pathname and
filename specified in
the quoted string
must conform to the
conventions of your
operating system.

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-513

LOAD
The LOAD FROM File

The LOAD FROM file contains the data to add to a table. You can use the file
that the UNLOAD statement creates as the LOAD FROM file.

If you do not include a list of columns in the INSERT INTO clause, the fields
in the file must match the columns that are specified for the table in number,
order, and data type.

Each line of the file must have the same number of fields. You must define
field lengths that are less than or equal to the length that is specified for the
corresponding column. Specify only values that can convert to the data type
of the corresponding column. The following table indicates how your
Informix product expects you to represent the data types in the LOAD file
(when they use the default locale, U.S. English).

Type of Data Input Format

blank One or more blank characters between delimiters. You can
include leading blanks in fields that do not correspond to
character columns.

boolean A 't' or'T' indicates a TRUE value, and an 'f' or 'F'
indicates a FALSE value.

collections A collection must have its values surrounded by braces ({})
and a field delimiter separating each element. For more
information, see “Loading Complex Types” on page 1-519.

date A character string in the following format: mm/dd/year. You
must state the month as a two-digit number. You can use a
two-digit number for the year if the year is in the 20th
century. (You can specify another century algorithm with
the DBCENTURY environment variable.) The value must be
an actual date; for example, February 30 is illegal. You can
use a different date format if you indicate this format with
the GL_DATE or DBDATE environment variable. See the
Guide to GLS Functionality for more information about these
environment variables.

 (1 of 3)
1-514 Informix Guide to SQL: Syntax

LOAD
MONEY A value that can include currency notation: a leading
currency symbol ($), a comma (,) as the thousands
separator, and a period (.) as the decimal separator. You can
use a different currency notation if you indicate this
notation with the DBMONEY environment variable. For
more information on this environment variable, see the
Guide to GLS Functionality.

NULL Nothing between the delimiters.

row types
(named and
unnamed)

A row type must have its values surrounded by paren-
theses and a field delimiter separating each element. For
more information, see “Loading Complex Types” on
page 1-519.

simple large objects
(TEXT, BYTE)

TEXT and BYTE columns are loaded directly from the LOAD
TO file. For more information, see “Loading Simple Large
Objects” on page 1-518.

smart large objects
(CLOB, BLOB)

CLOB and BLOB columns are loaded from a separate
operating-system file. The field for the CLOB or BLOB
column in the LOAD FROM file contains the name of this
separate file. For more information, see “Loading Smart
Large Objects” on page 1-518.

time A character string in the following format: year-month-day
hour:minute:second.fraction. You cannot use type specifi-
cation or qualifiers for DATETIME or INTERVAL values. The
year must be a four-digit number, and the month must be
a two-digit number. You can specify a different date and
time format with the GL_DATETIME or DBTIME
environment variable. See the Guide to GLS Functionality for
more information on these environment variables.

Type of Data Input Format

 (2 of 3)
SQL Statements 1-515

LOAD
If you are using a nondefault locale, the formats of DATE, DATETIME, MONEY,
and numeric column values in the LOAD FROM file must be compatible with
the formats that the locale supports for these data types. For more infor-
mation, see the Guide to GLS Functionality. ♦

If you include any of the following special characters as part of the value of a
field, you must precede the character with a backslash (\):

■ Backslash

■ Delimiter

■ New-line character anywhere in the value of a VARCHAR or
NVARCHAR column

■ New-line character at end of a value for a TEXT value

Do not use the backslash character (\) as a field delimiter. It serves as an
escape character to inform the LOAD statement that the next character is to be
interpreted as part of the data.

The following example shows the contents of a hypothetical input file named
new_custs:

0|Jeffery|Padgett|Wheel Thrills|3450 El Camino|Suite 10|Palo
Alto|CA|94306||
0|Linda|Lane|Palo Alto Bicycles|2344 University||Palo
Alto|CA|94301|(415)323-6440

user-defined data
formats (opaque
types)

The associated opaque type must have an import support
function defined if special processing is required to copy
the data in the LOAD FROM file to the internal format of the
opaque type. An import binary support function might
also be required if the data is in binary format. The data in
the LOAD FROM file must correspond to the format that the
import or importbinary support function expects.

The associated opaque type must have an assign support
function if special processing is required before the data is
written in the database.

Type of Data Input Format

 (3 of 3)

GLS
1-516 Informix Guide to SQL: Syntax

LOAD
This data file conveys the following information:

■ Indicates a serial field by specifying a zero (0)

■ Uses the vertical bar (|), the default delimiter character

■ Assigns null values to the phone field for the first row and the
address2 field for the second row

The null values are shown by two delimiter characters with nothing
between them.

The following statement loads the values from the new_custs file into the
customer table owned by jason:

LOAD FROM 'new_custs' INSERT INTO jason.customer

For more information about the format of the input file, see the discussion of
the dbload utility in the Informix Migration Guide.

Loading Character Data

The fields that correspond to character columns can contain more characters
than the defined maximum allows for the field. The extra characters are
ignored.

If you are loading columns that are the VARCHAR data type, note the
following information:

■ If you give the LOAD statement data in which the character fields
(including VARCHAR) are longer than the column size, the excess
characters are disregarded.

■ Use the backslash (\) to escape embedded delimiter and backslash
characters in all character fields, including VARCHAR.

These restrictions on character columns also apply to NCHAR and
NVARCHAR columns. For more information on these data types, see the
Guide to GLS Functionality. ♦

GLS
SQL Statements 1-517

LOAD
Loading Simple Large Objects

The database server loads simple large objects (BYTE and TEXT columns)
directly from the LOAD FROM file. Keep the following restrictions in mind
when you load BYTE and TEXT data:

■ You cannot have leading and trailing blanks in BYTE fields.

■ Use the backslash (\) to escape embedded delimiter and backslash
characters in TEXT fields.

■ Data being loaded into a BYTE column must be in ASCII-hexadecimal
form. BYTE columns cannot contain preceding blanks.

For TEXT columns, the database server handles any required code-set conver-
sions for the data. For more information, see the Guide to GLS Functionality. ♦

If you are unloading files that contain simple-large-object data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust
the 10-kilobyte setting to a larger setting with the DBBLOBBUF environment
variable. Simple large objects that are larger than the default or the setting of
the DBBLOBBUF environment variable are stored in a temporary file. For
additional information about the DBBLOBBUF environment variable, see the
Informix Guide to SQL: Reference.

Loading Smart Large Objects

The database server loads smart large objects (BLOB and CLOB columns) from
a separate operating-system file on the client computer. It copies all smart-
large-object values into a single file. Each BLOB or CLOB value is appended to
the current file. The database server might create several files if the values are
extremely large or there any many values.

In a LOAD FROM file, a CLOB or BLOB column value appears as follows:

start_off, end_off, client_path

GLS
1-518 Informix Guide to SQL: Syntax

LOAD
In this format, start_off is the starting offset of the smart-large-object value
within the file, end_off is the length of the BLOB or CLOB value, and client_path
is the pathname for the client file. For example, to load a CLOB value that is
2048 bytes long and stored at the beginning of the /usr/apps/clob_val file, the
database server expects the following value in the LOAD FROM file to appear
as follows:

|0, 2048, /usr/apps/clob_value|

The preceding example assumes a default field delimiter of the vertical bar.

Loading Complex Types

In a LOAD FROM file, complex types appear as follows:

■ Collections are introduced with the appropriate constructor SET,
MULTISET, LIST), and their elements are enclosed in braces ({}) and
separated with a comma, as follows:

constructor{val1 , val2 , ... }

For example, to load the SET values {1, 3, 4} into a column whose
data type is SET(INTEGER NOT NULL), the corresponding field of the
LOAD FROM file appears as:

|SET{1 , 3 , 4}|

■ Row types (named and unnamed) have their fields enclosed with
parentheses and separated with the field separator, as follows:

(val1 | val2 | ...)

For example, to load the ROW values (1, 'abc'), the corresponding
field of the LOAD FROM file appears as:

|(1 | abc)|

The preceding examples use the default field separator, the vertical bar (|).

Loading Opaque-Type Columns

Some opaque data types require special processing when they are inserted.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for very large objects, in a smart large object.
SQL Statements 1-519

LOAD
This processing is accomplished by calling a user-defined support function
called assign(). When you execute the LOAD statement on a table whose rows
contains one of these opaque types, the database server automatically
invokes the assign() function for the type. The assign() function can make the
decision of how to store the data. For more information about the assign()
support function, see the Extending INFORMIX-Universal Server: Data Types
manual.

DELIMITER Clause

Use the DELIMITER clause to specify the delimiter that separates the data
contained in each column in a row in the LOAD FROM file. If you omit this
clause, your Informix product checks the DBDELIMITER environment
variable.

If the DBDELIMITER environment variable has not been set, the default
delimiter is the vertical bar (|). See Chapter 3 in the Informix Guide to SQL:
Reference for information about how to set the DBDELIMITER environment
variable.

You can specify TAB (CTRL-I) or <blank> (= ASCII 32) as the delimiter symbol.
You cannot use the following items as the delimiter symbol:

■ Backslash (\)

■ New-line character (= CTRL-J)

■ Hexadecimal numbers (0 to 9, a to f, A to F)

The following statement identifies the semicolon (;) as the delimiter
character:

LOAD FROM '/a/data/ord.loadfile' DELIMITER ';'
INSERT INTO orders
1-520 Informix Guide to SQL: Syntax

LOAD
INSERT INTO Clause

Use the INSERT INTO clause to specify the table, synonym, or view in which
to load the new data. (See the discussion of Synonym Name, Table Name,
and View Name that begins on page 1-1042 for details.)

You must specify the column names only if one of the following conditions is
true:

■ You are not loading data into all columns.

■ The input file does not match the default order of the columns
(determined when the table was created).

The following example identifies the price and discount columns as the only
columns in which to add data:

LOAD FROM '/tmp/prices' DELIMITER ','
INSERT INTO norman.worktab(price,discount)

References
See the UNLOAD and INSERT statements in this manual.

In the Informix Migration Guide, see the task-oriented discussion of the LOAD
statement and other utilities for moving data.

In the Guide to GLS Functionality, see the discussion of the GLS aspects of the
LOAD statement.
SQL Statements 1-521

LOCK TABLE
LOCK TABLE
Use the LOCK TABLE statement to control access to a table by other processes.

Syntax

Usage
You can lock a table if you own the table or have the Select privilege on the
table or on a column in the table, either from a direct grant or from a grant to
PUBLIC. The LOCK TABLE statement fails if the table is already locked in
exclusive mode by another process, or if an exclusive lock is attempted while
another user has locked the table in share mode.

The SHARE keyword locks a table in shared mode. Shared mode allows other
processes read access to the table but denies write access. Other processes
cannot update or delete data if a table is locked in shared mode.

The EXCLUSIVE keyword locks a table in exclusive mode. Exclusive mode
denies other processes both read and write access to the table.

Exclusive-mode locking automatically occurs when you execute the ALTER
INDEX, CREATE INDEX, DROP INDEX, RENAME COLUMN, RENAME TABLE,
and ALTER TABLE statements.

IN SHARE

EXCLUSIVE

MODELOCK TABLE
Table
Name

p. 1-1044

Synonym
Name

p. 1-1042

+

E/C

DB

SQLE
1-522 Informix Guide to SQL: Syntax

LOCK TABLE
Databases with Transactions
If your database was created with transactions, the LOCK TABLE statement
succeeds only if it executes within a transaction. You must issue a BEGIN
WORK statement before you can execute a LOCK TABLE statement.

Transactions are implicit in an ANSI-compliant database. The LOCK TABLE
statement succeeds whenever the specified table is not already locked by
another process. ♦

The following guidelines apply to the use of the LOCK TABLE statement
within transactions:

■ You cannot lock system catalog tables.

■ You cannot switch between shared and exclusive table locking
within a transaction. For example, once you lock the table in shared
mode, you cannot upgrade the lock mode to exclusive.

■ If you issue a LOCK TABLE statement before you access a row in the
table, no row locks are set for the table. In this way, you can override
row-level locking and avoid exceeding the maximum number of
locks that are defined in the Universal Server configuration.

■ All row and table locks release automatically after a transaction is
completed. The UNLOCK TABLE statement fails within a database
that uses transactions.

The following example shows how to change the locking mode of a table in
a database that was created with transaction logging:

BEGIN WORK
LOCK TABLE orders IN EXCLUSIVE MODE
 ...
COMMIT WORK
BEGIN WORK
LOCK TABLE orders IN SHARE MODE
 ...
COMMIT WORK

ANSI
SQL Statements 1-523

LOCK TABLE
Databases Without Transactions
In a database that was created without transactions, table locks set by using
the LOCK TABLE statement are released after any of the following
occurrences:

■ An UNLOCK TABLE statement executes.

■ The user closes the database.

■ The user exits the application.

To change the lock mode on a table, release the lock with the UNLOCK TABLE
statement and then issue a new LOCK TABLE statement.

The following example shows how to change the lock mode of a table in a
database that was created without transactions:

LOCK TABLE orders IN EXCLUSIVE MODE
...
UNLOCK TABLE orders
...
LOCK TABLE orders IN SHARE MODE

References
See the BEGIN WORK, SET ISOLATION, SET LOCK MODE, COMMIT WORK,
ROLLBACK WORK, and UNLOCK TABLE statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of locks in Chapter 7.
1-524 Informix Guide to SQL: Syntax

OPEN
OPEN
Use the OPEN statement to activate a cursor.

Syntax

Element Purpose Restrictions Syntax
cursor id Identifier for a cursor Cursor must have been previ-

ously created by a DECLARE
statement.

Identifier, p. 1-962

cursor variable Host variable that identifies a
cursor

Host variable must be a
character data type. Cursor must
have been previously created by
a DECLARE statement.

Variable name must
conform to
language-specific
rules for variable
names

descriptor Quoted string that identifies the
system-descriptor area

System-descriptor area must
already be allocated.

Quoted String,
p. 1-1010

 (1 of 2)

,

variable name

E/C

SQL DESCRIPTOR

descriptor
variable

cursor
id

USING

OPEN

'descriptor '

sqlda
pointer

DESCRIPTOR

WITH REOPTIMIZATION

E/C

+cursor
variable

ESQL
SQL Statements 1-525

OPEN
Usage
The OPEN statement activates the following types of cursors:

■ A select cursor: a cursor that is associated with a SELECT statement

■ A function cursor: a cursor that is associated with the EXECUTE
FUNCTION statement

■ An insert cursor: a cursor that is associated with the INSERT
statement

■ A collection cursor: a select or insert cursor that operates on a
collection variable

You create a cursor with the DECLARE statement (see page 1-300). When the
program opens the cursor with OPEN, the associated SELECT, INSERT, or
EXECUTE FUNCTION statement is passed to the database server, which
begins execution. The specific actions that the database server takes differ,
depending on whether the cursor is associated with an INSERT statement (an
insert cursor), or with a SELECT statement (a select cursor) or EXECUTE
FUNCTION statement (a function cursor). When the program has retrieved or
inserted all the rows it needs, close the cursor by using the CLOSE statement.

descriptor
variable

Host variable name that
identifies the system-descriptor
area

System-descriptor area must
already be allocated.

Quoted String,
p. 1-1010

sqlda pointer Pointer to an sqlda structure that
defines the type and memory
location of values that corre-
spond to the question-mark (?)
placeholder in a prepared
statement

You cannot begin an sqlda pointer
with a dollar sign ($) or a colon
(:). You must use an sqlda
structure if you are using
dynamic SQL statements.

DESCRIBE, p. 1-335

variable name Host variable whose contents
replace a question-mark (?)
placeholder in a prepared
statement

Variable must be a character or
collection data type.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)
1-526 Informix Guide to SQL: Syntax

OPEN
When you associate the SELECT, INSERT, or EXECUTE FUNCTION statement
directly with a cursor (that is, you do not use PREPARE to prepare it before the
DECLARE statement), associated with a cursor is by the OPEN statement
implicitly prepares the statement. The total number of prepared objects and
open cursors that are allowed in one program at any time is limited by the
available memory. You can use the FREE statement to free the cursor and
release the database server resources.

You receive an error code if you try to open a cursor that is already open. ♦

Opening a Select Cursor
When you open a select cursor (a read-only or an update cursor), the SELECT
statement is passed to the database server along with any values that the
USING clause of the OPEN statement specifies. (If the statement was previ-
ously prepared, the statement passed to the database server when it was
prepared.) The database server processes the query to the point of locating or
constructing the first row of the active set.

The following example illustrates a simple OPEN statement for a select
cursor:

EXEC SQL declare s_curs cursor for
select * from orders;

EXEC SQL open s_curs;

If you are working in a database with explicit transactions, you must open an
update cursor within a transaction. This requirement is waived if you
declared the cursor using the WITH HOLD keyword. (See the DECLARE
statement on page 1-300.)

Because the database server is seeing the query for the first time, it might
detect errors in the query. In this case, the database server does not actually
return the first row of data, but it sets a return code in the SQLCODE field of
the sqlca structure (sqlca.sqlcode).

ANSI
SQL Statements 1-527

OPEN
The SQLCODE value is either negative or zero, as the following table
describes.

If the SELECT statement is valid, but no rows match its search criteria, the first
FETCH statement returns a value of 100 (SQLNOTFOUND), which means no
rows were found.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE value
might exist. Check the GET DIAGNOSTICS statement for information about how to
get and interpret the SQLSTATE value.

Opening a Function Cursor
When you open a function cursor, the EXECUTE FUNCTION statement is
passed to the database server along with any values that the USING clause of
the OPEN statement specifies. The values in the USING clause are passed as
arguments to the user-defined function that the EXECUTE FUNCTION
executes. This user-defined function must be declared to accept values. (If the
statement was previously prepared, the statement was passed to the
database server when it was prepared.) The database server executes the
user-defined function to the point where it returns the first set of values.

The following example illustrates a simple OPEN statement for a function
cursor in INFORMIX-ESQL/C:

EXEC SQL declare s_curs cursor for
execute function new_func(arg1,arg2)
into :ret_val1, :ret_val2;

EXEC SQL open s_curs;

In the above example, the database server is seeing the EXECUTE FUNCTION
statement for the first time when it executes the OPEN function. Therefore, it
might detect syntactic errors in the statement. In this case, the database server
does not actually return the first row of data, but it sets a return code in the
SQLCODE field of the sqlca structure (sqlca.sqlcode).

Return Code Value Meaning

Negative Shows an error has been detected in the SELECT statement.

Zero Shows the SELECT statement is valid.
1-528 Informix Guide to SQL: Syntax

OPEN
The SQLCODE value is either negative or zero, as the following table
describes.

If the EXECUTE FUNCTION statement is valid, but the user-defined function
returns no rows, the first FETCH statement returns a value of 100
(SQLNOTFOUND), which means no values returned.

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE value
might exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

Opening an Insert Cursor
When you open an insert cursor, the cursor passes the INSERT statement to
the database server, which checks the validity of the keywords and column
names. The database server also allocates memory for an insert buffer to hold
new data. (See the DECLARE statement on page 1-300.)

An OPEN statement for an insert cursor cannot include a USING clause. The
following INFORMIX-ESQL/C example illustrates an OPEN statement with an
insert cursor:

EXEC SQL prepare s1 from
'insert into manufact values ('npr', 'napier')';

EXEC SQL declare in_curs cursor for s1;
EXEC SQL open in_curs;
EXEC SQL put in_curs;
EXEC SQL close in_curs;

When you reopen an insert cursor that is already open, you effectively flush
the insert buffer; any rows that are stored in the insert buffer are written into
the database table. The database server first closes the cursor, which causes
the flush and then reopens the cursor. See the discussion of the PUT statement
on page 1-552 for information about checking errors and counting inserted
rows.

Return Code Value Meaning

Negative Shows that an error has been detected in the EXECUTE
FUNCTION statement.

Zero Shows that the EXECUTE FUNCTION statement is valid.
SQL Statements 1-529

OPEN
Opening a Collection Cursor
You can declare both select and insert cursors on collection variables. Such
cursors are called collection cursors. You can use the OPEN statement to open
these cursors. The OPEN statement allocates resources that the collection
cursor needs. (For more information, see the DECLARE statement on
page 1-300.)

You can use the name of a collection variable in the USING clause of the
OPEN statement. For more information on the USING clause, see “USING
Clause”. For more information on the use of OPEN...USING with a collection
variable, see “Fetching From a Collection Cursor” on page 1-419 and
“Inserting into a Collection Cursor” on page 1-560.

USING Clause
The USING clause of the OPEN statement is required when the cursor is
associated with a prepared statement that includes question-mark (?) place-
holders, as follows:

■ A SELECT statement that contains input parameters in its WHERE
clause

■ An EXECUTE FUNCTION statement that contains input parameters in
as arguments of its user-defined function

■ An INSERT statement that contains input parameters in its VALUES
clause

(See the PREPARE statement on page 1-538.) You can supply values for these
parameters in one of the following ways:

■ You can specify host variables in the USING clause.

■ You can specify a system-descriptor area in the USING SQL
DESCRIPTOR clause.

■ You can specify an sqlda structure in the USING DESCRIPTOR clause.
1-530 Informix Guide to SQL: Syntax

OPEN
Naming Variables in USING

If you know the number of parameters to be supplied at runtime and their
data types, you can define the parameters that are needed by the statement
as host variables in your program. You pass parameters to the database
server by opening the cursor with the USING keyword, followed by the
names of the variables. These variables are matched with the SELECT or
EXECUTE FUNCTION statement question-mark (?) parameters in a one-to-
one correspondence, from left to right.

You must supply one host variable name for each placeholder. The data type
of each variable must be compatible with the corresponding value that the
prepared statement requires. The following example illustrates the USING
clause of the OPEN statement with a SELECT statement in an
INFORMIX-ESQL/C code fragment:

sprintf (select_1, "%s %s %s %s %s",
"SELECT o.order_num, sum(total price)",
"FROM orders o, items i",
"WHERE o.order_date > ? AND o.customer_num = ?",
"AND o.order_num = i.order_num",
"GROUP BY o.order_num");

EXEC SQL prepare statement_1 from :select_1;
EXEC SQL declare q_curs cursor for statement_1;
EXEC SQL open q_curs using :o_date, :o_custnum;

The following example illustrates the USING clause of the OPEN statement
with an EXECUTE FUNCTION statement in an INFORMIX-ESQL/C code
fragment:

stcopy ("EXECUTE FUNCTION one_func(?, ?)", exfunc_stmt);
EXEC SQL prepare exfunc_id from :exfunc_stmt;
EXEC SQL declare func_curs cursor for exfunc_id;
EXEC SQL open func_curs using :arg1, :arg2;

You cannot include indicator variables in the list of variable names. To use an
indicator variable, you must include the SELECT or EXECUTE FUNCTION
statement as part of the DECLARE statement.
SQL Statements 1-531

OPEN
USING SQL DESCRIPTOR Clause

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure to dynamically supply parameters.
However, a system-descriptor area conforms to the X/Open standards. ♦

To specify a system-descriptor area as the location of parameters, use the
USING SQL DESCRIPTOR clause of the OPEN statement. This clause allows
you to associate input values from a system-descriptor area when you open
a cursor.

The following example shows the OPEN...USING SQL DESCRIPTOR statement:

EXEC SQL allocate descriptor 'desc1';
...
EXEC SQL open selcurs using sql descriptor 'desc1';

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be
less than or equal to the value of the occurrences that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

For further information, refer to the discussion of the system-descriptor area
in the INFORMIX-ESQL/C Programmer’s Manual.

USING DESCRIPTOR Clause

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate input values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more values
to replace question-mark (?) placeholders. To specify an sqlda structure as
the location of parameters, use the USING DESCRIPTOR clause of the OPEN
statement. This clause allows you to associate input values from an sqlda
structure when you open a cursor.

X/O

E/C
1-532 Informix Guide to SQL: Syntax

OPEN
The following example shows the OPEN...USING DESCRIPTOR statement in
INFORMIX-ESQL/C:

struct sqlda *sdp;
...
EXEC SQL open selcurs using descriptor sdp;

The sqld value specifies the number of input values that are described in
occurrences of sqlvar. This number must correspond to the number of
dynamic parameters in the prepared statement.

For further information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. ♦

WITH REOPTIMIZATION Clause

The WITH REOPTIMIZATION clause allows you to reoptimize your query-
design plan. When you prepare a SELECT statement or an EXECUTE
FUNCTION statement, Universal Server uses a query-design plan to optimize
that query. If you later modify the data that is associated with a prepared
SELECT statement or the data that is associated with an EXECUTE FUNCTION
statement, you can compromise the effectiveness of the query-design plan for
that statement. In other words, if you change the data, you can deoptimize
your query. To ensure optimization of your query, you can prepare the
SELECT or EXECUTE FUNCTION statement again or open the cursor again
using the WITH REOPTIMIZATION clause.

Informix recommends that you use the WITH REOPTIMIZATION clause
because it provides the following advantages over preparing a statement
again:

■ Rebuilds only the query-design plan rather than the entire statement

■ Uses fewer resources

■ Reduces overhead

■ Requires less time

The WITH REOPTIMIZATION clause also makes your database server
optimize your query-design plan before processing the OPEN cursor
statement. The following example shows the WITH REOPTIMIZATION clause
in INFORMIX-ESQL/C:

EXEC SQL open selcurs using descriptor sdp with reoptimization;
SQL Statements 1-533

OPEN
Reopening a Cursor
The database server evaluates the values that are named in the USING clause
of the OPEN statement only when it opens the select or function cursor. While
the cursor is open, subsequent changes to program variables in the USING
clause do not change the active set of the cursor.

A subsequent OPEN statement closes the cursor and then reopens it. When
the database server reopens the cursor, it creates a new active set that is based
on the current values of the variables in the USING clause. If the program
variables have changed since the previous OPEN statement, reopening the
cursor can generate an entirely different active set.

Even if the values of the variables are unchanged, the values in the active set
can be different, in the following situations:

■ If the user-defined function takes a different execution path from the
previous OPEN statement on a function cursor

■ If data in the table was modified since the previous OPEN statement
on a select cursor

The database server can process most queries dynamically. For these queries,
the database server does not pre-fetch all rows when it opens the select or
function cursor. Therefore, if other users are modifying the table at the same
time that the cursor is being processed, the active set might reflect the results
of these actions.

However, for some queries, the database server evaluates the entire active set
when it opens the cursor. These queries include those with the following
features:

■ Queries that require sorting: those with an ORDER BY clause or with
the DISTINCT or UNIQUE keyword

■ Queries that require hashing: those with a join or with the GROUP BY
clause

For these queries, any changes that other users make to the table while the
cursor is being processed are not reflected in the active set.
1-534 Informix Guide to SQL: Syntax

OPEN
Relationship Between OPEN and FREE
The database server allocates resources to prepared statements and open
cursors. If you release resources with a FREE cursor id or FREE cursor variable
statement, you cannot use the cursor unless you declare the cursor again. If
you execute a FREE statement id or FREE statement id variable statement, you
cannot open the cursor that is associated with the statement id or statement
id variable unless you prepare the statement id or statement id variable
again.

References
See the CLOSE, DECLARE and FREE statements in this manual for general
information about cursors. See the PUT and FLUSH statements in this manual
for information about insert cursors. See the FETCH statement in this manual
for information about select and function cursors.

See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE,
EXECUTE, FETCH, GET DESCRIPTOR, PREPARE, PUT, and SET DESCRIPTOR
statements in this manual for more information about dynamic SQL
statements.

In the Informix Guide to SQL: Tutorial, see the discussion of the OPEN
statement in Chapter 5. Refer also to the INFORMIX-ESQL/C Programmer’s
Manual for more information about the system-descriptor area and the sqlda
structure.
SQL Statements 1-535

OUTPUT
OUTPUT
Use the OUTPUT statement to send query results directly to an operating-
system file or to pipe it to another program.

Syntax

Usage
You can send the results of a query to an operating-system file by specifying
the full pathname for the file. If the file already exists, the output overwrites
the current contents, as the following example shows:

OUTPUT TO /usr/april/query1
SELECT * FROM cust_calls WHERE call_code = 'L'

Element Purpose Restrictions Syntax
filename The pathname and filename of

an operating-system file where
the results of the query are
written. The default pathname is
the current directory.

You can specify a new or existing
file in filename. If the specified
file exists, the results of the
query overwrite the current
contents of the file.

The pathname and
filename must
conform to the
conventions of your
operating system.

program The name of a program where
the results of the query are sent

The program must exist and
must be known to the operating
system. The program must be
able to read the results of a
query.

The name of the
program must
conform to the
conventions of your
operating system.

OUTPUT TO

WITHOUT
HEADINGS

SELECT
Statement
p. 1-593

DB
+

filename

PIPE program
1-536 Informix Guide to SQL: Syntax

OUTPUT
You can display the results of a query without column headings by using the
WITHOUT HEADINGS keywords, as the following example shows:

OUTPUT TO /usr/april/query1
WITHOUT HEADINGS
SELECT * FROM cust_calls WHERE call_code = 'L'

You also can use the keyword PIPE to send the query results to another
program, as the following example shows:

OUTPUT TO PIPE more
SELECT customer_num, call_dtime, call_code

FROM cust_calls

References
See the SELECT and UNLOAD statements in this manual.
SQL Statements 1-537

1-538 Informix Guide to SQL: Syntax

PREPARE
PREPARE
Use the PREPARE statement to parse, validate, and generate an execution
plan for SQL statements in an INFORMIX-ESQL/C program at runtime.

Syntax

Element Purpose Restrictions Syntax
statement id A statement identifier that is a

data structure representing the
text of a prepared SQL statement

After you release the database-
server resources (using a FREE
statement), you cannot use the
statement identifier with a
DECLARE cursor or with the
EXECUTE statement until you
prepare the statement again.

 Identifier, p. 1-962

statement id
variable

Host variable that contains the
statement identifier

This variable must be a character
data type.

Variable name must
conform to
language-specific
rules for variable
names.

 (1 of 2)

statement
variable
name

PREPARE statement
id FROM

+
ESQL

Quoted
String

p. 1-1010

statement
id variable

PREPARE
Usage
The PREPARE statement permits your program to assemble the text of an SQL
statement at runtime and make it executable. This dynamic form of SQL is
accomplished in three steps:

1. A PREPARE statement accepts statement text as input, either as a
quoted string or stored within a character variable. Statement text
can contain question-mark (?) placeholders to represent values that
are to be defined when the statement is executed.

2. An EXECUTE or OPEN statement can supply the required input
values and execute the prepared statement once or many times.

3. Resources allocated to the prepared statement can be released later
using the FREE statement.

The number of prepared objects in a single program is limited by the
available memory. This limit includes both statement identifiers that are
named in PREPARE statements (statement id or statement id variable) and cursor
declarations that incorporate SELECT, EXECUTE FUNCTION, or INSERT state-
ments. To avoid exceeding the limit, use a FREE statement to release some
statements or cursors.

statement
variable name

Host variable whose value is a
character string that consists of
one or more SQL statements

This variable must be a character
data type. For restrictions on the
statements in the character
string, see “SQL Statements
Permitted in Single-Statement
Prepares” on page 1-543 and
“Restrictions for Multistatement
Prepares” on page 1-550.

A statement variable name
cannot be used if the SQL
statement contains the
Collection Derived Table
segment.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-539

PREPARE
Using a Statement Identifier
A PREPARE statement sends the statement text to the database server where
it is analyzed. If the text contains no syntax errors, the database server trans-
lates it to an internal form. This translated statement is saved for later
execution in a data structure that the PREPARE statement allocates. The name
of the structure is the value that is assigned to the statement identifier in the
PREPARE statement. Subsequent SQL statements refer to the structure by
using the same statement identifier that was used in the PREPARE statement.

A subsequent FREE statement releases the resources that were allocated to the
statement. After you release the database server resources, you cannot use
the statement identifier with a DECLARE cursor or with the EXECUTE
statement until you prepare the statement again.

A program can consist of one or more source-code files. By default, the scope
of a statement identifier is global to the program. Therefore, a statement
identifier that is prepared in one file can be referenced from another file.

In a multiple-file program, if you want to limit the scope of a statement
identifier to the file in which it is prepared, preprocess all the files with the
-local command-line option. See the manual for your SQL API for more infor-
mation, restrictions, and performance issues when preprocessing with the
-local option.

Releasing a Statement Identifier
A statement identifier can represent only one SQL statement or sequence of
statements at a time. You can execute a new PREPARE statement with an
existing statement identifier if you wish to bind a given statement identifier
to a different SQL statement text.
1-540 Informix Guide to SQL: Syntax

PREPARE
The PREPARE statement supports dynamic statement-identifier names,
which allow you to prepare a statement identifier as an identifier or as a host
character-string variable. In the following ESQL/C examples, the first
example shows a statement identifier that was prepared as an SQL API host
variable; the second example shows a statement identifier that was prepared
as a character-string constant:

stcopy ("query2", stmtid);
EXEC SQL prepare :stmtid from

'select * from customer';

EXEC SQL prepare query2 from
'select * from customer';

A statement ID variable must be the character data type. In C, it must be
defined as char.

Statement Text
The PREPARE statement can take statement text either as a quoted string or as
text that is stored in a program variable. The following restrictions apply to
the statement text:

■ The text can contain only SQL statements. It cannot contain
statements or comments from the host programming language.

■ The text can contain comments that are preceded by a double
dash (--) or enclosed in curly brackets ({ }).

These comment symbols represent SQL comments. For more infor-
mation on SQL comment symbols, see “How to Enter SQL
Comments” on page 1-9.

■ The text can contain either a single SQL statement or a sequence of
statements that are separated by semicolons.

For more information on preparing a single SQL statement, see “SQL
Statements Permitted in Single-Statement Prepares” on page 1-543.
For more information on preparing a sequence of SQL statements, see
“Preparing Sequences of Multiple SQL Statements” on page 1-549.

■ Names of host-language variables are not recognized as such in
prepared text.

Therefore, you cannot prepare a SELECT statement that contains an
INTO clause or an EXECUTE FUNCTION that contains an INTO clause
because the INTO clause requires a host-language variable.
SQL Statements 1-541

PREPARE
■ The only identifiers that you can use are names that are defined in the
database, such as names of tables and columns.

For further information on using identifiers in statement text, see
“Preparing Statements with SQL Identifiers” on page 1-546.

■ Use a question mark (?) as a placeholder to indicate where data is
supplied when the statement executes.

For further information on using question marks as placeholders, see
“Preparing Statements That Receive Parameters” on page 1-544.

■ The text cannot include an embedded SQL statement prefix or
terminator, such as a dollar sign ($) or the words EXEC SQL.

The following example shows a PREPARE statement in INFORMIX-ESQL/C
that takes statement text as a quoted string:

EXEC SQL prepare new_cust from
'insert into customer(fname,lname) values(?,?)';

If the prepared statement contains the Collection Derived Table segment on
an ESQL/C collection variable, some additional limitations exist on how you
can assemble the text for the PREPARE statement. For information about
dynamic SQL, see the INFORMIX-ESQL/C Programmer’s Manual.

Preparing and Executing User-Defined Routines
The way to prepare a user-defined routine (SPL routine or external routine)
depends on whether the routine is a procedure or a function:

■ To prepare an SPL or an external procedure, prepare the EXECUTE
PROCEDURE statement that executes the procedure.

To execute the prepared procedure, use the EXECUTE statement.

■ To prepare an SPL or an external function, prepare the EXECUTE
FUNCTION statement that executes the function.

You cannot include the INTO clause of EXECUTE FUNCTION in the
PREPARE statement. The way to execute a prepared user-defined
function depends on whether the function returns only one group of
values or multiple groups of values. Use the EXECUTE statement for
functions that return only one group of values. To execute functions
that return more than one group of return values, you must associate
the EXECUTE FUNCTION statement with a cursor.
1-542 Informix Guide to SQL: Syntax

PREPARE
For information on how to create and execute SPL routines, see Chapter 14 of
the Informix Guide to SQL: Tutorial. For more information on how to execute
user-defined routines dynamically, see the INFORMIX-ESQL/C Programmer’s
Manual.

SQL Statements Permitted in Single-Statement Prepares
You can prepare any single SQL statement except the ones in the following list.

You can prepare a SELECT statement. If the SELECT statement includes the
INTO TEMP clause, you can execute the prepared statement with an EXECUTE
statement. If it does not include the INTO TEMP clause, the statement returns
rows of data. Use DECLARE, OPEN, and FETCH cursor statements to retrieve
the rows.

ALLOCATE COLLECTION FLUSH

ALLOCATE DESCRIPTOR FREE

ALLOCATE ROW GET DESCRIPTOR
CLOSE GET DIAGNOSTICS

CONNECT INFO
DEALLOCATE COLLECTION LOAD

DEALLOCATE DESCRIPTOR OPEN

DEALLOCATE ROW OUTPUT
DECLARE PREPARE
DESCRIBE PUT
DISCONNECT SET CONNECTION

EXECUTE IMMEDIATE SET DESCRIPTOR

EXECUTE UNLOAD
FETCH WHENEVER
SQL Statements 1-543

PREPARE
A prepared SELECT statement can include a FOR UPDATE or FOR READ ONLY
clause. These clauses are normally used with the DECLARE statement to
create an update cursor or read-only cursor, respectively. The following
example shows a SELECT statement with a FOR UPDATE clause in
INFORMIX-ESQL/C:

sprintf(up_query, "%s %s %s",
"select * from customer ",
"where customer_num between ? and ? ",
"for update");

EXEC SQL prepare up_sel from :up_query;

EXEC SQL declare up_curs cursor for up_sel;
EXEC SQL open up_curs using :low_cust,:high_cust;

Preparing Statements When Parameters Are Known
In some prepared statements, all needed information is known at the time the
statement is prepared. The following example in INFORMIX-ESQL/C shows
two statements that are prepared from constant data:

sprintf(redo_st, "%s %s",
"drop table workt1; ",
"create table workt1 (wtk serial, wtv float)");

EXEC SQL prepare redotab from :redo_st;

Preparing Statements That Receive Parameters
In some statements, parameters are unknown when the statement is
prepared because a different value can be inserted each time the statement is
executed. In these statements, you can use a question-mark (?) placeholder
where a parameter must be supplied when the statement is executed.
1-544 Informix Guide to SQL: Syntax

PREPARE
The PREPARE statements in the following INFORMIX-ESQL/C examples show
some uses of question-mark (?) placeholders:

EXEC SQL prepare s3 from
'select * from customer where state matches ?';

EXEC SQL prepare in1 from
'insert into manufact values (?,?,?)';

sprintf(up_query, "%s %s",
"update customer set zipcode = ?"
"where current of zip_cursor");

EXEC SQL prepare update2 from :up_query;

EXEC SQL prepare exfunc from
'execute function func1 (?, ?)';

You can use a placeholder to defer evaluation of a value until runtime only
for an expression. You cannot use a question-mark (?) placeholder to
represent an SQL identifier except as noted in “Preparing Statements with
SQL Identifiers” on page 1-546.

The following example of an INFORMIX-ESQL/C code fragment prepares a
statement from a variable that is named demoquery. The text in the variable
includes one question-mark (?) placeholder. The prepared statement is
associated with a cursor and, when the cursor is opened, the USING clause of
the OPEN statement supplies a value for the placeholder.

EXEC SQL BEGIN DECLARE SECTION;
char queryvalue [6];
char demoquery [80];

EXEC SQL END DECLARE SECTION;

EXEC SQL connect to 'stores7';
sprintf(demoquery, "%s %s",

"select fname, lname from customer ",
"where lname > ? ");

EXEC SQL prepare quid from :demoquery;
EXEC SQL declare democursor cursor for quid;
stcopy("C", queryvalue);
EXEC SQL open democursor using :queryvalue;

The USING clause is available in both OPEN (for statements that are
associated with a cursor) and EXECUTE (all other prepared statements)
statements.

You can use a question-mark (?) placeholder to represent the name of an
ESQL/C or SPL collection variable.
SQL Statements 1-545

PREPARE
Preparing Statements with SQL Identifiers
In general, you cannot use question-mark (?) placeholders for SQL identi-
fiers. You must specify these identifiers in the statement text when you
prepare the statement.

However, in a few special cases, you can use the question mark (?) place-
holder for an SQL identifier. These cases are as follows:

■ You can use the ? placeholder for the database name in the
DATABASE statement.

■ You can use the ? placeholder for the dbspace name in the IN dbspace
clause of the CREATE DATABASE statement

■ You can use the ? placeholder for the cursor name in statements that
use cursor names. ♦

Obtaining SQL Identifiers from User Input

If a prepared statement requires identifiers, but the identifiers are unknown
when you write the prepared statement, you can construct a statement that
receives SQL identifiers from user input.

The following INFORMIX-ESQL/C example prompts the user for the name of
a table and uses that name in a SELECT statement. Because the table name is
unknown until runtime, the number and data types of the table columns are
also unknown. Therefore, the program cannot allocate host variables to
receive data from each row in advance. Instead, this program fragment
describes the statement into an sqlda descriptor and fetches each row using
the descriptor. The fetch puts each row into memory locations that the
program provides dynamically.

If a program retrieves all the rows in the active set, the FETCH statement
would be placed in a loop that fetched each row. If the FETCH statement
retrieves more than one data value (column), another loop exists after the
FETCH, which performs some action on each data value.

#include <stdio.h>
EXEC SQL include sqlda;
EXEC SQL include sqltypes;

char *malloc();

main()
{

E/C
1-546 Informix Guide to SQL: Syntax

PREPARE
struct sqlda *demodesc;
char tablename[19];
int i;

EXEC SQL BEGIN DECLARE SECTION;
char demoselect[200];

EXEC SQL END DECLARE SECTION;

/* This program selects all the columns of a given tablename.
 The tablename is supplied interactively. */

EXEC SQL connect to 'stores7';

printf("This program does a select * on a table\n");
printf("Enter table name: ");
scanf("%s", tablename);

sprintf(demoselect, "select * from %s", tablename);

EXEC SQL prepare iid from :demoselect;
EXEC SQL describe iid into demodesc;

/* Print what describe returns */

for (i = 0; i < demodesc->sqld; i++)
prsqlda (demodesc->sqlvar + i);

/* Assign the data pointers. */

for (i = 0; i < demodesc->sqld; i++)
{
switch (demodesc->sqlvar[i].sqltype & SQLTYPE)

{
case SQLCHAR:

demodesc->sqlvar[i].sqltype = CCHARTYPE;
/* make room for null terminator */
demodesc->sqlvar[i].sqllen++;

demodesc->sqlvar[i].sqldata =
malloc(demodesc->sqlvar[i].sqllen);

break;

case SQLSMINT: /* fall through */
case SQLINT: /* fall through */
case SQLSERIAL:

demodesc->sqlvar[i].sqltype = CINTTYPE;
demodesc->sqlvar[i].sqldata =

malloc(sizeof(int));
break;

/* And so on for each type. */

}
}

/* Declare and open cursor for select . */
EXEC SQL declare d_curs cursor for iid;
EXEC SQL open d_curs;

/* Fetch selected rows one at a time into demodesc. */

for(; ;)
SQL Statements 1-547

PREPARE
{
printf("\n");
EXEC SQL fetch d_curs using descriptor demodesc;
if (sqlca.sqlcode != 0)

break;
for (i = 0; i < demodesc->sqld; i++)

{
switch (demodesc->sqlvar[i].sqltype)

{
case CCHARTYPE:

printf("%s: \"%s\n", demodesc->sqlvar[i].sqlname,
demodesc->sqlvar[i].sqldata);

break;
case CINTTYPE:

printf("%s: %d\n", demodesc->sqlvar[i].sqlname,
*((int *) demodesc->sqlvar[i].sqldata));

break;

/* And so forth for each type... */

}
}

}
EXEC SQL close d_curs;
EXEC SQL free d_curs;

/* Free the data memory. */

for (i = 0; i < demodesc->sqld; i++)
free(demodesc->sqlvar[i].sqldata);

free(demodesc);

printf ("Program Over.\n");
}

prsqlda(sp)
struct sqlvar_struct *sp;

{
printf ("type = %d\n", sp->sqltype);
printf ("len = %d\n", sp->sqllen);
printf ("data = %lx\n", sp->sqldata);
printf ("ind = %lx\n", sp->sqlind);
printf ("name = %s\n", sp->sqlname);

}

For an explanation of how to use an sqlda structure for statement values, see
the INFORMIX-ESQL/C Programmer’s Manual.
1-548 Informix Guide to SQL: Syntax

PREPARE
Preparing Sequences of Multiple SQL Statements
You can execute several SQL statements as one action if you include them in
the same PREPARE statement. Multistatement text is processed as a unit;
actions are not treated sequentially. Therefore, multistatement text cannot
include statements that depend on actions that occur in a previous statement
in the text. For example, you cannot create a table and insert values into that
table in the same prepared block.

In most situations, compiled products return error-status information on the
first error in the multistatement text. No indication exists of which statement
in the sequence causes an error. You can use sqlca to find the offset of the
ESQL/C error in sqlca.sqlerrd[4]. For more information about sqlca and
error-status information, see the INFORMIX-ESQL/C Programmer’s Manual.

In a multistatement prepare, if no rows are returned from a WHERE clause in
the following statements, you get SQLNOTFOUND (100) in both ANSI-
compliant databases and databases that are not ANSI compliant:

■ UPDATE ... WHERE ...

■ SELECT INTO TEMP ... WHERE ...

■ INSERT INTO ... WHERE ...

■ DELETE FROM ...WHERE ...

In the following example, four SQL statements are prepared into a single
INFORMIX-ESQL/C string that is called query. Individual statements are
delimited with semicolons. A single PREPARE statement can prepare the four
statements for execution, and a single EXECUTE statement can execute the
statements that are associated with the qid statement identifier.

sprintf (query, "%s %s %s %s %s %s %s",
"update account set balance = balance + ? ",

"where acct_number = ?;",
"update teller set balance = balance + ? ",

"where teller_number = ?;",
"update branch set balance = balance + ? ",

"where branch_number = ?;",
"insert into history values (?, ?);";

EXEC SQL prepare qid from :query;

EXEC SQL begin work;
EXEC SQL execute qid using

:delta, :acct_number, :delta, :teller_number,
:delta, :branch_number, :timestamp, :values;

EXEC SQL commit work;
SQL Statements 1-549

PREPARE
In the preceding code fragment, the semicolons (;) are required as SQL
statement-terminator symbols between each SQL statement in the text that
query holds.

Restrictions for Multistatement Prepares

In addition to the statements listed in “SQL Statements Permitted in Single-
Statement Prepares” on page 1-543, you cannot use the following statements
in text that contains multiple statements that are separated by semicolons.

You cannot use regular SELECT statements in multistatement prepares. The
only form of the SELECT statement allowed in a multistatement prepare is a
SELECT statement with an INTO TEMP clause.

In addition, the statements that could cause the current database to be closed
in the middle of executing the sequence of statements are not allowed in a
multistatement prepare.

Using Prepared Statements for Efficiency
To increase performance efficiency, you can use the PREPARE statement and
an EXECUTE statement in a loop to eliminate overhead that redundant
parsing and optimizing cause. For example, an UPDATE statement that is
located within a WHILE loop is parsed each time the loop runs. If you prepare
the UPDATE statement outside the loop, the statement is parsed only once,
eliminating overhead and speeding statement execution. The following
example shows how to prepare an INFORMIX-ESQL/C statement to improve
performance:

EXEC SQL BEGIN DECLARE SECTION;
char disc_up[80];
int cust_num;

EXEC SQL END DECLARE SECTION;

main()
{

sprintf(disc_up, "%s %s",
"update customer ",
"set discount = 0.1 where customer_num = ?");

EXEC SQL prepare up1 from :disc_up;

CLOSE DATABASE DROP DATABASE

CREATE DATABASE SELECT (except SELECT INTO TEMP)

DATABASE
1-550 Informix Guide to SQL: Syntax

PREPARE
while (1)
{
printf("Enter customer number (or 0 to quit): ");
scanf("%d", cust_num);
if (cust_num == 0)

break;
EXEC SQL execute up1 using :cust_num;
}

}

References
See the CLOSE, DECLARE, DESCRIBE, EXECUTE, FREE, and OPEN statements
in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of the PREPARE
statement and dynamic SQL in Chapter 5.
SQL Statements 1-551

PUT
PUT
Use the PUT statement to store a row in an insert buffer for later insertion into
the database.

Syntax

SQL DESCRIPTOR

descriptor
variable

USING 'descriptor '

cursor
variable

sqlda
pointerDESCRIPTOR

FROM

E/C

,
variable
name

: indicator
variable

indicator
variable

INDICATOR

cursor
idPUT

ESQL
+

$ indicator
variable
1-552 Informix Guide to SQL: Syntax

PUT
Element Purpose Restrictions Syntax
cursor id Identifier for an insert cursor

into which the rows are to be
stored

A DECLARE statement must
have previously created the
insert cursor and the OPEN
statement must have previously
open it.

Identifier, p. 1-962

cursor variable Host variable that holds the
value of cursor id

The host variable must be a
character data type. The cursor
identified in cursor variable must
have been created in an earlier
DECLARE statement and opened
in an earlier OPEN statement.

Variable name must
conform to
language-specific
rules for variable
names.

descriptor Quoted string that identifies the
system-descriptor area that
defines the type and memory
location of values that corre-
spond to the question-mark (?)
placeholder in a prepared
INSERT statement

The system-descriptor area must
have been allocated with the
ALLOCATE DESCRIPTOR
statement.

Quoted String,
p. 1-1010

descriptor
variable

Host variable name that holds
the value of descriptor

The system-descriptor area that
is identified in descriptor variable
must have been allocated with
the ALLOCATE DESCRIPTOR
statement.

Variable name must
conform to
language-specific
rules for variable
names.

indicator
variable

Host variable that you set to
indicate that null-value data has
been placed in the corre-
sponding variable name

This parameter is optional, but
use an indicator variable if the
possibility exists that variable
name might contain null-value
data. If you specify the indicator
variable without the INDICATOR
keyword, you cannot put a space
between variable name and
indicator variable. The rules for
placing a prefix before indicator
variable are language-specific.
See your SQL API manual for
further information on indicator
variables.

Variable cannot be a DATETIME
or INTERVAL data type.

Variable name must
conform to
language-specific
rules for variable
names.

 (1 of 2)
SQL Statements 1-553

PUT
Usage
The PUT statement is one of four statements that are used for inserts that send
more than one row to the database. The four statements, DECLARE, OPEN,
PUT, and CLOSE, are used in the following sequence:

1. Declare an cursor to control the rows to insert.

2. Open the cursor to create the insert buffer.

3. Put the contents of each row into the cursor.

4. Close the cursor to send the rows to the database server and to break
the association between the cursor and the active set.

Each PUT statement stores a row in an insert buffer that was created when
cursor name was opened. If the buffer has no room for the new row when the
statement executes, the buffered rows are written to the database in a block
and the buffer is emptied. As a result, some PUT statement executions cause
rows to be written to the database, and some do not.

You can use the FLUSH statement to write buffered rows to the database
without adding a new row. The CLOSE statement writes any remaining rows
before it closes an insert cursor.

If the current database uses explicit transactions, you must execute a PUT
statement within a transaction.

sqlda pointer Points to an sqlda structure that
defines the type and memory
location of values that corre-
spond to the question-mark (?)
placeholder in a prepared
INSERT statement

You cannot begin an sqlda
pointer with a dollar sign ($) or a
colon (:).

See the discussion of
sqlda structure in the
INFORMIX-ESQL/C
 Programmer’s
Manual.

variable name Host variable whose contents
replace a question-mark (?)
placeholder in a prepared
INSERT statement

Variable must be a character data
type.

Variable name must
conform to
language-specific
rules for variable
names.

Element Purpose Restrictions Syntax

 (2 of 2)
1-554 Informix Guide to SQL: Syntax

PUT
The following example uses a PUT statement in INFORMIX-ESQL/C:

EXEC SQL prepare ins_mcode from
'insert into manufact values(?,?)';

EXEC SQL declare mcode cursor for ins_mcode;
EXEC SQL open mcode;
EXEC SQL put mcode from :the_code, :the_name;

PUT is not an X/Open SQL statement. Therefore, you get a warning message
if you compile a PUT statement in X/Open mode in INFORMIX-ESQL/C. For
details on compiling in X/Open mode, see the INFORMIX-ESQL/C
Programmer’s Manual. ♦

Supplying Inserted Values
The values that reside in the inserted row can come from one of the following
sources:

■ Constant values that are written into the INSERT statement

■ Program variables that are named in the INSERT statement

■ Program variables that are named in the FROM clause of the PUT
statement

■ Values that are prepared dynamically by an sqlda structure or a
system-descriptor area and then named in the USING clause of the
PUT statement

Using Constant Values in INSERT

The VALUES clause of the INSERT statement lists the values of the inserted
columns. One or more of these values might be constants (that is, numbers or
character strings).

When all the inserted values are constants, the PUT statement has a special
effect. Instead of creating a row and putting it in the buffer, the PUT statement
merely increments a counter. When you use a FLUSH or CLOSE statement to
empty the buffer, one row and a repetition count are sent to the database
server, which inserts that number of rows.

X/O
SQL Statements 1-555

PUT
In the following INFORMIX-ESQL/C example, 99 empty customer rows are
inserted into the customer table. Because all values are constants, no disk
output occurs until the cursor closes. (The constant zero for customer_num
causes generation of a SERIAL value.)

int count;
EXEC SQL declare fill_c cursor for

insert into customer(customer_num) values(0);
EXEC SQL open fill_c;
for (count = 1; count <= 99; ++count)

EXEC SQL put fill_c;
EXEC SQL close fill_c;

Naming Program Variables in INSERT

When you associate the INSERT statement with the cursor declaration (in the
DECLARE statement), you create an insert cursor. In the INSERT statement,
you can name program variables in the VALUES clause. When each PUT
statement is executed, the contents of the program variables at that time are
used to populate the row that is inserted in the buffer.

If you are creating an insert cursor (using DECLARE with INSERT), you must
use only program variables in the VALUES clause. Variable names are not
recognized in the context of a prepared statement; you associate a prepared
statement with a cursor through its statement identifier.

The following INFORMIX-ESQL/C example illustrates the use of an insert
cursor. The code includes the following statements:

■ The DECLARE statement associates a cursor called ins_curs with an
INSERT statement that inserts data in the customer table. The
VALUES clause names a data structure that is called cust_rec; the
ESQL/C preprocessor converts cust_rec to a list of values, one for
each component of the structure.

■ The OPEN statement creates a buffer.

■ A function that is not defined in the example obtains customer infor-
mation from an interactive user and leaves it in cust_rec.
1-556 Informix Guide to SQL: Syntax

PUT
■ The PUT statement composes a row from the current contents of the
cust_rec structure and sends it to the row buffer.

■ The CLOSE statement inserts into the customer table any rows that
remain in the row buffer and closes the insert cursor.

int keep_going = 1;
EXEC SQL BEGIN DECLARE SECTION

struct cust_row { /* fields of a row of customer table */ } cust_rec;
EXEC SQL END DECLARE SECTION

EXEC SQL declare ins_curs cursor for
insert into customer values (:cust_row);

EXEC SQL open ins_curs;
for (; (sqlca.sqlcode == 0) && (keep_going) ;)

{
keep_going = get_user_input(cust_rec); /* ask user for new customer */
if (keep_going) /* user did supply customer info */

{
cust_rec.customer_num = 0; /* request new serial value */
EXEC SQL put ins_curs;
}

if (sqlca.sqlcode == 0) /* no error from PUT */
keep_going = (prompt_for_y_or_n("another new customer") =='Y')

}
EXEC SQL close ins_curs;

Use an indicator variable if the data to be inserted by the INSERT statement
might be null. See the INFORMIX-ESQL/C Programmer’s Manual for more
information about indicator variables.

Naming Program Variables in FROM Clause of PUT

When the INSERT statement is prepared (see the PREPARE statement on
page 1-538), you cannot use program variables in its VALUES clause.
However, you can represent values using a question-mark (?) placeholder.
List the names of program variables in the FROM clause of the PUT statement
to supply the missing values.
SQL Statements 1-557

PUT
The following INFORMIX-ESQL/C example lists host variables in a PUT
statement:

char answer [1] = 'y';
EXEC SQL BEGIN DECLARE SECTION;

char ins_comp[80];
char u_company[20];

EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to 'stores7';
EXEC SQL prepare ins_comp from

'insert into customer (customer_num, company) values (0, ?)';
EXEC SQL declare ins_curs cursor for ins_comp;
EXEC SQL open ins_curs;

while (1)
{
printf("\nEnter a customer: ");
gets(u_company);
EXEC SQL put ins_curs from :u_company;
printf("Enter another customer (y/n) ? ");
if (answer = getch() != 'y')

break;
}

EXEC SQL close ins_curs;
EXEC SQL disconnect all;

}

Using a System-Descriptor Area

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate insert values from a system-descriptor
area. A system-descriptor area describes the data type and memory location
of one or more values.

You can also use an sqlda structure to supply parameters dynamically.
However, a system-descriptor area conforms to the X/Open standards. ♦

To specify a system-descriptor area as the location of parameters, use the
USING SQL DESCRIPTOR clause of the PUT statement. Use the SET
DESCRIPTOR statement to transfer the insert values for the PUT statement in
the system-descriptor area. The USING SQL DESCRIPTOR clause allows you to
obtain insert values from a system-descriptor area to put in an insert cursor.

X/O
1-558 Informix Guide to SQL: Syntax

PUT
The following INFORMIX-ESQL/C example shows how to associate values
from a system-descriptor area:

EXEC SQL allocate descriptor 'desc1';
...
EXEC SQL put selcurs using sql descriptor 'desc1';

The COUNT field in the system-descriptor area corresponds to the number of
dynamic parameters in the prepared statement. The value of COUNT must be
less than or equal to the value of the occurrences that were specified when the
system-descriptor area was allocated with the ALLOCATE DESCRIPTOR
statement. You can obtain the value of a field with the GET DESCRIPTOR
statement and set the value with the SET DESCRIPTOR statement.

For more information on how to use a system-descriptor area, see the
INFORMIX-ESQL/C Programmer’s Manual.

Using an sqlda Structure

If you do not know the number of parameters to be supplied at runtime or
their data types, you can associate insert values from an sqlda structure. An
sqlda structure lists the data type and memory location of one or more values
to replace question-mark (?) placeholders. To specify an sqlda structure as
the location of parameters, use the USING DESCRIPTOR clause of the PUT
statement. This clause allows you to obtain insert values from an sqlda
structure to put into an insert cursor.

Each time the PUT statement executes, the values that the sqlda structure
describes are used to replace question-mark (?) placeholders in the INSERT
statement. This process is similar to using a FROM clause with a list of
variables, except that your program has full control over the memory
location of the data values.

The following example shows the PUT ... USING DESCRIPTOR statement:

struct sqlda *pointer2;
...
EXEC SQL put selcurs using descriptor pointer2;

For further information, refer to the sqlda discussion in the
INFORMIX-ESQL/C Programmer’s Manual. ♦

E/C
SQL Statements 1-559

PUT
Inserting into a Collection Cursor
A collection cursor allows you to access the individual elements of an
ESQL/C collection variable. To declare a collection cursor, use the DECLARE
statement and include the Collection Derived Table segment in the INSERT
statement that you associate with the cursor. Once you open the collection
cursor with the OPEN statement, the cursor allows you to put elements in the
collection variable.

For more information on the Collection Derived Table segment, see
page 1-827. For more information how to declare a collection cursor for an
INSERT statement, see “An Insert Cursor For a Collection Variable” on
page 1-320.

To put elements, one at a time, into the insert cursor, use the PUT statement
and the FROM clause. The PUT statement identifies the collection cursor that
is associated with the collection variable. The FROM clause identifies the
element value to be inserted into the cursor. The data type of any host
variable in the FROM clause must match the element type of the collection.

Important: The collection variable stores the elements of the collection. However, it
has no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the collection
column with the INSERT or UPDATE statement.

Suppose you have a table called children with the following structure:

CREATE TABLE children
(

age SMALLINT,
name VARCHAR(30),
fav_colors SET(VARCHAR(20)),

)

1-560 Informix Guide to SQL: Syntax

PUT
The following ESQL/C code fragment shows how to use an insert cursor to
put elements into a collection variable called child_colors:

EXEC SQL BEGIN DECLARE SECTION;
client collection child_colors;
char *favorites[]
(

"blue",
"purple",
"green",
"white",
"gold",
0

);

int a = 0;
char child_name[21];

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :child_colors;

/* Get structure of fav_colors column for untyped
* child_colors collection variable */
EXEC SQL select fav_colors into :child_colors

from children
where name = :child_name;

/* Declare insert cursor for child_colors collection
* variable and open this cursor */
EXEC SQL declare colors_curs cursor for

insert into table(:child_colors)
values (?);

EXEC SQL open colors_curs;

/* Use PUT to gather the favorite-color values
* into a cursor */
while (fav_colors[a])
{

EXEC SQL put colors_curs from :favorites[:a];
a++
...

}

/* Flush cursor contents to collection variable */
EXEC SQL flush colors_curs;
EXEC SQL update children set fav_colors = :child_colors;

EXEC SQL close colors_curs;
EXEC SQL deallocate collection :child_colors;

After the FLUSH statement executes, the collection variable, child_colors,
contains the elements {"blue", "purple", "green", "white", "gold"}.
The UPDATE statement at the end of this code fragment saves the new
collection into the fav_colors column of the database. Without this UPDATE
statement, the collection column never has the new collection added.
SQL Statements 1-561

PUT
Writing Buffered Rows
When the OPEN statement opens an insert cursor, an insert buffer is created.
The PUT statement puts a row into this insert buffer. The block of buffered
rows is inserted into the database table as a block only when necessary; this
process is called flushing the buffer. The buffer is flushed after any of the
following events:

■ The buffer is too full to hold the new row at the start of a PUT
statement.

■ A FLUSH statement executes.

■ A CLOSE statement closes the cursor.

■ An OPEN statement executes, naming the cursor.

When the OPEN statement is applied to an open cursor, it closes the
cursor before reopening it; this implied CLOSE statement flushes the
buffer.

■ A COMMIT WORK statement executes.

■ The buffer contains blob data (flushed after a single PUT statement).

If the program terminates without closing an insert cursor, the buffer remains
unflushed. Rows that were inserted into the buffer since the last flush are lost.
Do not rely on the end of the program to close the cursor and flush the buffer.

Checking the Result of PUT
The sqlca structure contains information on the success of each PUT
statement as well as information that lets you count the rows that were
inserted. The result of each PUT statement is contained in the fields of the
sqlca, as the following table shows.

ESQL/C

sqlca.sqlcode, SQLCODE

sqlca.sqlerrd[2]
1-562 Informix Guide to SQL: Syntax

PUT
Data buffering with an insert cursor means that errors are not discovered
until the buffer is flushed. For example, an input value that is incompatible
with the data type of the column for which it is intended is discovered only
when the buffer is flushed. When an error is discovered, rows in the buffer
that are located after the error are not inserted; they are lost from memory.

The SQLCODE variable is set to 0 if no error occurs; otherwise, it is set to an
error code. The third element of the sqlerrd array is set to the number of rows
that are successfully inserted into the database:

■ If a row is put into the insert buffer, and buffered rows are not written
to the database, SQLCODE and sqlerrd are set to 0 (SQLCODE because
no error occurred, and sqlerrd because no rows were inserted).

■ If a block of buffered rows is written to the database during the
execution of a PUT statement, SQLCODE is set to 0 and sqlerrd is set
to the number of rows that was successfully inserted into the
database.

■ If an error occurs while the buffered rows are written to the database,
SQLCODE indicates the error, and sqlerrd contains the number of
successfully inserted rows. (The uninserted rows are discarded from
the buffer.)

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
value might exist. You can use the SQLSTATE variable to check the result of each PUT
statement. You can also use the GET DIAGNOSTICS statement to examine the
RETURNED_SQLSTATE field. See the GET DIAGNOSTICS statement in this manual
for more information.

Counting Total and Pending Rows

To count the number of rows that were actually inserted in the database and
the number not yet inserted, follow these steps:

■ Prepare two integer variables (for example, total and pending).

■ When the cursor is opened, set both variables to 0.

■ Each time a PUT statement executes, increment both total and
pending.

■ Whenever a PUT or FLUSH statement executes, or the cursor closes,
subtract the third field of the SQLERRD array from pending.
SQL Statements 1-563

PUT
At any time, (total - pending) represents the number of rows that were
actually inserted. If all commands are successful, pending contains zero after
the cursor is closed. If an error occurs during a PUT, FLUSH, or CLOSE
statement, the value that remains in pending is the number of uninserted
(discarded) rows.

References
See the ALLOCATE DESCRIPTOR, CLOSE, DEALLOCATE DESCRIPTOR,
DECLARE, DESCRIBE, GET DESCRIPTOR, OPEN, PREPARE, and SET
DESCRIPTOR statements in this manual for further information about using
the PUT statement with dynamic management statements.

In the Informix Guide to SQL: Tutorial, see the discussion of the PUT statement
in Chapter 6.

For further information about error checking, the system-descriptor area, and
the sqlda structure, see the INFORMIX-ESQL/C Programmer’s Manual.
1-564 Informix Guide to SQL: Syntax

RENAME COLUMN
RENAME COLUMN
Use the RENAME COLUMN statement to change the name of a column.

Syntax

Element Purpose Restrictions Syntax
new column
name

The new name to be assigned to
the column

The new name of the column
must be unique within the table.
If you rename a column that
appears within a trigger
definition, the new column
name replaces the old column
name in the trigger definition
only if certain conditions are
met. See “How Triggers Are
Affected” on page 1-566 for
more information on this
restriction.

Identifier, p. 1-962

.old column
name

The current name of the column
you want to rename

The column must exist within
the table. The column name
must be preceded by a period.
You can put a space between the
table name and .old column name,
or you can omit the space.

Identifier, p. 1-962

.old column name TO
Table
Name

p. 1-1044
RENAME COLUMN new column name

+

E/C

DB

SQLE
SQL Statements 1-565

RENAME COLUMN
Usage
You can rename a column of a table if any of the following conditions are true:

■ You own the table.

■ You have the DBA privilege on the database.

■ You have the Alter privilege on the table.

When you rename a column, choose a column name that is unique within the
table.

How Views and Check Constraints Are Affected

If you rename a column that a view in the database references, the text of the
view in the sysviews system catalog table is updated to reflect the new
column name.

If you rename a column that a check constraint in the database references, the
text of the check constraint in the syschecks system catalog table is updated
to reflect the new column name.

How Triggers Are Affected

If you rename a column that appears within a trigger, it is replaced with the
new name only in the following instances:

■ When it appears as part of a correlation name inside the FOR EACH
ROW action clause of a trigger

■ When it appears as part of a correlation name in the INTO clause of
an EXECUTE PROCEDURE statement

■ When it appears as a triggering column in the UPDATE clause

When the trigger executes, if the database server encounters a column name
that no longer exists in the table, it returns an error.
1-566 Informix Guide to SQL: Syntax

RENAME COLUMN
Example of RENAME COLUMN

The following example assigns the new name of c_num to the
customer_num column in the customer table:

RENAME COLUMN customer.customer_num TO c_num

References
See the ALTER TABLE, CREATE TABLE, and RENAME TABLE statements in this
manual.
SQL Statements 1-567

RENAME DATABASE
RENAME DATABASE
Use the RENAME DATABASE statement to change the name of a database.

Syntax

Usage
You can rename a database if either of the following statements is true:

■ You created the database.

■ You have the DBA privilege on the database.

You can only rename local databases. You can rename a local database from
inside a stored procedure.

References
See the CREATE DATABASE statement in this manual.

Element Purpose Restrictions Syntax
new database
name

The new name that you want to
assign to the database

Name must be unique. You can-
not rename the current database.
The database to be renamed
must not be opened by any users
when the RENAME DATABASE
command is issued.

Database Name,
p. 1-852

old database
name

The name of the database that
you want to rename

The database name must exist. Database Name,
p. 1-852

TORENAME DATABASE new database nameold database name

+

E/C

DB

SQLE
1-568 Informix Guide to SQL: Syntax

RENAME TABLE
RENAME TABLE
Use the RENAME TABLE statement to change the name of a table.

Syntax

Usage
You can rename a table if any of the following statements are true:

■ You own the table.

■ You have the DBA privilege on the database.

■ You have the Alter privilege on the table.

You cannot change the table owner by renaming the table. You can use the
owner. convention in the old name of the table, but an error occurs during
compilation if you try to use the owner. convention in the new name of the
table.

In an ANSI-compliant database, you must use the owner. convention in the old
name of the table if you are referring to a table that you do not own. ♦

Element Purpose Restrictions Syntax
new table name The new name that you want to

assign to the table
You cannot use the owner.
convention in the new name of
the table.

Identifier, p. 1-962

TO
Table
Name

p. 1-1044
RENAME TABLE new table

name

+

E/C

DB

SQLE

ANSI
SQL Statements 1-569

RENAME TABLE
You cannot use the RENAME TABLE statement to move a table from the
current database to another database or to move a table from another
database to the current database. The table that you want to rename must
reside in the current database. The renamed table that results from the
statement remains in the current database.

Renaming Tables That Views Reference
If a view references the table that was renamed, and the view resides in the
same database as the table, the database server updates the text of the view
in the sysviews system catalog table to reflect the new table name. See the
Informix Guide to SQL: Reference for further information on the sysviews
system catalog table.

Renaming Tables That Have Triggers
If you rename a table that has a trigger, it produces the following results:

■ The database server replaces the name of the table in the trigger
definition.

■ The table name is not replaced where it appears inside any triggered
actions.

■ The database server returns an error if the new table name is the
same as a correlation name in the REFERENCING clause of the trigger
definition.

When the trigger executes, the database server returns an error if it
encounters a table name for which no table exists.

Example of Renaming a Table
The following example reorganizes the items table. The intent is to move the
quantity column from the fifth position to the third. The example illustrates
the following steps:

1. Create a new table, new_table, that contains the column quantity in
the third position.

2. Fill the table with data from the current items table.

3. Drop the old items table.
1-570 Informix Guide to SQL: Syntax

RENAME TABLE
4. Rename new_table with the name items.

The following example uses the RENAME TABLE statement as the last step:

CREATE TABLE new_table
(
item_num SMALLINT,
order_num INTEGER,
quantity SMALLINT,
stock_num SMALLINT,
manu_code CHAR(3),
total_price MONEY(8)
)

INSERT INTO new_table
SELECT item_num, order_num, quantity, stock_num,

manu_code, total_price
FROM items

DROP TABLE items
RENAME TABLE new_table TO items

References
See the ALTER TABLE, CREATE TABLE, DROP TABLE, and RENAME COLUMN
statements in this manual.
SQL Statements 1-571

REVOKE
REVOKE
Use the REVOKE statement to cancel any of the following for specific users or
for a role:

■ Privileges on a database

■ Privileges on a table, synonym, or view

■ Privileges on a user-defined data type or routine

■ A role name

Syntax

FROMREVOKE

Table-Level
Privileges
p. 1-576

Type-Level
Privileges
p. 1-579

Routine-Level
Privileges
p. 1-580

User List
p. 1-582FROM

CASCADE

RESTRICT

role
name

role
name

+

E/C

DB

SQLE

Database-Level
Privileges
p. 1-574

User List
p. 1-582
1-572 Informix Guide to SQL: Syntax

REVOKE
Usage
You can revoke privileges if:

■ you granted them and did not name another user as grantor.

■ the GRANT statement named you as grantor.

■ you own an object on which public has privileges by default.

■ you have database-level DBA privileges.

You cannot revoke privileges from yourself. You cannot revoke privileges
you granted if you named another user as grantor, nor can you revoke the
status as grantor from the other user.

Element Purpose Restrictions Syntax
role name A name that identifies users by

their function.

Use REVOKE to remove either:

■ privileges granted to a role
name.

■ specific users or another role
name from those identified
with the role.

■ the role name itself.

The role must have been created
with the CREATE ROLE
statement.

Identifier, p. 1-962
SQL Statements 1-573

REVOKE
Database-Level Privileges
Three concentric layers of privileges, Connect, Resource, and DBA, authorize
increasing power over database access and control. Only a user with the DBA
privilege can grant or revoke database-level privileges.

The following table lists the appropriate keyword for each database-level
privilege.

CONNECT

RESOURCE

DBA

Database-Level
Privileges

DBA If you revoke the DBA privilege from a user, you cancel the user’s
ability to perform the following tasks in this database:

■ Grant any database-level privilege to another user

■ Grant a role

■ Grant table-level privileges on a table that another user owns

■ Create permanent indexes on a table that another user owns

■ Change the owner of an object

■ Drop an object that another user owns

■ Execute the DROP DATABASE statement

■ Execute the SET SESSION AUTHORIZATION statement

■ Use the NEXT SIZE keyword to alter extent sizes in the system
catalog tables

■ Insert, delete, or update rows of any system catalogs

When you revoke the DBA privilege, you also revoke the Resource
privilege.

 (1 of 2)
1-574 Informix Guide to SQL: Syntax

REVOKE
You must revoke the most powerful privilege that a user has first:

■ You cannot successfully revoke either the Resource or the Connect
privilege from a user who still has the DBA privilege.

■ When you revoke the DBA privilege, the former DBA loses the
Resource privilege but retains the Connect privilege.

■ You cannot successfully revoke the Connect privilege from a user
who still has the Resource privilege.

■ After you revoke a DBA or Resource privilege, you can revoke the
Connect privilege with a separate REVOKE statement.

RESOURCE If you revoke the Resource privilege from a user, you cancel that
user’s ability to perform the following tasks in this database:

■ Create new tables

■ Create new indexes

■ Create new routines

■ Create new data types

CONNECT If you revoke the Connect privilege from a user, you cancel the
user’s ability to open the database or access any of its objects.
Specifically, the user can no longer do the following:

■ Connect to the database

■ Execute SELECT, INSERT, UPDATE, and DELETE statements

■ Create views or synonyms

■ Create temporary tables and indexes on the temporary tables

■ Use privileges granted to the user, to a role, or to public

■ Grant privileges authorized by a GRANT statement that
contained the WITH GRANT OPTION clause

 (2 of 2)
SQL Statements 1-575

REVOKE
Table-Level Privileges

In one REVOKE statement, you can list one or more of the following keywords
to specify the privileges you want to revoke from the same users.

Table-Level
Privileges

ON

Table
Name

p. 1-1044

Synonym
Name

p. 1-1042

View
Name

p. 1-1047

ALL

PRIVILEGES

INSERT

DELETE

SELECT

UPDATE

INDEX

ALTER

REFERENCES

,

Privilege Functions

INSERT Removes the ability to insert rows into a table, view, or
synonym

DELETE Removes the ability to delete rows from a table, view, or
synonym

SELECT Removes the ability to issue a SELECT statement on a table,
view, or synonym

UPDATE Removes the ability to change any column of the table, view,
or synonym using UPDATE statements

 (1 of 2)
1-576 Informix Guide to SQL: Syntax

REVOKE
If a user receives the same privilege from two different grantors and one
grantor revokes the privilege, the grantee still has the privilege until the
second grantor also revokes the privilege. For example, if both you and a DBA
grant the Update privilege on your table to ted, both you and the DBA must
revoke the Update privilege to prevent ted from updating your table.

When to Use REVOKE Before GRANT

You can use combinations of REVOKE and GRANT to replace public with
specific users as the grantees and to remove some columns from table-level
privileges.

Replacing PUBLIC With Specified Users

If public can select from your table, you cannot revoke the Select privilege
from users by name.

INDEX Removes other users’ ability to create permanent indexes on
your table, even if those users have the Resource privilege.
Using REVOKE does not remove the ability to create indexes
on temporary tables, a function of the Connect database-level
privilege.

ALTER Removes the authorization to issue an ALTER statement on
your table, such as the ability to:

■ add or delete columns.

■ modify column data types.

■ add or delete constraints.

■ set the object modes of indexes, constraints or triggers.

REFERENCES Removes the ability to reference columns in your table as
foreign keys. Revoke the References privilege to disallow
cascading deletes.

ALL Provides all the preceding privileges. You can optionally
follow ALL with the PRIVILEGES keyword.

Privilege Functions

 (2 of 2)
SQL Statements 1-577

REVOKE
For example, assume public has default Select privileges on your customer
table. You issue the following statement in an attempt to exclude ted from
accessing your table:

REVOKE ALL ON customer TO ted

The REVOKE statement results in ISAM error message 111, No record found,
because the system catalog tables (syscolauth or systabauth) contain no
table-level privilege entry for a user named ted. The REVOKE does not
prevent ted from having all the table-level privileges given to public on the
customer table.

To restrict table-level privileges, first revoke the privileges with the PUBLIC
keyword, then re-grant them to the appropriate users. The following
example revokes the Index and Alter privileges from all users for the
customer table and grants these privileges specifically to user mary:

REVOKE INDEX, ALTER ON customer FROM PUBLIC
GRANT INDEX, ALTER ON customer TO mary

Restricting Access to Specific Columns

The REVOKE statement has no syntax for revoking privileges on particular
column names. When you revoke the Select, Update, or References privilege
from a user, you revoke the privilege for all columns in the table. If you want
a user to have some access to some, but not all the columns previously
granted, issue a new GRANT statement to restore the appropriate privileges.

In the following example, mary first receives the ability to reference four
columns in customer, then the table owner restricts references to two
columns:

GRANT REFERENCES (fname, lname, company, city) ON
customer TO mary

REVOKE REFERENCES ON customer FROM mary
GRANT REFERENCES (company, city)

ON customer TO mary

The following more typical example shows how to restrict privileges for
public to certain columns:

REVOKE ALL ON customer FROM PUBLIC
GRANT SELECT (fname, lname, company, city)

ON customer TO PUBLIC
1-578 Informix Guide to SQL: Syntax

REVOKE
Behavior of the ALL Keyword

The ALL keyword revokes all table-level privileges available to the users or
role specified in the REVOKE statement.

The ALL keyword can execute successfully when a user does not have a table-
level privilege, but the REVOKE statement returns the following SQLSTATE
code:

01006 - Privilege not revoked

For example, assume that the user hal has the Select and Insert privileges on
the customer table. User jocelyn revokes all table-level privileges from user
hal with the following REVOKE statement:

REVOKE ALL ON customer FROM hal

The statement succeeds in revoking the Select and Insert privileges from user
hal because user hal had those privileges. Simultaneously, the statement
alerts you that it could not revoke privileges implied by the ALL keyword
that hal did not have, such as Delete, Update, and others.

Type-Level Privileges
Any user can reference a built-in data type in an SQL statement, but not a
distinct data type based on a built-in data type. The creator of a user-defined
data type or a DBA must explicitly grant the Usage privilege on that new
type, including a distinct data type based on a built-in data type.

REVOKE with the USAGE ON TYPE keywords removes the Usage privilege
that you granted earlier to another user or role.

Type-Level Privileges

USAGE ON TYPE Data
Type

p. 1-855
SQL Statements 1-579

REVOKE
Routine-Level Privileges
The generic term routine refers to both a function and a procedure. A user
with the Execute privilege on your routine can invoke your routine with an
EXECUTE FUNCTION or EXECUTE ROUTINE statement, or a CALL statement
using SPL. If you create a function, a user with the Execute privilege on your
function can also use it in an expression.

When you create a routine under any of the following circumstances, you
must explicitly grant the Execute privilege before you can revoke it:

■ You create a routine in an ANSI-compliant database. ♦
■ You have DBA-level privileges and use the DBA keyword with

CREATE to restrict the Execute privilege to users with the DBA
database-level privilege.

■ The NODEFDAC environment variable is set to yes to prevent
public from receiving any privileges that are not explicitly granted.

Element Purpose Restrictions Syntax
routine name The name given to the user-

defined routine in a CREATE
FUNCTION or CREATE
PROCEDURE statement

The identifier must refer to an
existing user-defined routine.

In an ANSI-compliant database,
specify the owner as the prefix to
the routine name.

Function Name,
p. 1-959 or Procedure
Name, p. 1-1004

Routine-Level
Privileges

EXECUTE
ON

Specific
Name

p. 1-1034
SPECIFIC

PROCEDURE

ROUTINE

()

Routine
Parameter List

p. 1-1028

FUNCTION

routine
name

ANSI
1-580 Informix Guide to SQL: Syntax

REVOKE
Commutators or negators for the routine require separate, explicit REVOKE
statements if you granted the Execute privilege to them.

When you create a routine without any of the preceding conditions in effect,
public can execute your routine without a GRANT statement. To limit who
executes your routine, revoke the privilege using the keywords FROM
PUBLIC and then grant it to a user list (see page 1-582) or role (see page 1-583).

If two or more routines have the same routine name, use the appropriate
keyword from the following list to specify which of those routines a user can
no longer execute.

Privilege Functions

SPECIFIC Prevents a user from executing a specific combination of the
routine name and parameter list identified by specific name.

FUNCTION Prevents execution of any function with the specified routine
name (and parameter types that match routine parameter list, if
supplied).

PROCEDURE Prevents execution of any procedure with the specified routine
name (and parameter types that match routine parameter list, if
supplied).

ROUTINE Prevents execution of both functions and procedures with the
specified routine name (and parameter types that match routine
parameter list, if supplied).
SQL Statements 1-581

REVOKE
User List
In the user list, you identify who loses the privileges you are revoking. The
user list can consist of a single user’s login or multiple users’ logins, sepa-
rated by commas. If you use the PUBLIC keyword as the user list, the REVOKE
statement revokes privileges from all users.

When the user list contains specific logins, you can combine the REVOKE
statement with the GRANT statement to selectively secure tables, columns,
routines, types, and so forth. For examples, see “When to Use REVOKE
Before GRANT” on page 1-577.

Spell the user names in the list exactly as they were spelled in the GRANT
statement. In a database that is not ANSI compliant, you can optionally use
quotes around each user in the list.

In an ANSI-compliant database, if you do not use quotes around user, the
name of the user is stored in uppercase letters. ♦

Element Purpose Restrictions Syntax
user The login name to receive the

role or privilege granted
Put quotes around user to ensure
that the name of the user is
stored exactly as you type it.

Use the single keyword PUBLIC
for user to grant a role or
privilege to all authorized users.

Identifier, p. 1-962

,
user

' user '

User List

PUBLIC

ANSI
1-582 Informix Guide to SQL: Syntax

REVOKE
Role Name
Only the DBA or a user granted a role with the WITH GRANT OPTION can
revoke a role or its privileges. Users cannot revoke roles from themselves.

When you revoke a role that was granted with the WITH GRANT OPTION,
both the role and grant option are revoked. “Revoking Privileges Granted
WITH GRANT OPTION” on page 1-584 explains revoking such a role.

The following examples show the effects of REVOKE with role name:

■ Remove users or another role name from inclusion in the role
REVOKE accounting FROM mary
REVOKE payroll FROM accounting

■ Remove one or more privileges from a role
REVOKE UPDATE ON employee FROM accounting

When you revoke table-level privileges from a role, you cannot use the
RESTRICT or CASCADE clauses.

Element Purpose Restrictions Syntax
role name Name of the role that:

■ loses a privilege assigned to it.

■ loses the use of another role.

■ a user or another role loses.

The role must have been created
with the CREATE ROLE statement
and granted with the GRANT
statement.

Identifier, p. 1-962

Role Name

' role name '

role name
SQL Statements 1-583

REVOKE
Revoking Privileges Granted WITH GRANT OPTION
If you revoke from user the privileges that you granted using the WITH
GRANT OPTION keywords, you sever the chain of privileges granted by that
user.

Thus, when you revoke privileges from users or a role, you also revoke the
same privilege resulting from GRANT statements:

■ issued by your grantee.

■ allowed because your grantee used the WITH GRANT OPTION clause.

■ allowed because subsequent grantees granted the same privilege
using the WITH GRANT OPTION clause.

The following examples illustrate this situation. You, as the owner of the table
items, issue the following statements to grant access to the user mary:

REVOKE ALL ON items FROM PUBLIC
GRANT SELECT, UPDATE ON items TO mary WITH GRANT OPTION

The user mary uses her new privilege to grant users cathy and paul access to
the table.

GRANT SELECT, UPDATE ON items TO cathy
GRANT SELECT ON items TO paul

Later you revoke privileges on the items table to user mary.

REVOKE SELECT, UPDATE ON items FROM mary

This single statement effectively revokes all privileges on the items table
from the users mary, cathy, and paul.

The CASCADE keyword has the same effect as this default condition.
1-584 Informix Guide to SQL: Syntax

REVOKE
Controlling the Scope of REVOKE with the RESTRICT Option
The RESTRICT keyword causes the REVOKE statement to fail when any of the
following dependencies exist:

■ A view depends on a Select privilege that you attempt to revoke.

■ A foreign-key constraint depends on a References privilege that you
attempt to revoke.

■ You attempt to revoke a privilege from a user who subsequently
granted this privilege to another user or users.

A REVOKE statement does not fail if it pertains to a user who has the right to
grant the privilege to any other user but does not exercise that right, as the
following example shows:

Assume that the user clara uses the WITH GRANT OPTION clause to grant the
Select privilege on the customer table to the user ted.

Assume that user ted, in turn, grants the Select privilege on the customer
table to user tania. The following REVOKE statement issued by clara fails
because ted used his authority to grant the Select privilege:

REVOKE SELECT ON customer FROM ted RESTRICT

By contrast, if user ted does not grant the Select privilege to tania or any other
user, the same REVOKE statement succeeds.

Even if ted does grant the Select privilege to another user, either of the
following statements succeeds:

REVOKE SELECT ON customer FROM ted CASCADE
REVOKE SELECT ON customer FROM ted

References
See the GRANT, GRANT FRAGMENT, and REVOKE FRAGMENT statements in
this manual.

For information about roles, see the CREATE ROLE, DROP ROLE, and SET
ROLE statements in this manual.

See the discussion of privileges and security in the Informix Guide to SQL:
Tutorial.
SQL Statements 1-585

REVOKE FRAGMENT
REVOKE FRAGMENT
The REVOKE FRAGMENT statement enables you to revoke privileges that
have been granted on individual fragments of a fragmented table. You can
use this statement to revoke the Insert, Update, and Delete fragment-level
privileges from users.

Syntax

ONREVOKE
FRAGMENT

Fragment-Level
Privileges
p. 1-588

FROM

dbspace()

table name

,
user

,

'user '

+

E/C

DB

SQLE
1-586 Informix Guide to SQL: Syntax

REVOKE FRAGMENT
Usage
Use the REVOKE FRAGMENT statement to revoke the Insert, Update, or
Delete privilege on one or more fragments of a fragmented table from one or
more users.

The REVOKE FRAGMENT statement is only valid for tables that are
fragmented according to an expression-based distribution scheme. See the
ALTER FRAGMENT statement on page 1-27 for an explanation of expression-
based distribution schemes.

You can specify one fragment or a list of fragments in the REVOKE
FRAGMENT statement. To specify a fragment, name the dbspace in which the
fragment resides.

You do not have to specify a particular fragment or a list of fragments in the
REVOKE FRAGMENT statement. If you do not specify any fragments in the
statement, the specified users lose the specified privileges on all fragments
for which the users currently have those privileges.

Element Purpose Restrictions Syntax

dbspace The name of the dbspace where
the fragment is stored. Use this
parameter to specify the
fragment or fragments on which
privileges are to be revoked. If
you do not specify a fragment,
the REVOKE statement applies to
all fragments in the specified
table that have the specified
privileges.

The specified dbspace or
dbspaces must exist.

Identifier, p. 1-962

table name The name of the table that
contains the fragment or
fragments on which privileges
are to be revoked. There is no
default value.

The specified table must exist
and must be fragmented by
expression.

Table Name,
p. 1-1044

user The name of the user or users
from whom the specified
privileges are to be revoked.
There is no default value.

The user must be a valid user. Identifier, p. 1-962
SQL Statements 1-587

REVOKE FRAGMENT
Fragment-Level Privileges

You can revoke fragment-level privileges individually or in combination. List
the keywords that correspond to the privileges that you are revoking from
user. The keywords are described in the following list.

If you specify the ALL keyword in a REVOKE FRAGMENT statement, the
specified users lose all fragment-level privileges that they currently have on
the specified fragments.

For example, assume that a user currently has the Update privilege on one
fragment of a table. If you use the ALL keyword to revoke all current privi-
leges on this fragment from this user, the user loses the Update privilege that
he or she had on this fragment.

ALL

INSERT

UPDATE

,

DELETE

Fragment-Level
Privileges

Privilege Functions

ALL Revokes all privileges currently granted on a table fragment

INSERT Revokes Insert privilege on a table fragment. This privilege gives
the user the ability to insert rows in the fragment.

DELETE Revokes Delete privilege on a table fragment. This privilege gives
the user the ability to delete rows in the fragment.

UPDATE Revokes Update privilege on a table fragment. This privilege gives
the user the ability to update rows in the fragment and to name any
column of the table in an UPDATE statement.
1-588 Informix Guide to SQL: Syntax

REVOKE FRAGMENT
Examples of the REVOKE FRAGMENT Statement
The examples that follow are based on the customer table. All the examples
assume that the customer table is fragmented by expression into three
fragments that reside in the dbspaces that are named dbsp1, dbsp2, and
dbsp3.

Revoking One Privilege

The following statement revokes the Update privilege on the fragment of the
customer table in dbsp1 from the user ed:

REVOKE FRAGMENT UPDATE ON customer (dbsp1) FROM ed

Revoking More Than One Privilege

The following statement revokes the Update and Insert privileges on the
fragment of the customer table in dbsp1 from the user susan:

REVOKE FRAGMENT UPDATE, INSERT ON customer (dbsp1) FROM susan

Revoking All Privileges

The following statement revokes all privileges currently granted to the user
harry on the fragment of the customer table in dbsp1.:

REVOKE FRAGMENT ALL ON customer (dbsp1) FROM harry

Revoking Privileges on More Than One Fragment

The following statement revokes all privileges currently granted to the user
millie on the fragments of the customer table in dbsp1 and dbsp2:

REVOKE FRAGMENT ALL ON customer (dbsp1, dbsp2) FROM millie

Revoking Privileges from More Than One User

The following statement revokes all privileges currently granted to the users
jerome and hilda on the fragment of the customer table in dbsp3:

REVOKE FRAGMENT ALL ON customer (dbsp3) FROM jerome, hilda
SQL Statements 1-589

REVOKE FRAGMENT
Revoking Privileges Without Specifying Fragments

The following statement revokes all current privileges from the user mel on
all fragments for which this user currently has privileges:

REVOKE FRAGMENT ALL ON customer FROM mel

References
See the REVOKE and GRANT FRAGMENT statements in this manual.
1-590 Informix Guide to SQL: Syntax

ROLLBACK WORK
ROLLBACK WORK
Use the ROLLBACK WORK statement to cancel a transaction and undo any
changes that occurred since the beginning of the transaction.

Syntax

Usage
The ROLLBACK WORK statement is valid only in databases with transactions.

In a database that is not ANSI compliant, start a transaction with a BEGIN
WORK statement. You can end a transaction with a COMMIT WORK statement
or cancel the transaction with a ROLLBACK WORK statement. The ROLLBACK
WORK statement restores the database to the state that existed before the
transaction began. Use the ROLLBACK WORK statement only at the end of a
multistatement operation.

The ROLLBACK WORK statement releases all row and table locks that the
cancelled transaction holds. If you issue a ROLLBACK WORK statement when
no transaction is pending, an error occurs.

In an ANSI-compliant database, transactions are implicit. Transactions start
after each COMMIT WORK or ROLLBACK WORK statement. If you issue a
ROLLBACK WORK statement when no transaction is pending, the statement
is accepted but has no effect. ♦

The ROLLBACK WORK statement closes all open cursors except those that are
declared with hold, which remain open despite transaction activity.

ROLLBACK

WORK

E/C

DB

SQLE

ANSI

ESQL
SQL Statements 1-591

ROLLBACK WORK
If you use the ROLLBACK WORK statement within a routine that a
WHENEVER statement calls, specify WHENEVER SQLERROR CONTINUE and
WHENEVER SQLWARNING CONTINUE before the ROLLBACK WORK
statement. Specifying these before the ROLLBACK WORK statement prevents
the program from looping if the ROLLBACK WORK statement encounters an
error or a warning. ♦

References
See the BEGIN WORK and COMMIT WORK statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of ROLLBACK WORK
in Chapter 5.
1-592 Informix Guide to SQL: Syntax

SELECT
SELECT
Use the SELECT statement to query a database or the contents of an SPL or
INFORMIX-ESQL/C collection variable.

Syntax

WHERE
Clause
p. 1-617

ORDER BY
Clause
p. 1-631

INTO TEMP
Clause
p. 1-639

+

INTO
Clause
p. 1-602

HAVING
Clause
p. 1-629

UNION ALL

UNION

SELECT
FROM
Clause
p. 1-607

Select
Clause
p. 1-595

GROUP BY
Clause
p. 1-627

ESQL

SPL

+

FOR READ ONLY

FOR UPDATE

OF

,
column
name

ESQL

DB

SQLE
SQL Statements 1-593

SELECT
Usage
You can query the tables in the current database, a database that is not
current, or a database that is on a different database server from your current
database.

The SELECT statement comprises many basic clauses. Each clause is
described in the following list.

Element Purpose Restrictions Syntax
column name The name of a column that can

be updated after a fetch
The specified column must be in
the table, but it does not have to
be in the select list of the SELECT
clause.

Identifier, p. 1-962

Clause Purpose

SELECT Names a list of items to be read from the database

INTO Specifies the program variables, host variables, or
procedure variables that receive the selected data ♦

FROM Names the tables that contain the selected columns

Names the ESQL/C collection variable that contains
the selected elements ♦

WHERE Sets conditions on the selected rows

GROUP BY Combines groups of rows into summary results

HAVING Sets conditions on the summary results

ORDER BY Orders the selected rows

INTO TEMP Creates a temporary table in the current database and
puts the results of the query into the table

FOR UPDATE Specifies that the values returned by the SELECT
statement can be updated after a fetch

FOR READ ONLY Specifies that the values returned by the SELECT
statement cannot be updated after a fetch

ESQL

SPL

ESQL
1-594 Informix Guide to SQL: Syntax

SELECT
SELECT Clause
The SELECT clause contains the list of database objects or expressions to be
selected, as shown in the following diagram.

DISTINCT

UNIQUE

Select
List

Select
List

Synonym
Name

p. 1-1042

View
Name

p. 1-1047

Table
Name

p. 1-1044

ALL

Expression
p. 1-876

AS

,

.

display
label

.

.

*

+

Select
Clause

.field name

3

column name

row-column name

.alias
SQL Statements 1-595

SELECT
Element Purpose Restrictions Syntax
* The asterisk (*) signifies that

all columns in the specified
table or view are to be
selected.

Use this symbol whenever you
want to retrieve all the columns in
the table or view in their defined
order. If you want to retrieve all the
columns in some other order, or if
you want to retrieve a subset of the
columns, you must specify the
columns explicitly in the SELECT
list.

The asterisk (*) is a
literal value that has
a special meaning in
this statement.

alias A temporary alternative
name for a table or view
within the scope of a SELECT
statement. You can use aliases
to make a query shorter.

You must specify a table name and
the table alias in the FROM clause.
See “FROM Clause” on page 1-607
for further information on this
restriction.

Identifier, p. 1-962

column name The name of a column from
one of the tables or views to
be joined. Rows from the
tables or views are joined
when there is a match
between the values of the
specified columns.

When the specified columns have
the same name in the tables or
views to be joined, you must distin-
guish the columns by preceding
each column name with the name
or alias of the table or view in
which the column resides.

Identifier, p. 1-962

 (1 of 2)
1-596 Informix Guide to SQL: Syntax

SELECT
In the SELECT clause, specify exactly what data is being selected as well as
whether you want to omit duplicate values.

display label A temporary name that you
assign to a column. In
DB-Access, the display label
appears as the heading for the
column in the output of the
SELECT statement. In ESQL,
the value of display label is
stored in the sqlname field of
the sqlda structure. For more
information on the display
label parameter, see “Using a
Display Label” on page 1-601.

You can assign a display label to
any column in your select list. If
you are creating a temporary table
with the SELECT...INTO TEMP
clause, you must supply a display
label for any columns that are not
simple column expressions. The
display label is used as the name of
the column in the temporary table.
If you are using the SELECT
statement in creating a view, do not
use display labels. Specify the
desired label names in the CREATE
VIEW column list instead. If your
display label is also a keyword, you
can use the AS keyword with the
display label to clarify the use of the
word. You must use the AS
keyword with the display label to
use any of the following words as a
display label: UNITS, YEAR,
MONTH, DAY, HOUR, MINUTE,
SECOND, or FRACTION.

Identifier, p. 1-962

field name The name of the row field that
you are accessing in the row
column

The field must be a component of
the row that row-column name or
field name (for nested rows)
specifies.

Identifier, p. 1-962

row-column
name

The name of the row column
that you specify

The column must be a named row
type or unnamed row type.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-597

SELECT
Allowing Duplicates

You can apply the ALL, UNIQUE, or DISTINCT keywords to indicate whether
duplicate values are returned, if any exist. If you do not specify any
keywords, all the rows are returned by default.

For example, the following query lists the stock_num and manu_code of all
items that have been ordered, excluding duplicate items:

SELECT DISTINCT stock_num, manu_code FROM items

You can use the DISTINCT or UNIQUE keywords once in each level of a query
or subquery. For example, the following query uses DISTINCT in both the
query and the subquery:

SELECT DISTINCT stock_num, manu_code FROM items
WHERE order_num = (SELECT DISTINCT order_num FROM orders

WHERE customer_num = 120)

 Expressions in the Select List

You can use any basic type of expression (column, constant, function,
aggregate function, and procedure), or combination thereof, in the select list.
The expression types are described in “Expression” on page 1-876.

The following sections present examples of using each type of simple
expression in the select list.

You can combine simple numeric expressions by connecting them with
arithmetic operators for addition, subtraction, multiplication, and division.
However, if you combine a column expression and an aggregate function,
you must include the column expression in the GROUP BY clause.

Keyword Meaning

ALL Specifies that all selected values are returned, regardless of
whether duplicates exist. ALL is the default state.

DISTINCT Eliminates duplicate rows from the query results

UNIQUE Eliminates duplicate rows from the query results. UNIQUE is a
synonym for DISTINCT.
1-598 Informix Guide to SQL: Syntax

SELECT
You cannot use variable names (for example, host variables in an external
application or SPL variables) in the select list by themselves. You can include
a variable name in the select list, however, if an arithmetic or concatenation
operator connects it to a constant.

Selecting Columns

Column expressions are the most commonly used expressions in a SELECT
statement. See “Column Expressions” on page 1-881 for a complete
description of the syntax and use of column expressions.

The following examples show column expressions within a select list:

SELECT orders.order_num, items.price FROM orders, items

SELECT customer.customer_num ccnum, company FROM customer

SELECT catalog_num, stock_num, cat_advert [1,15] FROM catalog

SELECT lead_time - 2 UNITS DAY FROM manufact

Selecting Constants

If you include a constant expression in the select list, the same value is
returned for each row that the query returns. See “Constant Expressions” on
page 1-887 for a complete description of the syntax and use of constant
expressions.

The following examples show constant expressions within a select list:

SELECT 'The first name is', fname FROM customer

SELECT TODAY FROM cust_calls

SELECT SITENAME FROM systables WHERE tabid = 1

SELECT lead_time - 2 UNITS DAY FROM manufact

SELECT customer_num + LENGTH('string') from customer
SQL Statements 1-599

SELECT
Selecting Function Expressions

A function expression uses a function that is evaluated for each row in the
query. All function expressions require arguments. This set of expressions
contains the time functions and the length function when they are used with
a column name as an argument.

The following examples show function expressions within a select list:

SELECT EXTEND(res_dtime, YEAR TO SECOND) FROM cust_calls

SELECT LENGTH(fname) + LENGTH(lname) FROM customer

SELECT HEX(order_num) FROM orders

SELECT MONTH(order_date) FROM orders

Selecting Aggregate Expressions

An aggregate function returns one value for a set of queried rows. The
aggregate functions take on values that depend on the set of rows that the
WHERE clause of the SELECT statement returns. In the absence of a WHERE
clause, the aggregate functions take on values that depend on all the rows
that the FROM clause forms.

The following examples show aggregate functions in a select list:

SELECT SUM(total_price) FROM items WHERE order_num = 1013

SELECT COUNT(*) FROM orders WHERE order_num = 1001

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

Selecting SPL Function Expressions

SPL functions extend the range of functions that are available to you and
allow you to perform a subquery on each row that you select. The following
example calls the get_orders function for each customer_num and displays
the output of the function under the n_orders label:

SELECT customer_num, lname, get_orders(customer_num) n_orders
FROM customer
1-600 Informix Guide to SQL: Syntax

SELECT
Selecting Expressions That Use Arithmetic Operators

You can combine numeric expressions with arithmetic operators to make
complex expressions. You cannot combine expressions that contain
aggregate functions with column expressions. The following examples show
expressions that use arithmetic operators within a select list:

SELECT stock_num, quantity*total_price FROM customer

SELECT price*2 doubleprice FROM items

SELECT count(*)+2 FROM customer

SELECT count(*)+LENGTH('ab') FROM customer

Selecting Row Fields

You can select a particular field of a row-type column (named or unnamed
row type) with dot notation, which uses a period (.) as a separator between
the row and field names. For example, suppose you have the following table
structure:

CREATE ROW TYPE one (a INTEGER, b FLOAT);
CREATE ROW TYPE two (c one, d CHAR(10));
CREATE ROW TYPE three (e CHAR(10), f two);

CREATE TABLE new_tab OF TYPE two;
CREATE TABLE three_tab OF TYPE three;

The following expressions are valid in the select list:

SELECT t.c FROM new_tab t;
SELECT f.c.a FROM three_tab;
SELECT f.d FROM three_tab;

For more information, see “Column Expressions” on page 1-881 in the
Expression segment.

Using a Display Label

If you are creating a temporary table, you must supply a display label for any
columns that are not simple column expressions. The display label is used as
the name of the column in the temporary table.

A display label appears as the heading for that column in the output of the
SELECT statement. ♦

DB
SQL Statements 1-601

SELECT
The value of display label is stored in the sqlname field of the sqlda structure.
See your SQL API product manual for more information on the sqlda
structure. ♦

If you are using the SELECT statement in creating a view, do not use display
labels. Specify the desired label names in the CREATE VIEW column list
instead.

Using the AS Keyword

If your display label is also a keyword, you can use the AS keyword with the
display label to clarify the use of the word. If you want to use the word
UNITS, YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or FRACTION as your
display label, you must use the AS keyword with the display label. The
following example shows how to use the AS keyword with minute as a
display label:

SELECT call_dtime AS minute FROM cust_calls

INTO Clause
Use the INTO clause within a routine to specify the program variables or host
variables to receive the data that the SELECT statement retrieves. The
following diagram shows the syntax of the INTO clause.

ESQL

INTO
Clause ,

data variable

ESQL

indicator variableINDICATOR

INTO

data structure

$ indicator
variable

+

: indicator
variable
1-602 Informix Guide to SQL: Syntax

SELECT
You must specify an INTO clause with SELECT to name the variables that
receive the values that the query returns. If the query returns more than one
value, the values are returned into the list of variables in the order in which
you specify them.

If the SELECT statement stands alone (that is, it is not part of a DECLARE
statement and does not use the INTO clause), it must be a singleton SELECT
statement. A singleton SELECT statement returns only one row. The following
example shows a SELECT statement in INFORMIX-ESQL/C:

EXEC SQL select fname, lname, company_name
into :p_fname, :p_lname, :p_coname
where customer_num = 101;

Element Purpose Restrictions Syntax
data
variable

A variable that receives the
value returned by a function

If you issue this statement
within an ESQL/C program, the
receiving variable must be a host
variable.

If you issue this statement
within an SPL routine, the
receiving variable must be an SPL
variable.

If you issue this statement
within a CREATE TRIGGER
statement, the receiving
variables must be column names
within the triggering table or
another table.

The name of a
receiving variable
must conform to
language-specific
rules for variable
names.

For the syntax of SPL
variables, see
Identifier, p. 1-962.

For the syntax of
column names, see
Identifier, p. 1-962.

data structure A structure that has been
declared as a host variable

The individual elements of the
structure must be matched
appropriately to the data type of
values being selected.

The name of the data
structure must
conform to
language-specific
rules for data
structures.

indicator
variable

A program variable that receives
a return code if null data is
placed in the corresponding data
variable

This parameter is optional, but
you should use an indicator
variable if the possibility exists
that the value of the corre-
sponding data variable is null.

The name of the
indicator variable
must conform to
language-specific
rules for indicator
variables.
SQL Statements 1-603

SELECT
INTO Clause with Indicator Variables

You should use an indicator variable if the possibility exists that data
returned from the SELECT statement is null. See your SQL API product
manual for more information about indicator variables. ♦

INTO Clause with Cursors

If the SELECT statement returns more than one row, you must use a select
cursor in a FETCH statement to fetch the rows individually. You can put the
INTO clause in the FETCH statement rather than in the SELECT statement, but
you cannot put it in both. ♦

In an INFORMIX-ESQL/C program, use the DECLARE statement to declare the
function cursor and the FETCH statement to fetch the rows individually from
the function cursor. The following INFORMIX-ESQL/C code examples show
different ways you can use the INTO clause:

Using the INTO clause in the SELECT statement

EXEC SQL declare q_curs cursor for
select lname, company

into :p_lname, :p_company
from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs;
EXEC SQL close q_curs;

Using the INTO clause in the FETCH statement

EXEC SQL declare q_curs cursor for
select lname, company
from customer;

EXEC SQL open q_curs;
while (SQLCODE == 0)

EXEC SQL fetch q_curs into :p_lname, :p_company;
EXEC SQL close q_curs;

♦

ESQL

ESQL

SPL

E/C
1-604 Informix Guide to SQL: Syntax

SELECT
In an SPL routine, if a SELECT returns more than one row, you must use the
FOREACH statement to access the rows individually. The INTO clause of the
SELECT statement holds the fetched values. For more information, see the
FOREACH statement on page 2-27. ♦

Preparing a SELECT...INTO Query

You cannot prepare a query that has an INTO clause. You can prepare the
query without the INTO clause, declare a cursor for the prepared query, open
the cursor, and then use the FETCH statement with an INTO clause to fetch the
cursor into the program variable. Alternatively, you can declare a cursor for
the query without first preparing the query and include the INTO clause in
the query when you declare the cursor. Then open the cursor, and fetch the
cursor without using the INTO clause of the FETCH statement. ♦

Using Array Variables with the INTO Clause

If you use a DECLARE statement with a SELECT statement that contains an
INTO clause, and the program variable is an array element, you can identify
individual elements of the array with integer constants or with variables. The
value of the variable that is used as a subscript is determined when the cursor
is declared, so afterward the subscript variable acts as a constant.

The following INFORMIX-ESQL/C code example declares a cursor for a
SELECT...INTO statement using the variables i and j as subscripts for the array
a. After you declare the cursor, the INTO clause of the SELECT statement is
equivalent to INTOa[5],a[2].

i = 5
j = 2
EXEC SQL declare c cursor for

select order_num, po_num into :a[i], :a[j] from orders
where order_num =1005 and po_num =2865

SPL

ESQL

ESQL
SQL Statements 1-605

SELECT
You can also use program variables in the FETCH statement to specify an
element of a program array in the INTO clause. With the FETCH statement, the
program variables are evaluated at each fetch rather than when you declare
the cursor. ♦

Error Checking

If the number of variables that are listed in the INTO clause differs from the
number of items in the SELECT clause, a warning is returned in the sqlwarn3
field of the sqlca.sqlwarn structure. The actual number of variables that are
transferred is the lesser of the two numbers. See the INFORMIX-ESQL/C
Programmer’s Manual for information about the sqlwarn structure. ♦

If the number of variables that are listed in the INTO clause differs from the
number of items in the SELECT clause, you receive an error. ♦

If the data type of the receiving variable does not match that of the selected
item, the data type of the selected item is converted, if possible. If the
conversion is impossible, an error occurs, and a negative value is returned in
the SQLCODE (sqlca.sqlcode) status variable. In this case, the value in the
program variable is unpredictable. ♦

Tip: When you encounter an SQLCODE error, a corresponding SQLSTATE error
might also exist. See the GET DIAGNOSTICS statement for information about the
SQLSTATE status variable.

ESQL

ANSI

ESQL

SPL
1-606 Informix Guide to SQL: Syntax

SELECT
FROM Clause
The FROM clause lists the table or tables from which you are selecting the
data. The following diagram shows the syntax of the FROM clause.

Element Purpose Restrictions Syntax
alias A temporary alternative name

for a table or view within the
scope of a SELECT statement.
You can use aliases to make a
query shorter.

If the SELECT statement is a self-
join, you must list the table name
twice in the FROM clause and
assign a different alias to each
occurrence of the table name. If
you use a potentially ambiguous
word as an alias, you must
precede the alias with the
keyword AS. See “AS Keyword
with Aliases” on page 1-610 for
further information on this
restriction. Aliasing is not
allowed for a collection of ROW
types.

Identifier, p. 1-962

FROM
Clause

, OUTER
Tables

 alias

AS

+

FROM
Collection Derived

Table
p. 1-827

+

E/C

 alias

AS

+

Table
Name

p. 1-1044

View
Name

p. 1-1047

ONLY ()Table
Name

p. 1-1044

+

Synonym
Name

p. 1-1042
SQL Statements 1-607

SELECT
+

OUTER
Tables

AS

,

()

 alias

OUTER

OUTER

OUTER
Tables

,

AS

 alias

Table
Name

p. 1-1044

View
Name

p. 1-1047

ONLY ()Table
Name

p. 1-1044

+

Synonym
Name

p. 1-1042

,

Table
Name

p. 1-1044

View
Name

p. 1-1047

ONLY ()Table
Name

p. 1-1044

+

Synonym
Name

p. 1-1042

,

1-608 Informix Guide to SQL: Syntax

SELECT
Usage

Use the keyword OUTER to form outer joins. Outer joins preserve rows that
otherwise would be discarded by simple joins. See Chapter 3 of the Informix
Guide to SQL: Tutorial for more information on outer joins.

The FROM clause cannot have a join when one of the tables to be joined is a
collection.

If you use the SELECT statement to query a supertable, rows from both the
supertable and its subtables are returned. To query rows from the supertable
only, you must include the ONLY keyword in the FROM clause, as shown in
the following example:

SELECT *
FROM ONLY(super_tab)

You can supply an alias for a table name or view name. You can use the alias
to refer to the table or view in other clauses of the SELECT statement. This is
especially useful with a self-join. (See the WHERE clause on page 1-617 for
more information about self-joins.)

The following example shows typical uses of the FROM clause. The first
query selects all the columns and rows from the customer table. The second
query uses a join between the customer and orders table to select all the
customers who have placed orders.

SELECT * FROM customer

SELECT fname, lname, order_num
FROM customer, orders
WHERE customer.customer_num = orders.customer_num

The following example is the same as the second query in the preceding
example, except that it establishes aliases for the tables in the FROM clause
and uses them in the WHERE clause:

SELECT fname, lname, order_num
FROM customer c, orders o
WHERE c.customer_num = o.customer_num
SQL Statements 1-609

SELECT
The following example uses the OUTER keyword to create an outer join and
produce a list of all customers and their orders, regardless of whether they
have placed orders:

SELECT c.customer_num, lname, order_num
FROM customer c, OUTER orders o
WHERE c.customer_num = o.customer_num

AS Keyword with Aliases

To use potentially ambiguous words as an alias for a table or view, you must
precede them with the keyword AS. Use the AS keyword if you want to use
the words ORDER, FOR, AT, GROUP, HAVING, INTO, UNION, WHERE, WITH,
CREATE, or GRANT as an alias for a table or view.

Selecting From a Collection Variable

The SELECT statement with the Collection Derived Table segment allows you
to select elements from a collection variable. The Collection Derived Table
segment identifies the collection variable from which to select the elements.
For more information on the Collection Derived Table segment, see
page 1-827.

In an INFORMIX-ESQL/C program, declare a host variable of type collection
for a collection variable. This collection variable can be typed or untyped. ♦

In an SPL routine, declare a variable of type COLLECTION, LIST, MULTISET, or
SET for a collection variable. This collection variable can be typed or
untyped. ♦

To select elements, follow these steps:

1. Create a collection variable in your SPL routine or ESQL/C program.

2. Optionally, fill the collection variable with elements.

You can select a collection column into the collection variable with
the SELECT statement (without the Collection Derived Table
segment). Or you can insert elements into the collection variable
with the INSERT statement and the Collection Derived Table
segment.

E/C

SPL

E/C

SPL
1-610 Informix Guide to SQL: Syntax

SELECT
3. Select a collection element from the collection variable with the
SELECT statement and the Collection Derived Table segment.

4. Once the collection variable contains the correct elements, you can
then use the INSERT or UPDATE statement on a table or view name to
save the contents of the collection variable in a collection column
(SET, MULTISET, or LIST).

The SELECT statement and the Collection Derived Table segment allow you
to perform the following operations on a collection variable:

■ Select one element from the collection

Use the SELECT statement with the Collection Derived Table
segment.

■ Select one or more elements into the collection

Associate the SELECT statement and the Collection Derived Table
segment with a cursor to declare a collection cursor for the collection
variable.

For information on how to use a collection cursor to select one or
more elements from an ESQL/C collection variable, see “Associating
a Cursor With a Collection Variable” on page 1-317 in the DECLARE
statement. ♦
For information on how to use a collection cursor to select one or
more elements from an SPL collection variable, see “Using a
SELECT...INTO Statement” on page 2-30 of the FOREACH
statement. ♦

The SELECT statement and the Collection Derived Table segment allow you
to select one element into a collection. The INTO clause identifies the variable
for the element value that is selected from the collection variable. The data
type of the host variable in the INTO clause must be compatible with the
element type of the collection.

The SELECT statement on a collection variable has the following restrictions:

■ The select list of the SELECT statement cannot contain expressions.

■ The select list must be an asterisk (*) if the collection contains
elements of opaque, distinct, built-in, or other collection data types.

E/C

SPL
SQL Statements 1-611

SELECT
■ Column names in the select list must be simple column names.

These columns cannot use the following syntax:
database@server:table.column

■ The following SELECT clauses and options are not allowed: GROUP
BY, HAVING, INTO TEMP, ORDER BY, WHERE, and WITH
REOPTIMIZATION

■ The FROM clause has no provisions to do a join.

In addition to the preceding list of restrictions, a SELECT...INTO that is
associated with the FOREACH statement (called a collection query) has the
following restrictions:

■ Its general structure is SELECT ... INTO ... FROM TABLE. The statement
selects one element at a time from a collection variable named after
the TABLE keyword into another variable called an element variable.

■ You must use a collection query within a FOREACH loop.

■ You cannot use the WITH HOLD option on the FOREACH statement.

■ The data type of the element variable must be the same as the
element type of the collection.

■ The element variable can have any opaque, distinct, or collection
data type, or any built-in data type except SERIAL, SERIAL8, TEXT,
BYTE, CLOB or BLOB.

For more information a collection query, see the description of the FOREACH
statement on page 2-27. For more information on how to use SPL routines to
handle collections, see Chapter 14 in the Informix Guide to SQL: Tutorial. ♦

If the element of the collection is itself a complex type (collection or row
type), the collection is a nested collection. For example, suppose the ESQL/C
collection variable, a_set, is a nested collection that is defined as follows:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(list(integer not null)) a_set;
client collection list(integer not null) a_list;
int an_int;

EXEC SQL END DECLARE SECTION;

To access the elements (or fields) of a nested collection, use a collection or
row variable that matches the element type (a_list and an_int in the
preceding code fragment) and a select cursor.

SPL
1-612 Informix Guide to SQL: Syntax

SELECT
The following ESQL/C program uses a collection variable as a collection
derived table:

main
{

EXEC SQL BEGIN DECLARE SECTION;
int a;
client collection b;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :b;
EXEC SQL select set_col into :b from table1

where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:b)
for update;

EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
{

EXEC SQL fetch set_curs into :a;
if (a = 4)
{

EXEC SQL update table(:b)(x)
set x = 10
where current of set_curs;

break;
}

}

EXEC SQL update table1 set set_col = :b
where int_col = 6;

EXEC SQL deallocate collection :b;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

}

For information on how to use collection host variables in an ESQL/C
program, see the discussion of complex data types in the INFORMIX-ESQL/C
Programmer’s Manual. ♦
SQL Statements 1-613

SELECT
You can modify the collection variable with the Collection Derived Table
segment and the INSERT, UPDATE, or DELETE statements. The collection
variable stores the elements of the collection. However, it has no intrinsic
connection with a database column. Once the collection variable contains the
correct elements, you must then save the collection variable in the collection
column with one of the following statements:

■ To update the collection column in the table with the collection
variable, use an UPDATE statement on a table or view name and
specify the collection variable in the SET clause.

For more information, see “Updating Collection Columns” on
page 1-786 in the UPDATE statement.

■ To insert a collection in a column, use the INSERT statement on a table
or view name and specify the collection variable in the VALUES
clause.

For more information, see “Inserting Values into Collection
Columns” on page 1-501 in the INSERT statement.

Selecting From a Row Variable

The SELECT statement with the Collection Derived Table segment allows you
to select fields from a row variable. The Collection Derived Table segment
identifies the row variable from which to select the fields. For more infor-
mation on the Collection Derived Table segment, see page 1-827.

To select fields, follow these steps:

1. Create a row variable in your ESQL/C program.

2. Optionally, fill the row variable with field values.

You can select a row-type column into the row variable with the
SELECT statement (without the Collection Derived Table segment).
Or you can insert field values into the row variable with the UPDATE
statement and the Collection Derived Table segment.

E/C
1-614 Informix Guide to SQL: Syntax

SELECT
3. Select row fields from the row variable with the SELECT statement
and the Collection Derived Table segment.

4. Once the row variable contains the correct field values, you can then
use the INSERT or UPDATE statement on a table or view name to save
the contents of the row variable in a row column (named and
unnamed).

The SELECT statement and the Collection Derived Table segment allow you
to select a particular field or group of fields in the row variable. The INTO
clause identifies the variable that holds the field value selected from the row
variable. The data type of the host variable in the INTO clause must be
compatible with the field type.

For example, the following code fragment puts the value of the width field
into the rect_width host variable:

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;
double rect_width;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL select rect into :myrect from rectangles

where area = 200;
EXEC SQL select width into :rect_width from table(:myrect);

The SELECT statement on a row variable has the following restrictions:

■ No expressions are allowed in the select list.

■ Row columns cannot be specified in a comparison condition in a
WHERE clause.

■ The select list must be an asterisk (*) if the row-type contains fields of
opaque, distinct, or built-in data types.

■ Column names in the select list must be simple column names.

These columns cannot use the syntax database@server:table.column

■ The following SELECT clauses are not allowed: GROUP BY, HAVING,
INTO TEMP, ORDER BY, and WHERE

■ The FROM clause has no provisions to do a join.
SQL Statements 1-615

SELECT
You can modify the row variable with the Collection Derived Table segment
of the UPDATE statements. (The INSERT and DELETE statements do not
support a row variable in the Collection Derived Table segment.) The row
variable stores the fields of the row. However, it has no intrinsic connection
with a database column. Once the row variable contains the correct field
values, you must then save the variable into the row column with one of the
following SQL statements:

■ To update the row column in the table with the row variable, use an
UPDATE statement on a table or view name and specify the row
variable in the SET clause.

For more information, see “Updating Row-Type Columns” on
page 1-785 in the UPDATE statement.

■ To insert a row in a column, use the INSERT statement on a table or
view name and specify the row variable in the VALUES clause.

For more information, see “Inserting Values into Row-Type
Columns” on page 1-502 in the INSERT statement.

For more information on how to use SPL row variables, see Chapter 14 of the
Informix Guide to SQL: Tutorial. For more information on how to use ESQL/C
row variables, see the discussion of complex data types in the
INFORMIX-ESQL/C Programmer’s Manual. ♦
1-616 Informix Guide to SQL: Syntax

SELECT
WHERE Clause
Use the WHERE clause to specify search criteria and join conditions on the
data that you are selecting.

Using a Condition in the WHERE Clause

You can use the following kinds of simple conditions or comparisons in the
WHERE clause:

■ Relational-operator condition

■ BETWEEN

■ IN

■ IS NULL

■ LIKE or MATCHES

WHERE Condition
p. 1-831

Join
p. 1-624

WHERE
Clause

Function
Expression

p. 1-898

AND

Statement
Local Variable

Expression
p. 1-939

Statement
Local Variable

Declaration
p. 1-938

OR
SQL Statements 1-617

SELECT
You also can use a SELECT statement within the WHERE clause; using a
SELECT statement this way is called a subquery. The following list contains
the kinds of subquery WHERE clauses:

■ IN

■ EXISTS

■ ALL/ANY/SOME

Examples of each type of condition are shown in the following sections. For
more information about each kind of condition, see the Condition segment
on page 1-831.

You cannot use an aggregate function in the WHERE clause unless it is part of
a subquery or if the aggregate is on a correlated column that originates from
a parent query and the WHERE clause is within a subquery that is within a
HAVING clause.

Relational-Operator Condition

For a complete description of the relational-operator condition, see
page 1-836.

A relational-operator condition is satisfied when the expressions on either
side of the relational operator fulfill the relation that the operator set up. The
following SELECT statements use the greater than (>) and equal (=) relational
operators:

SELECT order_num FROM orders
WHERE order_date > '6/04/94'

SELECT fname, lname, company
FROM customer
WHERE city[1,3] = 'San'
1-618 Informix Guide to SQL: Syntax

SELECT
BETWEEN Condition

For a complete description of the BETWEEN condition, see page 1-837.

The BETWEEN condition is satisfied when the value to the left of the
BETWEEN keyword lies in the inclusive range of the two values on the right
of the BETWEEN keyword. The first two queries in the following example use
literal values after the BETWEEN keyword. The third query uses the
CURRENT function and a literal interval. It looks for dates between the
current day and seven days earlier.

SELECT stock_num, manu_code FROM stock
WHERE unit_price BETWEEN 125.00 AND 200.00

SELECT DISTINCT customer_num, stock_num, manu_code
FROM orders, items
WHERE order_date BETWEEN '6/1/93' AND '9/1/93'

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN (CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

IN Condition

For a complete description of the IN condition, see page 1-838.

The IN condition is satisfied when the expression to the left of the IN keyword
is included in the list of values to the right of the keyword. The following
examples show the IN condition:

SELECT lname, fname, company
FROM customer
WHERE state IN ('CA','WA', 'NJ')

SELECT * FROM cust_calls
WHERE user_id NOT IN (USER)
SQL Statements 1-619

SELECT
IS NULL Condition

For a complete description of the IS NULL condition, see page 1-840.

The IS NULL condition is satisfied if the column contains a null value. If you
use the NOT option, the condition is satisfied when the column contains a
value that is not null. The following example selects the order numbers and
customer numbers for which the order has not been paid:

SELECT order_num, customer_num FROM orders
WHERE paid_date IS NULL

LIKE or MATCHES Condition

For a complete description of the LIKE or MATCHES condition, see
page 1-840.

The LIKE or MATCHES condition is satisfied when either of the following tests
is true:

■ The value of the column that precedes the LIKE or MATCHES
keyword matches the pattern that the quoted string specifies. You
can use wildcard characters in the string.

■ The value of the column that precedes the LIKE or MATCHES
keyword matches the pattern that is specified by the column that
follows the LIKE or MATCHES keyword. The value of the column on
the right serves as the matching pattern in the condition.

The following SELECT statement returns all rows in the customer table in
which the lname column begins with the literal string 'Baxter'. Because
the string is a literal string, the condition is case sensitive.

SELECT * FROM customer WHERE lname LIKE 'Baxter%'

The following SELECT statement returns all rows in the customer table in
which the value of the lname column matches the value of the fname
column:

SELECT * FROM customer WHERE lname LIKE fname
1-620 Informix Guide to SQL: Syntax

SELECT
The following examples use the LIKE condition with a wildcard. The first
SELECT statement finds all stock items that are some kind of ball. The second
SELECT statement finds all company names that contain a percent sign (%).
The backslash (\) is used as the standard escape character for the wildcard
percent sign (%). The third SELECT statement uses the ESCAPE option with
the LIKE condition to retrieve rows from the customer table in which the
company column includes a percent sign (%). The z character is used as an
escape character for the wildcard percent sign (%).

SELECT stock_num, manu_code FROM stock
WHERE description LIKE '%ball'

SELECT * FROM customer
WHERE company LIKE '%\%%'

SELECT * FROM customer
WHERE company LIKE '%z%%' ESCAPE 'z'

The following examples use MATCHES with a wildcard in several SELECT
statements. The first SELECT statement finds all stock items that are some
kind of ball. The second SELECT statement finds all company names that
contain an asterisk (*). The backslash(\) is used as the standard escape
character for the wildcard asterisk (*). The third statement uses the ESCAPE
option with the MATCHES condition to retrieve rows from the customer table
where the company column includes an asterisk (*). The z character is used
as an escape character for the wildcard asterisk (*).

SELECT stock_num, manu_code FROM stock
WHERE description MATCHES '*ball'

SELECT * FROM customer
WHERE company MATCHES '***'

SELECT * FROM customer
WHERE company MATCHES '*z**' ESCAPE 'z'
SQL Statements 1-621

SELECT
IN Subquery

For a complete description of the IN subquery, see page 1-845.

With the IN subquery, more than one row can be returned, but only one
column can be returned. The following example shows the use of an IN
subquery in a SELECT statement:

SELECT DISTINCT customer_num FROM orders
WHERE order_num NOT IN

(SELECT order_num FROM items
WHERE stock_num = 1)

EXISTS Subquery

For a complete description of the EXISTS subquery, see page 1-846.

With the EXISTS subquery, one or more columns can be returned.

The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table). It is appro-
priate to use an EXISTS subquery in this SELECT statement because you need
the correlated subquery to test both stock_num and manu_code in the items
table.

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS

(SELECT stock_num, manu_code FROM items
WHERE stock.stock_num = items.stock_num AND

stock.manu_code = items.manu_code)

The preceding example would work equally well if you use a SELECT *
statement in the subquery in place of the column names because you are
testing for the existence of a row or rows.
1-622 Informix Guide to SQL: Syntax

SELECT
ALL/ANY/SOME Subquery

For a complete description of the ALL/ANY/SOME subquery, see page 1-846.

In the following example, the SELECT statements return the order number of
all orders that contain an item whose total price is greater than the total price
of every item in order number 1023. The first SELECT statement uses the ALL
subquery, and the second SELECT statement produces the same result by
using the MAX aggregate function.

SELECT DISTINCT order_num FROM items
WHERE total_price > ALL (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > SELECT MAX(total_price) FROM items

 WHERE order_num = 1023)

The following SELECT statements return the order number of all orders that
contain an item whose total price is greater than the total price of at least one
of the items in order number 1023. The first SELECT statement uses the ANY
keyword, and the second SELECT statement uses the MIN aggregate function.

SELECT DISTINCT order_num FROM items
WHERE total_price > ANY (SELECT total_price FROM items

 WHERE order_num = 1023)

SELECT DISTINCT order_num FROM items
WHERE total_price > (SELECT MIN(total_price) FROM items

WHERE order_num = 1023)

You can omit the keywords ANY, ALL, or SOME in a subquery if you know
that the subquery returns exactly one value. If you omit ANY, ALL, or SOME,
and the subquery returns more than one value, you receive an error. The
subquery in the following example returns only one row because it uses an
aggregate function:

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)
SQL Statements 1-623

SELECT
Using a Join in the WHERE Clause

You join two tables when you create a relationship in the WHERE clause
between at least one column from one table and at least one column from
another table. The effect of the join is to create a temporary composite table
where each pair of rows (one from each table) that satisfies the join condition
is linked to form a single row. You can create two-table joins, multiple-table
joins, and self-joins.

The following diagram shows the syntax for a join.

column
name

column
name

.

Join

Relational
Operator
p. 1-1014

alias

Table
Name

p. 1-1044

View
Name

p. 1-1047

Synonym
Name

p. 1-1042

alias

Table
Name

p. 1-1044

View
Name

p. 1-1047

Synonym
Name

p. 1-1042

.

.

.

.

.

.

.

1-624 Informix Guide to SQL: Syntax

SELECT
Two-Table Joins

The following example shows a two-table join:

SELECT order_num, lname, fname
FROM customer, orders
WHERE customer.customer_num = orders.customer_num

Tip: You do not have to select the column where the two tables are joined.

Multiple-Table Joins

A multiple-table join is a join of more than two tables. Its structure is similar
to the structure of a two-table join, except that you have a join condition for
more than one pair of tables in the WHERE clause. When columns from
different tables have the same name, you must distinguish them by
preceding the name with its associated table or table alias, as in table.column.
See “Table Name” on page 1-1044 for the full syntax of a table name.

Element Purpose Restrictions Syntax
alias The alias assigned to the table or

view in the FROM clause. See
“FROM Clause” on page 1-607
for more information on aliases
for tables and views.

If the tables to be joined are the
same table (that is, if the join is a
self-join), you must refer to each
instance of the table in the
WHERE clause by the alias
assigned to that table instance in
the FROM clause.

Identifier, p. 1-962

column name The name of a column from one
of the tables or views to be
joined. Rows from the tables or
views are joined when there is a
match between the values of the
specified columns.

When the specified columns
have the same name in the tables
or views to be joined, you must
distinguish the columns by
preceding each column name
with the name or alias of the
table or view in which the
column resides.

Identifier, p. 1-962
SQL Statements 1-625

SELECT
The following multiple-table join yields the company name of the customer
who ordered an item as well as the stock number and manufacturer code of
the item:

SELECT DISTINCT company, stock_num, manu_code
FROM customer c, orders o, items i
WHERE c.customer_num = o.customer_num

AND o.order_num = i.order_num

Self-Joins

You can join a table to itself. To do so, you must list the table name twice in
the FROM clause and assign it two different table aliases. Use the aliases to
refer to each of the “two” tables in the WHERE clause.

The following example is a self-join on the stock table. It finds pairs of stock
items whose unit prices differ by a factor greater than 2.5. The letters x and y
are each aliases for the stock table.

SELECT x.stock_num, x.manu_code, y.stock_num, y.manu_code
FROM stock x, stock y
WHERE x.unit_price > 2.5 * y.unit_price

Outer Joins

The following outer join lists the company name of the customer and all
associated order numbers, if the customer has placed an order. If not, the
company name is still listed, and a null value is returned for the order
number.

SELECT company, order_num
FROM customer c, OUTER orders o
WHERE c.customer_num = o.customer_num

See Chapter 3 of the Informix Guide to SQL: Tutorial for more information
about outer joins.
1-626 Informix Guide to SQL: Syntax

SELECT
GROUP BY Clause
Use the GROUP BY clause to produce a single row of results for each group.
A group is a set of rows that have the same values for each column listed.

Element Purpose Restrictions Syntax
alias The alias assigned to a table or

view in the FROM clause. See
“FROM Clause” on page 1-607
for more information on aliases
for tables and views.

You cannot use an alias for a
table or view in the GROUP BY
clause unless you have assigned
the alias to the table or view in
the FROM clause.

Identifier, p. 1-962

column name The name of a stand-alone
column in the select list of the
SELECT clause or the name of
one of the columns joined by an
arithmetic operator in the select
list. The SELECT statement
returns a single row of results for
each group of rows that have the
same value in column name.

See “Relationship of the GROUP
BY Clause to the SELECT
Clause” on page 1-628.

You cannot use a column whose
data type is a collection in the
GROUP BY clause.

Identifier, p. 1-962

 (1 of 2)

GROUP BY

,

select
number

Table
Name

p. 1-1044

View
Name

p. 1-1047
.

Synonym
Name

p. 1-1042
.

+

GROUP BY
Clause

.alias

column
name
SQL Statements 1-627

SELECT
Relationship of the GROUP BY Clause to the SELECT Clause

A GROUP BY clause restricts what you can enter in the SELECT clause. If you
use a GROUP BY clause, each column that you select must be in the GROUP BY
list. If you use an aggregate function and one or more column expressions in
the select list, you must put all the column names that are not used as part of
an aggregate or time expression in the GROUP BY clause. Do not put constant
expressions or BYTE or TEXT column expressions in the GROUP BY list.

If you are selecting a BYTE or TEXT column, you cannot use the GROUP BY
clause. In addition, you cannot use ROWID in a GROUP BY clause.

If your select list includes a column with a user-defined data type, the type
must either use the database server’s built-in bit-hashing function or have its
own hash function. Otherwise, you cannot use a GROUP BY clause.

The following example names one column that is not in an aggregate
expression. The total_price column should not be in the GROUP BY list
because it appears as the argument of an aggregate function. The COUNT and
SUM keywords are applied to each group, not the whole query set.

SELECT order_num, COUNT(*), SUM(total_price)
FROM items
GROUP BY order_num

If a column stands alone in a column expression in the select list, you must
use it in the GROUP BY clause. If a column is combined with another column
by an arithmetic operator, you can choose to group by the individual
columns or by the combined expression using a specific number.

select number An integer that identifies a
column or expression in the
select list of the SELECT clause by
specifying its order in the select
list. The SELECT statement
returns a single row of results for
each group of rows that have the
same value in the column or
expression identified by select
number.

See “Using Select Numbers” on
page 1-629.

Literal Number,
p. 1-997

Element Purpose Restrictions Syntax

 (2 of 2)
1-628 Informix Guide to SQL: Syntax

SELECT
Using Select Numbers

You can use one or more integers in the GROUP BY clause to stand for column
expressions. In the following example, the first SELECT statement uses select
numbers for order_date and paid_date - order_date in the GROUP BY clause.
You can group only by a combined expression using the select-number
notation. In the second SELECT statement, you cannot replace the 2 with the
expression paid_date - order_date.

SELECT order_date, COUNT(*), paid_date - order_date
FROM orders
GROUP BY 1, 3

SELECT order_date, paid_date - order_date
FROM orders
GROUP BY order_date, 2

Nulls in the GROUP BY Clause

Each row that contains a null value in a column that is specified by a GROUP
BY clause belongs to a single group (that is, all null values are grouped
together).

HAVING Clause
Use the HAVING clause to apply one or more qualifying conditions to groups.

HAVING Condition
p. 1-831

HAVING
Clause
SQL Statements 1-629

SELECT
In the following examples, each condition compares one calculated property
of the group with another calculated property of the group or with a
constant. The first SELECT statement uses a HAVING clause that compares the
calculated expression COUNT(*) with the constant 2. The query returns the
average total price per item on all orders that have more than two items. The
second SELECT statement lists customers and the call months if they have
made two or more calls in the same month.

SELECT order_num, AVG(total_price) FROM items
GROUP BY order_num
HAVING COUNT(*) > 2

SELECT customer_num, EXTEND (call_dtime, MONTH TO MONTH)
FROM cust_calls
GROUP BY 1, 2
HAVING COUNT(*) > 1

You can use the HAVING clause to place conditions on the GROUP BY column
values as well as on calculated values. The following example returns the
customer_num, call_dtime (in full year-to-fraction format), and cust_code,
and groups them by call_code for all calls that have been received from
customers with customer_num less than 120:

SELECT customer_num, EXTEND (call_dtime), call_code
FROM cust_calls
GROUP BY call_code, 2, 1
HAVING customer_num < 120

The HAVING clause generally complements a GROUP BY clause. If you use a
HAVING clause without a GROUP BY clause, the HAVING clause applies to all
rows that satisfy the query. Without a GROUP BY clause, all rows in the table
make up a single group. The following example returns the average price of
all the values in the table, as long as more than ten rows are in the table:

SELECT AVG(total_price) FROM items
HAVING COUNT(*) > 10
1-630 Informix Guide to SQL: Syntax

SELECT
ORDER BY Clause
Use the ORDER BY clause to sort query results by the values that are contained
in one or more columns.

Element Purpose Restrictions Syntax
alias The alias assigned to a table or

view in the FROM clause. See
“FROM Clause” on page 1-607
for more information on aliases
for tables and views.

You cannot specify an alias for a
table or view in the ORDER BY
clause unless you have assigned
the alias to the table or view in
the FROM clause.

Identifier, p. 1-962

 (1 of 2)

ORDER BY column
name

select
number

display
label

ASC

DESC

Table
Name

p. 1-1044

View
Name

p. 1-1047

.

.

Synonym
Name

p. 1-1042
.

ORDER BY
Clause

.alias

ROWID

,

+

[first, last]

+

SQL Statements 1-631

SELECT
column name The name of a column in the
specified table or view. The
query results are sorted by the
values contained in this column.

A column specified in the
ORDER BY clause must be listed
explicitly or implicitly in the
select list of the SELECT clause. If
you want to order the query
results by a derived column, you
must supply a display label for
the derived column in the select
list and specify this label in the
ORDER BY clause. Alternatively,
you can omit a display label for
the derived column in the select
list and specify the derived
column by means of a select
number in the ORDER BY clause.

This cannot be a column whose
data type is a collection.

Identifier, p. 1-962

display label A temporary name that you
assign to a column in the select
list of the SELECT clause. You can
use a display label in place of the
column name in the ORDER BY
clause.

You cannot specify a display
label in the ORDER BY clause
unless you have specified this
display label for a column in the
select list.

Identifier, p. 1-962

first The position of the first character
in the portion of the column that
is used to sort the query results

The column must be one of the
following character types: BYTE,
CHAR, NCHAR, NVARCHAR,
TEXT, or VARCHAR.

Literal Number,
p. 1-997

last The position of the last character
in the portion of the column that
is used to sort the query results

The column must be one of the
following character types: BYTE,
CHAR, NCHAR, NVARCHAR,
TEXT, or VARCHAR.

Literal Number,
p. 1-997

select number An integer that identifies a
column in the select list of the
SELECT clause by specifying its
order in the select list. You can
use a select number in place of a
column name in the ORDER BY
clause.

You must specify select numbers
in the ORDER BY clause when
SELECT statements are joined by
UNION or UNION ALL keywords
and compatible columns in the
same position have different
names.

Literal Number,
p. 1-997

Element Purpose Restrictions Syntax

 (2 of 2)
1-632 Informix Guide to SQL: Syntax

SELECT
You can perform an ORDER BY operation on a column or on an aggregate
expression when you use SELECT * or a display label in your SELECT
statement.

The following query explicitly selects the order date and shipping date from
the orders table and then rearranges the query by the order date. By default,
the query results are listed in ascending order.

SELECT order_date, ship_date FROM orders
ORDER BY order_date

In the following query, the order_date column is selected implicitly by the
SELECT * statement, so you can use order_date in the ORDER BY clause:

SELECT * FROM orders
ORDER BY order_date

Ordering by a Column Substring

You can order by a column substring instead of ordering by the entire length
of the column. The column substring is the portion of the column that the
database server uses for the sort. You define the column substring by speci-
fying column subscripts (the first and last parameters). The column subscripts
represent the starting and ending character positions of the column
substring.

The following example shows a SELECT statement that queries the customer
table and specifies a column substring in the ORDER BY column. The column
substring instructs the database server to sort the query results by the portion
of the lname column contained in the sixth through ninth positions of the
column.

SELECT * from customer
ORDER BY lname[6,9]

Assume that the value of lname in one row of the customer table is
Greenburg. Because of the column substring in the ORDER BY clause, the
database server determines the sort position of this row by using the value
burg, not the value Greenburg.

You can specify column substrings only for columns that have a character
data type. If you specify a column substring in the ORDER BY clause, the
column must have one of the following data types: BYTE, CHAR, NCHAR,
NVARCHAR, TEXT, or VARCHAR.
SQL Statements 1-633

SELECT
For information on the GLS aspects of using column substrings in the ORDER
BY clause, see the Guide to GLS Functionality. ♦

Ordering by a Derived Column

You can order by a derived column by supplying a display label in the
SELECT clause, as shown in the following example:

SELECT paid_date - ship_date span, customer_num
FROM orders
ORDER BY span

Ascending and Descending Orders

You can use the ASC and DESC keywords to specify ascending (smallest value
first) or descending (largest value first) order. The default order is ascending.

For DATE and DATETIME data types, smallest means earliest in time and
largest means latest in time. For standard character data types, the ASCII
collating sequence is used. See page 1-1017 for a listing of the collating
sequence.

Nulls in the ORDER BY Clause

Null values are ordered as less than values that are not null. Using the ASC
order, the null value comes before the non-null value; using DESC order, the
null value comes last.

Nested Ordering

If you list more than one column in the ORDER BY clause, your query is
ordered by a nested sort. The first level of sort is based on the first column;
the second column determines the second level of sort. The following
example of a nested sort selects all the rows in the cust_calls table and orders
them by call_code and by call_dtime within call_code:

SELECT * FROM cust_calls
ORDER BY call_code, call_dtime

GLS
1-634 Informix Guide to SQL: Syntax

SELECT
Using Select Numbers

In place of column names, you can enter one or more integers that refer to the
position of items in the SELECT clause. You can use a select number to order
by an expression. For instance, the following example orders by the
expression paid_date - order_date and customer_num, using select numbers
in a nested sort:

SELECT order_num, customer_num, paid_date - order_date
FROM orders
ORDER BY 3, 2

Select numbers are required in the ORDER BY clause when SELECT statements
are joined by the UNION or UNION ALL keywords and compatible columns
in the same position have different names.

Ordering by Rowids

You can specify the rowid column as a column in the ORDER BY clause. The
rowid column is a hidden column in nonfragmented tables and in
fragmented tables that were created with the WITH ROWIDS clause. The
rowid column contains a unique internal record number that is associated
with a row in a table. Informix recommends, however, that you utilize
primary keys as an access method rather than exploiting the rowid column.

If you want to specify the rowid column in the ORDER BY clause, enter the
keyword ROWID in lowercase or uppercase letters. You cannot specify the
rowid column in the ORDER BY clause:

■ if the table from which you are selecting is a fragmented table that
does not have a rowid column.

■ unless you have included the rowid column in the select list of the
SELECT clause.

For further information on using the rowid column in column expressions,
see “Expression” on page 1-876.

ORDER BY Clause with DECLARE

You cannot use a DECLARE statement with a FOR UPDATE clause to associate
a cursor with a SELECT statement that has an ORDER BY clause. ♦

ESQL
SQL Statements 1-635

SELECT
Placing Indexes on ORDER BY Columns

When you include an ORDER BY clause in a SELECT statement, you can
improve the performance of the query by creating an index on the column or
columns that the ORDER BY clause specifies. The database server uses the
index that you placed on the ORDER BY columns to sort the query results in
the most efficient manner. For further information on creating indexes that
correspond to the columns of an ORDER BY clause, see “ASC and DESC
Keywords” on page 1-142 under the CREATE INDEX statement.

FOR UPDATE Clause
Use the FOR UPDATE clause when you prepare a SELECT statement, and you
intend to update the values returned by the SELECT statement when the
values are fetched. Preparing a SELECT statement that contains a FOR
UPDATE clause is equivalent to preparing the SELECT statement without the
FOR UPDATE clause and then declaring a FOR UPDATE cursor for the
prepared statement.

The FOR UPDATE keyword notifies the database server that updating is
possible, causing it to use more-stringent locking than it would with a select
cursor. You cannot modify data through a cursor without this clause. You can
specify particular columns that can be updated.

After you declare a cursor for a SELECT... FOR UPDATE statement, you can
update or delete the currently selected row using an UPDATE or DELETE
statement with the WHERE CURRENT OF clause. The words CURRENT OF
refer to the row that was most recently fetched; they replace the usual test
expressions in the WHERE clause.

To update rows with a particular value, your program might contain state-
ments such as the sequence of statements shown in the following example:

EXEC SQL BEGIN DECLARE SECTION;
 char fname[16];
 char lname[16];
 EXEC SQL END DECLARE SECTION;
.
.
.
EXEC SQL connect to 'stores7';
 /* select statement being prepared contains a for update clause */
EXEC SQL prepare x from 'select fname, lname from customer for update';
EXEC SQL declare xc cursor for x; --note no 'for update' clause in declare
1-636 Informix Guide to SQL: Syntax

SELECT
for (;;)
{
EXEC SQL fetch xc into $fname, $lname;
if (strncmp(SQLSTATE, '00', 2) != 0) break;
printf("%d %s %s\n",cnum, fname, lname);
if (cnum == 999)--update rows with 999 customer_num

EXEC SQL update customer set fname = 'rosey' where current of xc;
}

 EXEC SQL close xc;
 EXEC SQL disconnect current;

A SELECT ... FOR UPDATE statement, like an update cursor, allows you to
perform updates that are not possible with the UPDATE statement alone,
because both the decision to update and the values of the new data items can
be based on the original contents of the row. The UPDATE statement cannot
interrogate the table that is being updated.

Syntax That Is Incompatible with the FOR UPDATE Clause

A SELECT statement that uses a FOR UPDATE clause must conform to the
following restrictions:

■ The statement can select data from only one table.

■ The statement cannot include any aggregate functions.

■ The statement cannot include any of the following clauses or
keywords: DISTINCT, FOR READ ONLY, GROUP BY, INTO TEMP,
ORDER BY, UNION, or UNIQUE.

For information on how to declare an update cursor for a SELECT statement
that does not include a FOR UPDATE clause, see page 1-300.

FOR READ ONLY Clause
Use the FOR READ ONLY clause to specify that the select cursor declared for
the SELECT statement is a read-only cursor. A read-only cursor is a cursor that
cannot modify data. This section provides the following information about
the FOR READ ONLY clause:

■ When you must use the FOR READ ONLY clause

■ Syntax restrictions on a SELECT statement that uses a FOR READ
ONLY clause
SQL Statements 1-637

SELECT
Using the FOR READ ONLY Clause in Read-Only Mode

Normally, you do not need to include the FOR READ ONLY clause in a SELECT
statement. A SELECT statement is a read-only operation by definition, so the
FOR READ ONLY clause is usually unnecessary. However, in certain special
circumstances, you must include the FOR READ ONLY clause in a SELECT
statement.

If you have used the High-Performance Loader (HPL) in express mode to
load data into the tables of an ANSI-mode database, and you have not yet
performed a level-0 backup of this data, the database is in read-only mode.
When the database is in read-only mode, the database server rejects any
attempts by a select cursor to access the data unless the SELECT or the
DECLARE includes a FOR READ ONLY clause. This restriction remains in effect
until the user has performed a level-0 backup of the data.

When the database is an ANSI-mode database, select cursors are update
cursors by default. An update cursor is a cursor that can be used to modify
data. These update cursors are incompatible with the read-only mode of the
database. For example, the following SELECT statement against the
customer_ansi table fails:

EXEC SQL declare ansi_curs cursor for
select * from customer_ansi;

The solution is to include the FOR READ ONLY clause in your select cursors.
The read-only cursor that this clause specifies is compatible with the read-
only mode of the database. For example, the following SELECT FOR READ
ONLY statement against the customer_ansi table succeeds:

EXEC SQL declare ansi_read cursor for
select * from customer_ansi for read only;

♦

DB-Access executes all SELECT statements with select cursors. Therefore, you
must include the FOR READ ONLY clause in all SELECT statements that access
data in a read-only ANSI-mode database. The FOR READ ONLY clause causes
DB-Access to declare the cursor for the SELECT statement as a read-only
cursor. ♦

ANSI

DB
1-638 Informix Guide to SQL: Syntax

SELECT
For more information on the express mode of HPL, see the Guide to the
High-Performance Loader. For more information on level-0 backups, see the
INFORMIX-Universal Server Archive and Backup Guide. For more information
on select cursors, read-only cursors, and update cursors, see the DECLARE
statement on page 1-300.

Syntax That Is Incompatible with the FOR READ ONLY Clause

Whether your database is an ANSI-mode database or a database that is not
ANSI compliant, you cannot include both the FOR READ ONLY clause and the
FOR UPDATE clause in the same SELECT statement. If you attempt to do so,
the SELECT statement fails.

For information on how to declare a read-only cursor for a SELECT statement
that does not include a FOR READ ONLY clause, see page 1-300.

INTO TEMP Clause

Element Purpose Restrictions Syntax
temp table name The simple name of a temporary

table. This table contains the
results of the SELECT statement.
The column names of the
temporary table are those that
are named in the select list of the
SELECT clause.

The name must be different from
any existing table, view, or
synonym name in the current
database, but it does not have to
be different from other temporary
table names used by other users.
You must have the Connect
privilege on a database to create a
temporary table in that database.
If you use the INTO TEMP clause to
create a temporary table, you
must supply a display label for all
expressions in the select list other
than simple column expressions.

Identifier, p. 1-962

WITH NO LOG

INTO TEMP temp table name

INTO TEMP
Clause
SQL Statements 1-639

SELECT
The INTO TEMP clause creates a temporary table that contains the query
results. The initial and next extents for the temporary table are always eight
pages. The temporary table must be accessible by the database server’s built-
in RSAM access method; you cannot specify an alternate access method.

Temporary tables created with the INTO TEMP clause are explicit temporary
tables. Explicit temporary tables can also be created with the CREATE TEMP
TABLE statement.

If the DBSPACETEMP environment variable is set for INFORMIX-Universal
Server, temporary tables created with the INTO TEMP clause are located in the
dbspaces that are specified in the DBSPACETEMP list. You can also specify
dbspace settings with the ONCONFIG parameter DBSPACETEMP. If neither
the environment variable nor configuration parameter is set, the default
setting is the root dbspace. The settings specified for the DBSPACETEMP
environment variable take precedence over the ONCONFIG parameter
DBSPACETEMP and the default setting. For more information about creating
temporary tables, see the CREATE TABLE statement on page 1-208. For more
information about the DBSPACETEMP environment variable, see Chapter 3
of the Informix Guide to SQL: Reference. For more information about the
ONCONFIG parameter DBSPACETEMP, see the INFORMIX-Universal Server
Administrator’s Guide.

If a temporary table is created with logging, it does not disappear automati-
cally when your program ends; you must issue a DROP TABLE statement on
the temporary table. If your database does not have logging, or if it has
logging, and you created the temporary table without the WITH NO LOG
keywords, the temporary table disappears when you close the current
database.

If you use the same query results more than once, using a temporary table
saves time. In addition, using an INTO TEMP clause often gives you clearer
and more understandable SELECT statements. However, the data in the
temporary table is static; data is not updated as changes are made to the
tables used to build the temporary table.
1-640 Informix Guide to SQL: Syntax

SELECT
The column names of the temporary table are those named in the SELECT
clause. You must supply a display label for all expressions other than simple
column expressions. The display label for a column or expression becomes
the column name in the temporary table. If you do not provide a display label
for a column expression, the temporary table uses the column name from the
select list. The following example creates the pushdate table with two
columns, customer_num and slowdate:

SELECT customer_num, call_dtime + 5 UNITS DAY slowdate
FROM cust_calls INTO TEMP pushdate

You can put indexes on a temporary table.

INTO TEMP Clause and WHERE Clause

When you use the INTO TEMP clause combined with the WHERE clause, and
no rows are returned, the SQLNOTFOUND value is 100 in ANSI-compliant
databases and 0 in databases that are not ANSI compliant. If the SELECT INTO
TEMP...WHERE... statement is a part of a multistatement prepare and no rows
are returned, the SQLNOTFOUND value is 100 for both ANSI-compliant
databases and databases that are not ANSI compliant.

INTO TEMP Clause and INTO

Do not use the INTO option with the INTO TEMP clause. If you do, no results
are returned to the program variables and the SQLCODE (sqlca.sqlcode)
variable is set to a negative value. ♦

WITH NO LOG Option
If you use the WITH NO LOG keywords, operations on the temporary table are
not included in the transaction-log operations. You can use this option to
reduce the overhead of transaction logging.

UNION Operator
Place the UNION operator between two SELECT statements to combine the
queries into a single query. You can string several SELECT statements
together using the UNION operator. Corresponding items do not need to
have the same name.

ESQL
SQL Statements 1-641

SELECT
Restrictions on Combined SELECT

Several restrictions apply on the queries that you can connect with a UNION
operator, as the following list describes:

■ The number of items in the SELECT clause of each query must be the
same, and the corresponding items in each SELECT clause must have
compatible data types.

■ If you use an ORDER BY clause, it must follow the last SELECT clause,
and you must refer to the item ordered by integer, not by identifier.
Ordering takes place after the set operation is complete.

■ You cannot use a UNION operator inside a subquery or in the
definition of a view.

■ You cannot use an INTO clause in a query unless you are sure that the
compound query returns exactly one row, and you are not using a
cursor. In this case, the INTO clause must be in the first SELECT
statement. ♦

To put the results of a UNION operator into a temporary table, use an INTO
TEMP clause in the final SELECT statement.

Duplicate Rows in a Combined SELECT

If you use the UNION operator alone, the duplicate rows are removed from
the complete set of rows. That is, if multiple rows contain identical values in
each column, only one row is retained. If you use the UNION ALL operator,
all the selected rows are returned (the duplicates are not removed). The
following example uses the UNION ALL operator to join two SELECT
statements without removing duplicates. The query returns a list of all the
calls that were received during the first quarter of 1993 and the first quarter
of 1994.

SELECT customer_num, call_code FROM cust_calls
WHERE call_dtime BETWEEN

DATETIME (1993-1-1) YEAR TO DAY
AND DATETIME (1993-3-31) YEAR TO DAY

UNION ALL

SELECT customer_num, call_code FROM cust_calls
WHERE call_dtime BETWEEN

DATETIME (1994-1-1)YEAR TO DAY
AND DATETIME (1994-3-31) YEAR TO DAY

ESQL
1-642 Informix Guide to SQL: Syntax

SELECT
If you want to remove duplicates, use the UNION operator without the
keyword ALL in the query. In the preceding example, if the combination 101
B were returned in both SELECT statements, a UNION operator would cause
the combination to be listed once. (If you want to remove duplicates within
each SELECT statement, use the DISTINCT keyword in the SELECT clause, as
described on page 1-598.)

References
In this manual, see the descriptions of the DECLARE and FOREACH
statements.

In the Informix Guide to SQL: Tutorial, see the discussion of the SELECT
statement in Chapter 2 and Chapter 3, and Chapter 14 for the discussion of
SPL routines. In the Guide to GLS Functionality, see the discussion of the GLS
aspects of the SELECT statement.

For information on how to access row and collections with ESQL/C host
variables, see the discussion of complex data types in the
INFORMIX-ESQL/C Programmer’s Manual.
SQL Statements 1-643

1-644 Informix Guide to SQL: Syntax

SET
SET
The SET statement allows you to change the object mode of the following
database objects: constraints, indexes, and triggers. You can also use the SET
statement to specify the transaction mode of constraints.

Syntax

SET
Table-Mode

Format
p. 1-646

List-Mode
Format
p. 1-653

Transaction-
Mode Format

p. 1-669

+

E/C

DB

SQLE

SET
Usage
The SET statement has the following purposes:

■ To change the object mode of constraints, indexes, and triggers

When you change the object mode of constraints, indexes, or
triggers, the change is permanent. The setting that the SET statement
produces remains in effect until you change the object mode of the
object again.

■ To set the transaction mode of constraints by specifying whether
constraints are checked at the statement level or at the transaction
level

When you set the transaction mode of constraints, the effect of the
SET statement is limited to the transaction in which it is executed.
The setting that the SET statement produces is effective only during
the transaction. For further information on setting the transaction
mode for constraints, see “Transaction-Mode Format” on page 1-669.

Terminology for Object Modes

The SET statement operates on database objects by changing the object mode
of those objects. The terms database objects and objects have a restricted
meaning in the context of the SET statement. Both terms refer to the
constraints, indexes, and triggers in a database.

Similarly, the term object modes has a restricted meaning in the context of the
SET statement. The term refers to the three states that a database object can
have: enabled, disabled, and filtering. The sysobjstate system catalog table
lists all of the objects in the database and the current object mode of each
object.

Do not confuse the terms objects and object modes as used in the SET statement
with the term objects in INFORMIX-NewEra. In the context of
INFORMIX-NewEra, objects refers to objects within an application.
SQL Statements 1-645

SET
Methods for Changing Object Modes

The SET statement provides the following formats for changing object modes:
table mode and list mode. For an explanation of the table-mode format, see
“Table-Mode Format”. For an explanation of the list-mode format, see “List-
Mode Format” on page 1-653.

Privileges Required for Changing Object Modes
To change the object mode of a constraint, index, or trigger, you must have
the necessary privileges. Specifically, you must meet one of the following
requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the table on which the object is defined and
must have the Resource privilege on the database.

■ You must have the Alter privilege on the table on which the object is
defined and the Resource privilege on the database.

Table-Mode Format

FOR

,

INDEXES

CONSTRAINTS

TRIGGERS

table name
Object Modes for
Constraints and
Unique Indexes

p. 1-648

Object Modes for
Triggers and

Duplicate Indexes
p. 1-652

Table-Mode Format
1-646 Informix Guide to SQL: Syntax

SET
Use the table-mode format to change the object mode of all objects of a given
type that have been defined on a particular table. For example, to change the
object mode of all constraints that are defined on the cust_subset table to the
disabled mode, enter the following statement:

SET CONSTRAINTS FOR cust_subset DISABLED

By using the table-mode format, you can change the object modes of more
than one object type with a single SET statement. For example, to change the
object mode of all constraints, indexes, and triggers that are defined on the
cust_subset table to the enabled mode, enter the following statement:

SET CONSTRAINTS, INDEXES, TRIGGERS FOR cust_subset
ENABLED

Element Purpose Restrictions Syntax
table name The name of the table whose

objects will have their object
mode changed. There is no
default value.

The table must be a local table.
You cannot set the object modes
of objects defined on a
temporary table to the disabled
or filtering modes. For infor-
mation on the privileges
required to change the object
mode of the objects defined on a
table, see “Privileges Required
for Changing Object Modes” on
page 1-646.

Identifier, p. 1-962
SQL Statements 1-647

SET
Object Modes for Constraints and Unique Indexes

You can specify the disabled, enabled, or filtering object modes for a
constraint or a unique index. You must specify one of these object modes in
your SET statement. The SET statement has no default object mode.

You can also specify the object mode for a constraint when you create the
constraint with the ALTER TABLE or CREATE TABLE statements. If you do not
specify the object mode for a constraint in one of these statements or in a SET
statement, the constraint is in the enabled object mode by default.

You can also specify the object mode for a unique index when you create the
index with the CREATE INDEX statement. If you do not specify the object
mode for a unique index in the CREATE INDEX statement or in a SET
statement, the unique index is in the enabled object mode by default.

For definitions of the disabled, enabled, and filtering object modes see “Using
Object Modes with Data Manipulation Statements” on page 1-654. For an
explanation of the benefits of these object modes, see “Benefits of Object
Modes” on page 1-667.

Object Modes for Constraints
and Unique Indexes

DISABLED

WITHOUT
ERROR

WITH
ERROR

FILTERING

ENABLED
1-648 Informix Guide to SQL: Syntax

SET
Error Options for Filtering Mode
When you change the object mode of a constraint or unique index to the
filtering mode, you can specify the following error options: WITHOUT ERROR
or WITH ERROR.

WITHOUT ERROR Option

The WITHOUT ERROR option signifies that when the database server executes
an INSERT, DELETE, or UPDATE statement, and one or more of the target rows
causes a constraint violation or unique-index violation, no integrity-violation
error message is returned to the user. The WITHOUT ERROR option is the
default error option.

WITH ERROR Option

The WITH ERROR option signifies that when the database server executes an
INSERT, DELETE, or UPDATE statement, and one or more of the target rows
causes a constraint violation or unique-index violation, an integrity-violation
error message is returned to the user.

Scope of Error Options

The WITH ERROR and WITHOUT ERROR options apply only when the
database server executes an INSERT, DELETE, or UPDATE statement, and one
or more of the target rows causes a constraint violation or unique index
violation. These error options control whether the database server displays
an integrity-violation error message after it executes these statements.

These error options do not apply when you attempt to change the object
mode of a disabled constraint or disabled unique index to the enabled or
filtering mode, and the SET statement fails because one or more rows in the
target table violates the constraint or the unique-index requirement. In these
cases, if a violations table has been started for the table that contains the
inconsistent data, the database server returns an integrity-violation error
message regardless of the error option that is specified in the SET statement.
SQL Statements 1-649

SET
Violations and Diagnostics Tables for Filtering Mode
When you specify the filtering mode for constraints or unique indexes in a
SET statement, violations and diagnostics tables are not automatically started
for the target table. When you set objects to the filtering mode, be sure to start
the violations and diagnostics tables for the target table on which the filtering
mode objects are defined. The violations table captures rows that fail to meet
integrity requirements. The diagnostics table captures information about
each row that fails to meet integrity requirements.

When to Start the Violations and Diagnostics Tables

You are not required to start the violations and diagnostics tables before you
set objects to the filtering mode. If you have not started a violations and
diagnostics table when you set an object to the filtering mode, the database
server executes your SET statement and does not return an error. Similarly, if
you issue an INSERT, DELETE, or UPDATE statement on the target table, and
you have not started a violations and diagnostics table for the target table, the
database server executes the statement and does not return an error as long
as all of the integrity requirements on the table are satisfied.

If you have not started a violations and diagnostics table for the target table
with filtering-mode objects, the database server does not return an error until
an INSERT, DELETE, or UPDATE statement fails to satisfy an integrity
requirement on the table. If an INSERT, DELETE, or UPDATE statement fails to
satisfy the constraint or unique-index requirement for a particular row, the
database server cannot filter the bad row to the violations table because no
violations table is associated with the target table. The user receives an error
message indicating that no violations table has been started for the target
table.

To prevent such errors, start the violations and diagnostics tables for the
target table at one of the following points:

■ You can start the violations and diagnostics tables before you set any
objects that are defined on the table to the filtering mode.

■ You can start the violations and diagnostics tables after you set
objects to the filtering mode but before any users issue INSERT,
DELETE, or UPDATE statements that could violate any integrity
requirements on the target table.
1-650 Informix Guide to SQL: Syntax

SET
How to Start the Violations and Diagnostics Tables

To create the violations and diagnostics tables and associate them with the
target table, use the START VIOLATIONS TABLE statement. In this statement,
specify the name of the target table for which the violations and diagnostics
tables are to be started. You can also assign names to the violations and
diagnostics tables in this statement.

For further information on the START VIOLATIONS TABLE statement and the
structure of the violations and diagnostics tables themselves, see the START
VIOLATIONS TABLE statement on page 1-744.

How to Stop the Violations and Diagnostics Tables

After you turn off filtering mode for the objects that are defined on a target
table, and you no longer need the violations and diagnostics tables, use the
STOP VIOLATIONS TABLE statement to drop the association between the
target table and the violations and diagnostics tables. In this statement, you
specify the name of the target table whose association with the violations and
diagnostics tables is to be dropped.

For further information on using the STOP VIOLATIONS TABLE statement, see
the STOP VIOLATIONS TABLE statement on page 1-763.
SQL Statements 1-651

SET
Object Modes for Triggers and Duplicate Indexes

You can specify the disabled or enabled object modes for triggers or duplicate
indexes. You must specify one of these object modes in your SET statement.
The SET statement has no default object mode.

You can also specify the object mode for a trigger when you create the trigger
with the CREATE TRIGGER statement. If you do not specify the object mode
for a trigger in the CREATE TRIGGER statement or in a SET statement, the
trigger is in the enabled object mode by default.

You can also specify the object mode for a duplicate index when you create
the index with the CREATE INDEX statement. If you do not specify the object
mode for a duplicate index in the CREATE INDEX statement or in a SET
statement, the duplicate index is in the enabled object mode by default.

For definitions of the disabled and enabled object modes, see “Using Object
Modes with Data Manipulation Statements” on page 1-654. For an expla-
nation of the benefits of these two object modes, see “Benefits of Object
Modes” on page 1-667.

DISABLED

ENABLED

Object Modes for Triggers
and Duplicate Indexes
1-652 Informix Guide to SQL: Syntax

SET
List-Mode Format

Element Purpose Restrictions Syntax
constraint name The name of the constraint

whose object mode is to be set, or
a list of constraint names. There
is no default value.

Each constraint in the list must
be a local constraint. All
constraints in the list must be
defined on the same table.

Identifier, p. 1-962

index name The name of the index whose
object mode is to be set, or a list
of index names. There is no
default value.

Each index in the list must be a
local index. All indexes in the list
must be defined on the same
table.

Identifier, p. 1-962

trigger name The name of the trigger whose
object mode is to be set, or a list
of trigger names. There is no
default value.

Each trigger in the list must be a
local trigger. All triggers in the
list must be defined on the same
table.

Identifier, p. 1-962

CONSTRAINTS

,
constraint

name

Object Modes for
Triggers and

Duplicate Indexes
p. 1-652

INDEXES

,

index name
Object Modes for
Constraints and
Unique Indexes

p. 1-648

Object Modes for
Constraints and
Unique Indexes

p. 1-648

,

List-Mode Format

TRIGGERS trigger name
Object Modes for

Triggers and
Duplicate Indexes

p. 1-652
SQL Statements 1-653

SET
Use the list-mode format to change the object mode for a particular
constraint, index, or trigger. For example, to change the object mode of the
unique index unq_ssn on the cust_subset table to filtering mode, enter the
following statement:

SET INDEXES unq_ssn FILTERING

You can also use the list-mode format to change the object mode for a list of
constraints, indexes, or triggers that are defined on the same table. Assume
that four triggers are defined on the cust_subset table: insert_trig,
update_trig, delete_trig, and execute_trig. Also assume that all four triggers
are in the enabled mode. To change the object mode of all the triggers except
execute_trig to the disabled mode, enter the following statement:

SET TRIGGERS insert_trig, update_trig, delete_trig DISABLED

Using Object Modes with Data Manipulation Statements
You can use object modes to control the effects of INSERT, DELETE, and
UPDATE statements. Your choice of object modes affects the tables whose
data you are manipulating, the behavior of the objects defined on those
tables, and the behavior of the data manipulation statements themselves.

What do we mean by the terms enabled, disabled, and filtering? Definitions of
these object modes follow. These definitions explain how each object mode
affects tables and data manipulation statements. The definitions focus on the
object modes of constraints as an illustration, but the same principles apply
to indexes and triggers as well.

Definition of Enabled Mode

Constraints, indexes, and triggers are in the enabled mode by default. When
an object is in the enabled mode, the database server recognizes the existence
of the object and takes the object into consideration while it executes data
manipulation statements. For example, when a constraint is enabled, any
INSERT, UPDATE, or DELETE statement that violates the constraint fails, and
the target row remains unchanged. In addition, the user receives an error
message.
1-654 Informix Guide to SQL: Syntax

SET
Definition of Disabled Mode

When an object is in the disabled mode, the database server acts as if the
object did not exist and does not take it into consideration during the
execution of data manipulation statements. For example, when a constraint
is disabled, any INSERT, UPDATE, or DELETE statement that violates the
constraint succeeds, and the target row is changed. The user does not receive
an error message.

Definition of Filtering Mode

When an object is in the filtering mode, the object behaves the same as in the
enabled mode in that the database server recognizes the existence of the
object during INSERT, UPDATE, and DELETE statements. For example, when
a constraint is in the filtering mode, and an INSERT, DELETE, or UPDATE
statement is executed, any target rows that violate the constraint remain
unchanged.

However, the database server handles data manipulation statements differ-
ently for objects in enabled and filtering mode, as the following paragraphs
describe:

■ If a constraint or unique index is in the enabled mode, the database
server carries out the INSERT, UPDATE, or DELETE statement only if
all the target rows affected by the statement satisfy the constraint or
the unique index requirement. The database server updates all the
target rows in the table.

■ If a constraint or unique index is in the filtering mode, the database
server carries out the INSERT, UPDATE, or DELETE statement even if
one or more of the target rows fail to satisfy the constraint or the
unique index requirement. The database server updates the good
rows in the table (the target rows that satisfy the constraint or unique
index requirement). The database server does not update the bad
rows in the table (that is, the target rows that fail to satisfy the
constraint or unique index requirement). Instead the database server
sends each bad row to a special table called the violations table. The
database server places information about the nature of the violation
for each bad row in another special table called the diagnostics table.
SQL Statements 1-655

SET
Example of Object Modes with Data Manipulation
Statements
An example with the INSERT statement can illustrate the differences between
the enabled, disabled, and filtering modes. Consider an INSERT statement in
which a user tries to add a row that does not satisfy an integrity constraint on
a table. For example, assume that a user joe has created a table named
cust_subset, and this table consists of the following columns: ssn (customer’s
social security number), fname (customer’s first name), lname (customer’s
last name), and city (city in which the customer lives). The ssn column has
the INT data type. The other three columns have the CHAR data type.

Assume that user joe has defined the lname column as not null but has not
assigned a name to the not null constraint, so the database server has
implicitly assigned the name n104_7 to this constraint. Finally, assume that
user joe has created a unique index named unq_ssn on the ssn column.

Now a user linda who has the Insert privilege on the cust_subset table enters
the following INSERT statement on this table:

INSERT INTO cust_subset (ssn, fname, city)
VALUES (973824499, "jane", "los altos")

User linda has entered values for all the columns of the new row except for
the lname column, even though the lname column has been defined as a not
null column. The database server behaves in the following ways, depending
on the object mode of the constraint:

■ If the constraint is disabled, the row is inserted in the target table, and
no error is returned to the user.

■ If the constraint is enabled, the row is not inserted in the target table.
A constraint-violation error is returned to the user, and the effects of
the statement are rolled back (if the database is a Universal Server
database with logging).

■ If the constraint is filtering, the row is not inserted in the target table.
Instead the row is inserted in the violations table. Information about
the integrity violation caused by the row is placed in the diagnostics
table. The effects of the INSERT statement are not rolled back. You
receive an error message if you specified the WITH ERROR option for
the filtering-mode constraint. By analyzing the contents of the viola-
tions and the diagnostics tables, you can identify the reason for the
failure and either take corrective action or roll back the operation.
1-656 Informix Guide to SQL: Syntax

SET
We can better grasp the distinctions among disabled, enabled, and filtering
modes by viewing the actual results of the INSERT statement shown in the
preceding example.

Results of the Insert Operation When the Constraint Is Disabled

If the not-null constraint on the cust_subset table is disabled, the INSERT
statement that user linda issues successfully inserts the new row in this table.
The new row of the cust_subset table has the following column values.

Results of the Insert Operation When the Constraint Is Enabled

If the not-null constraint on the cust_subset table is enabled, the INSERT
statement fails to insert the new row in this table. Instead user linda receives
the following error message when she enters the INSERT statement:

-292 An implied insert column lname does not accept NULLs.

Results of the Insert When Constraint Is in Filtering Mode

If the not-null constraint on the cust_subset table is set to the filtering mode,
the INSERT statement that user linda issues fails to insert the new row in this
table. Instead the new row is inserted into the violations table, and a
diagnostic row that describes the integrity violation is added to the
diagnostics table.

ssn fname lname city

973824499 jane NULL los altos
SQL Statements 1-657

SET
Assume that user joe has started a violations and diagnostics table for the
cust_subset table. The violations table is named cust_subset_vio, and the
diagnostics table is named cust_subset_dia. The new row added to the
cust_subset_vio violations table when user linda issues the INSERT
statement on the cust_subset target table has the following column values.

This new row in the cust_subset_vio violations table has the following
characteristics:

■ The first four columns of the violations table exactly match the
columns of the target table. These four columns have the same names
and the same data types as the corresponding columns of the target
table, and they have the column values that were supplied by the
INSERT statement that user linda entered.

■ The value 1 in the informix_tupleid column is a unique serial
identifier that is assigned to the nonconforming row.

■ The value I in the informix_optype column is a code that identifies
the type of operation that has caused this nonconforming row to be
created. Specifically, I stands for an insert operation.

■ The value linda in the informix_recowner column identifies the
user who issued the statement that caused this nonconforming row
to be created.

ssn fname lname city informix_tupleid informix_optype informix_recowner

973824499 jane NULL los altos 1 I linda
1-658 Informix Guide to SQL: Syntax

SET
The INSERT statement that user linda issued on the cust_subset target table
also causes a diagnostic row to be added to the cust_subset_dia diagnostics
table. The new diagnostic row added to the diagnostics table has the
following column values.

This new diagnostic row in the cust_subset_dia diagnostics table has the
following characteristics:

■ This row of the diagnostics table is linked to the corresponding row
of the violations table by means of the informix_tupleid column that
appears in both tables. The value 1 appears in this column in both
tables.

■ The value C in the objtype column identifies the type of integrity
violation that the corresponding row in the violations table caused.
Specifically, the value C stands for a constraint violation.

■ The value joe in the objowner column identifies the owner of the
constraint for which an integrity violation was detected.

■ The value n104_7 in the objname column gives the name of the
constraint for which an integrity violation was detected.

By joining the violations and diagnostics tables, user joe (who owns the
cust_subset target table and its associated special tables) or the DBA can find
out that the row in the violations table whose informix_tupleid value is 1
was created after an INSERT statement and that this row is violating a
constraint. The table owner or DBA can query the sysconstraints system
catalog table to determine that this constraint is a not null constraint. Now
that the reason for the failure of the INSERT statement is known, user joe or
the DBA can take corrective action.

informix_tupleid objtype objowner objname

1 C joe n104_7
SQL Statements 1-659

SET
Multiple Diagnostic Rows for One Violations Row

In the preceding example, only one row in the diagnostics table corresponds
to the new row in the violations table. However, more than one diagnostic
row can be added to the diagnostics table when a single new row is added to
the violations table. For example, if the ssn value (973824499) that user linda
entered in the INSERT statement had been the same as an existing value in the
ssn column of the cust_subset target table, only one new row would appear
in the violations table, but the following two diagnostic rows would be
present in the cust_subset_dia diagnostics table.

Both rows in the diagnostics table correspond to the same row of the
violations table because both of these rows have the value 1 in the
informix_tupleid column. However, the first diagnostic row identifies the
constraint violation caused by the INSERT statement that user linda issued,
while the second diagnostic row identifies the unique-index violation caused
by the same INSERT statement. In this second diagnostic row, the value I in
the objtype column stands for a unique-index violation, and the value
unq_ssn in the objname column gives the name of the index for which the
integrity violation was detected.

For information on when and how to start violations and diagnostics tables
for a target table, see “Violations and Diagnostics Tables for Filtering Mode”
on page 1-650. For further information on the structure of the violations and
diagnostics tables, see the START VIOLATIONS TABLE statement on
page 1-744.

Using Object Modes to Achieve Data Integrity
In addition to using object modes with data manipulation statements, you
can also use object modes when you add a new constraint or new unique
index to a target table. By selecting the correct object mode, you can add the
constraint or index to the target table easily even if existing rows in the target
table violate the new integrity specification.

informix_tupleid objtype objowner objname

1 C joe n104_7

1 I joe unq_ssn
1-660 Informix Guide to SQL: Syntax

SET
You can add a new constraint or index easily by taking the following steps. If
you follow this procedure, you do not have to examine the entire target table
to identify rows that fail to satisfy the constraint or unique-index
requirement:

■ Add the constraint or index in the enabled mode. If all existing rows
in the table satisfy the constraint or unique-index requirement, your
ALTER TABLE or CREATE INDEX statement executes successfully, and
you do not need to take any further steps. However, if any existing
rows in the table fail to satisfy the constraint or unique-index
requirement, your ALTER TABLE or CREATE INDEX statement returns
an error message, and you need to take the following steps.

■ Add the constraint or index in the disabled mode. Issue the ALTER
TABLE statement again, and specify the DISABLED keyword in the
ADD CONSTRAINT or MODIFY clause; or issue the CREATE INDEX
statement again, and specify the DISABLED keyword.

■ Start a violations and diagnostics table for the target table with the
START VIOLATIONS TABLE statement.

■ Issue a SET statement to switch the object mode of the constraint or
index to the enabled mode. When you issue this statement, the
statement fails, and existing rows in the target table that violate the
constraint or the unique-index requirement are duplicated in the
violations table. The constraint or index remains disabled, and you
receive an integrity-violation error message.

■ Issue a SELECT statement on the violations table to retrieve the
nonconforming rows that were duplicated from the target table. You
might need to join the violations and diagnostics tables to get all the
necessary information.

■ Take corrective action on the rows in the target table that violate the
constraint.

■ After you fix all the nonconforming rows in the target table, issue the
SET statement again to switch the disabled constraint or index to the
enabled mode. This time the constraint or index is enabled, and no
integrity-violation error message is returned because all rows in the
target table now satisfy the new constraint or unique-index
requirement.
SQL Statements 1-661

SET
Example of Using Object Modes to Achieve Data Integrity
The following example shows how to use object modes to add a constraint
and unique index to a target table easily. Assume that a user joe has created
a table named cust_subset, and this table consists of the following columns:
ssn (customer’s social security number), fname (customer’s first name),
lname (customer’s last name), and city (city in which the customer lives).

Also assume that no constraints or unique indexes are defined on the
cust_subset table and that the fname column is the primary key. In addition,
assume that no violations and diagnostics tables currently exist for this target
table. Finally, assume that this table currently contains four rows with the
following column values.

Adding the Objects in the Enabled Mode

User joe, the owner of the cust_subset table, enters the following statements
to add a unique index on the ssn column and a not null constraint on the
lname column:

CREATE UNIQUE INDEX unq_ssn ON cust_subset (ssn) ENABLED;
ALTER TABLE cust_subset MODIFY (lname CHAR(15)

NOT NULL CONSTRAINT lname_notblank ENABLED);

Both of these statements fail because existing rows in the cust_subset table
violate the integrity specifications. The row whose fname value is rhonda
violates the not null constraint on the lname column. The row whose fname
value is steve violates both the not null constraint on the lname column and
the unique-index requirement on the ssn column.

ssn fname lname city

111763227 mark jackson sunnyvale

222781244 rhonda NULL palo alto

111763227 steve NULL san mateo

333992276 tammy jones san jose
1-662 Informix Guide to SQL: Syntax

SET
Adding the Objects in the Disabled Mode

To recover from the preceding errors, user joe reenters the CREATE INDEX
and ALTER TABLE statements and specifies the disabled mode in both state-
ments, as follows:

CREATE UNIQUE INDEX unq_ssn ON cust_subset (ssn) DISABLED;
ALTER TABLE cust_subset MODIFY (lname CHAR(15)

NOT NULL CONSTRAINT lname_notblank DISABLED);

Both of these statements execute successfully because the database server
does not enforce unique-index requirements or constraint specifications
when these objects are disabled.

Starting a Violations and Diagnostics Table

Now that the new constraint and index are added for the cust_subset table,
user joe takes steps to find out which existing rows in the cust_subset table
violate the constraint and the index.

First, user joe enters the following statement to start a violations and
diagnostics table for the cust_subset table:

START VIOLATIONS TABLE FOR cust_subset

Because user joe has not assigned names to the violations and diagnostics
tables in this statement, the tables are named cust_subset_vio and
cust_subset_dia by default.

Using the SET Statement to Capture Violations

Now that violations and diagnostics tables exist for the target table, user joe
issues the following SET statement to switch the mode of the new index and
constraint from the disabled mode to the enabled mode:

SET CONSTRAINTS, INDEXES FOR cust_subset ENABLED

The result of this SET statement is that the existing rows in the cust_subset
table that violate the constraint and the unique-index requirement are copied
to the cust_subset_vio violations table, and diagnostic information about the
nonconforming rows is added to the cust_subset_dia diagnostics table. The
SET statement fails, and the constraint and index remain disabled.
SQL Statements 1-663

SET
The following table shows the contents of the cust_subset_vio violations
table after user joe issues the SET statement.

These two rows in the cust_subset_vio violations table have the following
characteristics:

■ The row in the cust_subset target table whose fname value is rhonda
is duplicated to the cust_subset_vio violations table because this
row violates the not null constraint on the lname column.

■ The row in the cust_subset target table whose fname value is steve
is duplicated to the cust_subset_vio violations table because this
row violates the not null constraint on the lname column and the
unique-index requirement on the ssn column.

■ The value 1 in the informix_tupleid column for the first row and the
value 2 in the informix_tupleid column for the second row are
unique serial identifiers assigned to the nonconforming rows.

■ The value S in the informix_optype column for each row is a code
that identifies the type of operation that has caused this noncon-
forming row to be placed in the violations table. Specifically, the S
stands for a SET statement.

■ The value joe in the informix_recowner column for each row
identifies the user who issued the statement that caused this noncon-
forming row to be placed in the violations table.

ssn fname lname city informix_tupleid informix_optype informix_recowner

222781244 rhonda NULL palo alto 1 S joe

111763227 steve NULL san mateo 2 S joe
1-664 Informix Guide to SQL: Syntax

SET
The following table shows contents of the cust_subset_dia diagnostics table
after user joe issues the SET statement.

These three rows in the cust_subset_dia diagnostics table have the following
characteristics:

■ Each row in the diagnostics table and the corresponding row in the
violations table are joined by the informix_tupleid column that
appears in both tables.

■ The first row in the diagnostics table has an informix_tupleid value
of 1. It is joined to the row in the violations table whose
informix_tupleid value is 1. The value C in the objtype column for
this diagnostic row identifies the type of integrity violation that was
caused by the corresponding row in the violations table. Specifically,
the value C stands for a constraint violation. The value
lname_notblank in the objname column for this diagnostic row
gives the name of the constraint for which an integrity violation was
detected.

■ The second row in the diagnostics table has an informix_tupleid
value of 2. It is joined to the row in the violations table whose
informix_tupleid value is 2. The value C in the objtype column for
this second diagnostic row indicates that a constraint violation was
caused by the corresponding row in the violations table. The value
lname_notblank in the objname column for this diagnostic row
gives the name of the constraint for which an integrity violation was
detected.

informix_tupleid objtype objowner objname

1 C joe lname_notblank

2 C joe lname_notblank

2 I joe unq_ssn
SQL Statements 1-665

SET
■ The third row in the diagnostics table has an informix_tupleid value
of 2. It is also joined to the row in the violations table whose
informix_tupleid value is 2. The value I in the objtype column for
this third diagnostic row indicates that a unique-index violation was
caused by the corresponding row in the violations table. The value
unq_ssn in the objname column for this diagnostic row gives the
name of the index for which an integrity violation was detected.

■ The value joe in the objowner column of all three diagnostic rows
identifies the owner of the object for which an integrity violation was
detected. The name of user joe appears in all three rows because he
created the constraint and index on the cust_subset table.

Identifying Nonconforming Rows to Obtain Information

To determine the contents of the violations table, user joe enters a SELECT
statement to retrieve all rows from the table. Then, to obtain complete
diagnostic information about the nonconforming rows, user joe joins the
violations and diagnostics tables by means of another SELECT statement.
User joe can perform these operations either interactively or through a
program.

Taking Corrective Action on the Nonconforming Rows

After the user joe identifies the nonconforming rows in the cust_subset table,
he can correct them. For example, he can enter UPDATE statements on the
cust_subset table either interactively or through a program.

Enabling the Disabled Objects

Once all the nonconforming rows in the cust_subset table are corrected, user
joe issues the following SET statement to set the new constraint and index to
the enabled mode:

SET CONSTRAINTS, INDEXES FOR cust_subset ENABLED

This time the SET statement executes successfully. The new constraint and
new unique index are enabled, and no error message is returned to user joe
because all rows in the cust_subset table now satisfy the new constraint
specification and unique-index requirement.
1-666 Informix Guide to SQL: Syntax

SET
Benefits of Object Modes
The preceding examples show how object modes work when users execute
data manipulation statements on target tables or add new constraints and
indexes to target tables. The preceding examples suggest some of the benefits
of the different object modes. The following sections state these benefits
explicitly.

Benefits of Disabled Mode

The benefits of the disabled mode are as follows:

■ You can use the disabled mode to insert many rows quickly into a
target table. Especially during load operations, updates of the
existing indexes and enforcement of referential constraints make up
a big part of the total cost of the operation. By disabling the indexes
and referential constraints during the load operation, you improve
the performance and efficiency of the load.

■ To add a new constraint or new unique index to an existing table, you
can add the object even if some rows in the table do not satisfy the
new integrity specification. If the constraint or index is added to the
table in disabled mode, your ALTER TABLE or CREATE INDEX
statement does not fail no matter how many existing rows violate the
new integrity requirement.

If a violations table has been started, a SET statement that switches
the disabled objects to the enabled or filtering mode fails, but it
causes the nonconforming rows in the target table to be duplicated
in the violations table so that you can identify the rows and take
corrective action. After you fix the nonconforming rows in the target
table, you can reissue the SET statement to switch the disabled objects
to the enabled or filtering mode.
SQL Statements 1-667

SET
Benefits of Enabled Mode

The enabled mode is the default object mode for all database objects. We can
summarize the benefits of this mode for each type of database object as
follows:

■ The benefit of enabled mode for constraints is that the database
server enforces the constraint and thus ensures the consistency of the
data in the database.

■ The benefit of enabled mode for indexes is that the database server
updates the index after insert, delete, and update operations. Thus
the index is up to date and is used by the optimizer during database
queries.

■ The benefit of enabled mode for triggers is that the trigger event
always sets the triggered action in motion. Thus the purpose of the
trigger is always realized during actual data-manipulation
operations.

Benefits of Filtering Mode

The benefits of setting a constraint or unique index to the filtering mode are
as follows:

■ During load operations, inserts that violate a filtering mode
constraint or unique index do not cause the load operation to fail.
Instead, the database server filters the bad rows to the violations
table and continues the load operation.

■ When an INSERT, DELETE, or UPDATE statement that affects multiple
rows causes a filtering mode constraint or unique index to be
violated for a particular row or rows, the statement does not fail.
Instead, the database server filters the bad row or rows to the viola-
tions table and continues to execute the statement.

■ When any INSERT, DELETE, or UPDATE statement violates a filtering
mode constraint or unique index, the user can identify the failed row
or rows and take corrective action. The violations and diagnostics
tables capture the necessary information, and users can take
corrective action after they analyze this information.
1-668 Informix Guide to SQL: Syntax

SET
Transaction-Mode Format

You can use the transaction-mode format of the SET statement to set the
transaction mode of constraints.

You use the IMMEDIATE keyword to set the transaction mode of constraints
to statement-level checking. You use the DEFERRED keyword to set the trans-
action mode to transaction-level checking.

You can set the transaction mode of constraints only in a database with
logging.

Statement-Level Checking
When you set the transaction mode to immediate, statement-level checking
is turned on, and all specified constraints are checked at the end of each
INSERT, UPDATE, or DELETE statement. If a constraint violation occurs, the
statement is not executed. Immediate is the default transaction mode of
constraints.

Element Purpose Restrictions Syntax
constraint name The name of the constraint

whose transaction mode is to be
changed, or a list of constraint
names. There is no default value.

The specified constraint must
exist in a database with logging.
You cannot change the trans-
action mode of a constraint to
deferred mode unless the
constraint is currently in the
enabled mode. All constraints in
a list of constraints must exist in
the same database.

Identifier, p. 1-962

DEFERRED

IMMEDIATECONSTRAINTS

,
constraint

name

Transaction-Mode Format

ALL
SQL Statements 1-669

SET
Transaction-Level Checking
When you set the transaction mode of constraints to deferred, statement-
level checking is turned off, and all specified constraints are not checked until
the transaction is committed. If a constraint violation occurs while the
transaction is being committed, the transaction is rolled back.

Tip: If you defer checking a primary-key constraint, the checking of the not-null
constraint for that column or set of columns is also deferred.

Duration of Transaction Modes
The duration of the transaction mode that the SET statement specifies is the
transaction in which the SET statement is executed. You cannot execute this
form of the SET statement outside a transaction. Once a COMMIT WORK or
ROLLBACK WORK statement is successfully completed, the transaction mode
of all constraints reverts to IMMEDIATE.

Switching Transaction Modes
To switch from transaction-level checking to statement-level checking, you
can use the SET statement to set the transaction mode to immediate, or you
can use a COMMIT WORK or ROLLBACK WORK statement in your transaction.

Specifying All Constraints or a List of Constraints
You can specify all constraints in the database in your SET statement, or you
can specify a single constraint or list of constraints.

Specifying All Constraints

If you specify the ALL keyword, the SET statement sets the transaction mode
for all constraints in the database. If any statement in the transaction requires
that any constraint on any table in the database be checked, the database
server performs the checks at the statement level or the transaction level,
depending on the setting that you specify in the SET statement.
1-670 Informix Guide to SQL: Syntax

SET
Specifying a List of Constraints

If you specify a single constraint name or a list of constraints, the SET
statement sets the transaction mode for the specified constraints only. If any
statement in the transaction requires checking of a constraint that you did not
specify in the SET statement, that constraint is checked at the statement level
regardless of the setting that you specified in the SET statement for other
constraints.

When you specify a list of constraints, the constraints do not have to be
defined on the same table, but they must exist in the same database.

Specifying Remote Constraints
You can set the transaction mode of local constraints or remote constraints.
That is, the constraints that are specified in the transaction-mode form of the
SET statement can be constraints that are defined on local tables or constraints
that are defined on remote tables.

Examples of Setting the Transaction Mode for Constraints
The following example shows how to defer checking constraints within a
transaction until the transaction is complete. The SET CONSTRAINTS
statement in the example specifies that any constraints on any tables in the
database are not checked until the COMMIT WORK statement is encountered.

BEGIN WORK
SET CONSTRAINTS ALL DEFERRED
.
.
.
COMMIT WORK

The following example specifies that a list of constraints is not checked until
the transaction is complete:

BEGIN WORK
SET CONSTRAINTS update_const, insert_const DEFERRED
.
.
.
COMMIT WORK
SQL Statements 1-671

SET
References
See the START VIOLATIONS TABLE and STOP VIOLATIONS TABLE statements
in this manual.

For information on the system catalog tables associated with the SET
statement, see the sysobjstate and sysviolations tables in the Informix Guide
to SQL: Reference.
1-672 Informix Guide to SQL: Syntax

SET AUTOFREE
SET AUTOFREE
The SET AUTOFREE statement enables the AUTOFREE feature for cursors in an
INFORMIX-ESQL/C application.

Syntax

Element Purpose Restrictions Syntax
cursor id The name of a cursor for which

the AUTOFREE feature is enabled
or disabled

The cursor must be declared
within the program.

Identifier, p. 1-962

cursor variable A host variable that holds the
value of cursor id

The host variable must store the
name of a cursor that is declared
within the program.

Variable name must
conform to
language-specific
rules for variable
names.

SET AUTOFREE

cursor id

cursor variable

FOR

+

E/C

DISABLED

ENABLED

DISABLED

ENABLED
SQL Statements 1-673

SET AUTOFREE
Usage
The Automatic-FREE feature (AUTOFREE) is one of the ESQL/C optimization
features that can minimize network traffic when an ESQL/C application
fetches rows from a database server. When the AUTOFREE feature is enabled,
ESQL/C saves a round trip of message requests because it does not need to
send the FREE statement to the database server for execution. Instead, the
database server automatically frees a cursor when it closes this cursor. If this
cursor has an associated prepared statement, the database server also frees
the prepared statement.

The SET AUTOFREE statement allows an ESQL/C application to:

■ enable the AUTOFREE feature.

Use the ENABLED option of the SET AUTOFREE statement.

■ disable the AUTOFREE feature.

Use the DISABLED option of the SET AUTOFREE statement.

If you do not specify either option, the default is ENABLED. The following SET
AUTOFREE statement enables the AUTOFREE feature for all cursors in the
application:

EXEC SQL set autofree;

ENABLED Option
The ENABLED option of the SET AUTOFREE statement enables the AUTOFREE
feature within the ESQL/C application. You can use the SET AUTOFREE
statement in two modes:

■ Global-AUTOFREE mode

This mode affects all cursors that are declared or opened after this
SET AUTOFREE statement executes. The upper part of the syntax
diagram represents the global-AUTOFREE mode.

■ Cursor-AUTOFREE mode

This mode affects a particular cursor that is prepared or opened after
this SET AUTOFREE statement executes. The lower part of the syntax
diagram represents the cursor-AUTOFREE mode.
1-674 Informix Guide to SQL: Syntax

SET AUTOFREE
When you execute the SET AUTOFREE statement in either of these modes, the
AUTOFREE feature only takes affect on a cursor if that cursor is declared or
opened after this SET AUTOFREE statement executes.

Important: You can also set the IFX_AUTOFREE environment variable to one (1) to
enable the AUTOFREE feature. For more information on the IFX_AUTOFREE envi-
ronment variable, see the “Using the IFX_AUTOFREE Environment Variable” on
page 1-680.

Once you enable the AUTOFREE feature on a cursor, you cannot open the
cursor a second time; the database server automatically frees the cursor when
it closes it the first time. For more information, see “Implicit Closing of
Cursors” on page 1-681.

Using Global-AUTOFREE Mode

In global-AUTOFREE mode, the ENABLED option of SET AUTOFREE statement
enables the AUTOFREE feature for all cursors that are subsequently declared
or opened in the program. After the database server closes a cursor, it
automatically frees this cursor only if the cursor has been declared or opened
after this SET AUTOFREE statement executes.

The following SET AUTOFREE statement enables the AUTOFREE feature for all
cursors that are subsequently declared or opened in the application:

EXEC SQL set autofree enabled;

If you omit the ENABLED or DISABLED option in the SET AUTOFREE
statement, the AUTOFREE feature is enabled for all subsequent cursors by
default. The following SET AUTOFREE statement also enables the AUTOFREE
feature for all subsequently declared or opened cursors:

EXEC SQL set autofree;
SQL Statements 1-675

SET AUTOFREE
The following code fragment shows how the ENABLED option of the SET
AUTOFREE statement automatic frees memory for all subsequent cursors:

/* Declare curs1 cursor for stmt1 prepared statement */
EXEC SQL prepare stmt1 from 'select a from tab_x';
EXEC SQL declare curs1 cursor for stmt1;

/* Open curs1 cursor and fetch the contents. */
EXEC SQL open curs1;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs1 into :a;
printf("a=%d\n", a);
}

/* Declare curs2 cursor for stmt2 prepared statement */
EXEC SQL prepare stmt2 from 'select * from tab_x';
EXEC SQL declare curs2 cursor for stmt2;

/* Enable autofree feature for all subsequent cursors. */
EXEC SQL set autofree enabled;

/* Open curs2 cursor and fetch the contents. */
EXEC SQL open curs2;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs2 into :a, :b, :c, :d;
printf("a=%d b=%d c=%d d=%d\n", a, b, c, d);
}

/* Declare curs3 cursor for stmt3 prepared statement */
EXEC SQL prepare stmt3 from 'select a, b from tab_x';
EXEC SQL declare curs3 cursor for stmt3;

/* Open curs3 cursor and fetch the contents. */
EXEC SQL open curs3;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs3 into :a, :b;
printf("a=%d b=%d\n", a, b);
}

1-676 Informix Guide to SQL: Syntax

SET AUTOFREE
In the preceding code fragment, the SET AUTOFREE statement enables the
AUTOFREE feature for the following cursors:

■ For the curs2 cursor because curs2 is opened after SET AUTOFREE
executes

■ For the curs3 cursor because curs3 is declared and opened after SET
AUTOFREE executes

However, this SET AUTOFREE statement does not enable the AUTOFREE
feature for the curs1 cursor because this cursor is neither declared nor opened
after the SET AUTOFREE statement executes.

Using Cursor-AUTOFREE Mode

In cursor-AUTOFREE mode, the ENABLED option of the SET AUTOFREE
statement enables the AUTOFREE feature for only the cursor that you specify
after the FOR keyword. After the database server closes the specified cursor,
it automatically frees this cursor only if the cursor has been declared or
opened after this SET AUTOFREE statement executes. You can specify the
cursor by its cursor identifier or by a host variable that contains the cursor
identifier.

The following SET AUTOFREE statement enables the AUTOFREE feature for
the x1 cursor if it is subsequently declared or opened in the application:

EXEC SQL set autofree enabled for x1;

If you omit the ENABLED or DISABLED option in the SET AUTOFREE
statement, the AUTOFREE feature is enabled for the specified cursor by
default. The following SET AUTOFREE statement also enables the AUTOFREE
feature for the x1 cursor:

EXEC SQL set autofree for x1;
SQL Statements 1-677

SET AUTOFREE
In the following code fragment, the SET AUTOFREE statement enables the
AUTOFREE feature for the cursor named curs3:

/* Declare curs1 cursor for stmt1 prepared statement */
EXEC SQL prepare stmt1 from 'select a from tab_x';
EXEC SQL declare curs1 cursor for stmt1;

/* Open curs1 cursor and fetch the contents. */
EXEC SQL open curs1;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs1 into :a;
printf("a=%d\n", a);
}

/* Declare curs2 cursor for stmt2 prepared statement */
EXEC SQL prepare stmt2 from 'select * from tab_x';
EXEC SQL declare curs2 cursor for stmt2;

/* Enable autofree feature for the curs3 cursor. */
EXEC SQL set autofree enabled for curs3;

/* Open curs2 cursor and fetch the contents. */
EXEC SQL open curs2;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs2 into :a, :b, :c, :d;
printf("a=%d b=%d c=%d d=%d\n", a, b, c, d);
}

/* Declare curs3 cursor for stmt3 prepared statement */
EXEC SQL prepare stmt3 from 'select a, b from tab_x';
EXEC SQL declare curs3 cursor for stmt3;

/* Open curs3 cursor and fetch the contents. */
EXEC SQL open curs3;
while (sqlca.sqlcode == 0)

{
EXEC SQL fetch curs3 into :a, :b;
printf("a=%d b=%d\n", a, b);
}

In the preceding code fragment, the SET AUTOFREE statement enables the
AUTOFREE feature only for the curs3 cursor. Even though the curs2 cursor is
opened after this SET AUTOFREE executes, this cursor is not AUTOFREE-
enabled because the SET AUTOFREE statement has specified only the curs3
cursor.
1-678 Informix Guide to SQL: Syntax

SET AUTOFREE
DISABLED Option
The DISABLED option of the SET AUTOFREE statement disables the
AUTOFREE feature within the ESQL/C application. This option works with
both modes of the SET AUTOFREE statement:

■ Global-AUTOFREE mode

This mode affects all cursors that are declared or opened after this
SET AUTOFREE statement executes. The upper part of the syntax
diagram represents the global-AUTOFREE mode.

■ Cursor-AUTOFREE mode

This mode affects a particular cursor that is prepared or opened after
this SET AUTOFREE statement executes. The lower part of the syntax
diagram represents the cursor-AUTOFREE mode.

Important: You can also set the IFX_AUTOFREE environment variable to zero (0) to
disable the AUTOFREE feature. For more information on the IFX_AUTOFREE envi-
ronment variable, see the “Using the IFX_AUTOFREE Environment Variable” on
page 1-680.

Using Global-AUTOFREE Mode

In global-AUTOFREE mode, the DISABLED option of SET AUTOFREE
statement disables the AUTOFREE feature for all cursors that are subsequently
declared or opened in the program. However, the SET AUTOFREE DISABLED
statement does not disable the AUTOFREE feature for any cursor that has
already been opened.

The following example shows how to use the DISABLED option to disable
automatic freeing of memory for all subsequent cursors:

EXEC SQL set autofree disabled;
SQL Statements 1-679

SET AUTOFREE
Using Cursor-AUTOFREE Mode

In cursor-AUTOFREE mode, the DISABLED option of the SET AUTOFREE
statement disables the AUTOFREE feature for only the cursor that you specify
after the FOR keyword. You can specify the cursor by its cursor identifier or
by a host variable that contains the cursor identifier.

When you specify the DISABLED option for a specific cursor, the database
server automatically frees that cursor only. The following SET AUTOFREE
statement disables the AUTOFREE feature for a cursor named x1:

EXEC SQL set autofree disabled for x1;

One advantage of cursor-AUTOFREE mode is that you can use it to override
a global setting for all cursors. For example, if you issue a SET AUTOFREE
ENABLED statement to enable the AUTOFREE feature for all cursors in a
program, you can issue a subsequent SET AUTOFREE DISABLED FOR
statement to disable the AUTOFREE feature for a particular cursor.

In the following example, the first statement enables the AUTOFREE feature
for all cursors, while the second statement disables the AUTOFREE feature for
the particular cursor named x1:

EXEC SQL set autofree enabled;
EXEC SQL set autofree disabled for x1;

Using the IFX_AUTOFREE Environment Variable
You can also enable or disable the AUTOFREE feature with the
IFX_AUTOFREE environment variable, as follows:

■ Set this environment variable to 1 to enable the AUTOFREE feature for
every cursor in every thread of the application.

■ Set this environment variable to 0 to disable the AUTOFREE feature for
every cursor in every thread of the application.

If you do not set the IFX_AUTOFREE environment variable, the AUTOFREE
feature is disabled. However, in each thread, a SET AUTOFREE statement
overrides the value of the IFX_AUTOFREE environment variable.
1-680 Informix Guide to SQL: Syntax

SET AUTOFREE
The IFX_AUTOFREE environment variable works only with client applica-
tions such as those written in INFORMIX-ESQL/C. This environment variable
has no effect on Informix database utilities such as DB-Access, dbload,
dbimport, dbexport, and dbschema.

For more information on the IFX_AUTOFREE environment variable, see the
Informix Guide to SQL: Reference.

Implicit Closing of Cursors
If you do not close the cursor explicitly, and then you open it again, the
database server implicitly closes the cursor before it can reopen it. If the
cursor has the AUTOFREE feature enabled, this implicit close of the cursor
triggers the AUTOFREE feature. The second open of the cursor generates an
error message (cursor not found) because the database server has already
freed the cursor.

References
See the DECLARE, OPEN, FETCH, CLOSE, FREE, and PREPARE statements in
this manual. For another ESQL/C optimization, see the SET
DEFERRED_PREPARE statement.

In the INFORMIX-ESQL/C Programmer’s Manual, see the chapter on how to
use dynamic SQL for information on the AUTOFREE feature.
SQL Statements 1-681

SET CONNECTION
SET CONNECTION
The SET CONNECTION statement reestablishes a connection between an
application and a database environment and makes the connection current.
You can also use the SET CONNECTION statement with the DORMANT option
to put the current connection in a dormant state.

Syntax

Element Purpose Restrictions Syntax
connection
name

Quoted string that identifies the
connection name that you
assigned to a specific
connection. It is the connection
name assigned by the CONNECT
statement when the initial
connection was made.

The database must already exist. If
you use the SET CONNECTION
statement with the DORMANT
option, connection name must
represent the current connection.
If you use the SET CONNECTION
statement without the DORMANT
option, connection name must
represent a dormant connection.

Quoted String,
p. 1-1010

conn_nm
variable

Host variable that contains the
value of connection name

Variable must be the character
data type.

Variable name must
conform to
language-specific
rules for variable
names.

'connection name'SET CONNECTION

conn_nm variable

+

DEFAULT

Database
Environment

p. 1-103

CURRENT

DORMANT

+

+

+
E/C

E/C
DORMANT

E/C
1-682 Informix Guide to SQL: Syntax

SET CONNECTION
Usage
You can use the SET CONNECTION statement to change the state of a
connection in the following ways:

■ Make a dormant connection current

For information on using SET CONNECTION to make a dormant
connection current, see “Making a Dormant Connection the Current
Connection”.

■ Make the current connection dormant

For information on using SET CONNECTION to make the current
connection dormant, see “Making a Current Connection Dormant”
on page 1-684.

Making a Dormant Connection the Current Connection
The SET CONNECTION statement, with no DORMANT option, makes the
specified dormant connection the current one. The connection that the appli-
cation specifies must be dormant. The connection that is current when the
statement executes becomes dormant. A dormant connection is a connection
that has been established but is not current.

The SET CONNECTION statement in the following example makes connection
con1 the current connection and makes con2 a dormant connection:

CONNECT TO 'stores7' AS 'con1'
...
CONNECT TO 'demo7' AS 'con2'
...
SET CONNECTION 'con1'

A dormant connection has a connection context associated with it. When an
application makes a dormant connection current, it reestablishes that
connection to a database environment and restores its connection context.
(For more information on connection context, see page 1-100.) Reestablishing
a connection is comparable to establishing the initial connection, except that
it typically avoids authenticating the user’s permissions again, and it saves
reallocating resources associated with the initial connection. For example, the
application does not need to reprepare any statements that have previously
been prepared in the connection nor does it need to redeclare any cursors.
SQL Statements 1-683

SET CONNECTION
Making a Current Connection Dormant
The SET CONNECTION statement with the DORMANT option makes the
specified current connection a dormant connection. For example, the
following SET CONNECTION statement makes connection con1 dormant:

SET CONNECTION 'con1' DORMANT

The SET CONNECTION statement with the DORMANT option generates an
error if you specify a connection that is already dormant. For example, if
connection con1 is current and connection con2 is dormant, the following
SET CONNECTION statement returns an error message:

SET CONNECTION 'con2' DORMANT

However, the following SET CONNECTION statement executes successfully:

SET CONNECTION 'con1' DORMANT

Dormant Connections in a Single-Threaded Environment

In a single-threaded application (an ESQL/C application that does not use
threads), the DORMANT option makes the current connection dormant. The
availability of the DORMANT option in single-threaded applications makes
single-threaded ESQL/C applications upwardly compatible with thread-safe
ESQL/C applications.

Dormant Connections in a Thread-Safe ESQL/C Environment

As in a single-threaded application, a thread-safe ESQL/C application (an
ESQL/C application that uses threads) can establish many connections to one
or more databases. However, in the single-threaded environment, only one
connection can be active while the program executes. In the thread-safe
environment, there can be many threads (concurrent pieces of work
performing particular tasks) in one ESQL/C application, and each thread can
have one active connection.

E/C
1-684 Informix Guide to SQL: Syntax

SET CONNECTION
An active connection is associated with a particular thread. Two threads
cannot share the same active connection. Once a thread makes an active
connection dormant, that connection is available to other threads. A dormant
connection is still established but is not currently associated with any thread.
For example, if the connection named con1 is active in the thread named
thread_1, the thread named thread_2 cannot make connection con1 its
active connection until thread_1 has made connection con1 dormant.

In a thread-safe ESQL/C application, the DORMANT option makes an active
connection dormant. Another thread can now use the connection by issuing
the SET CONNECTION statement without the DORMANT option.

The following code fragment from a thread-safe ESQL/C program shows
how a particular thread within a thread-safe application makes a connection
active, performs work on a table through this connection, and then makes the
connection dormant so that other threads can use the connection:

thread_2()
{ /* Make con2 an active connection */

EXEC SQL connect to 'db2' as 'con2';
/*Do insert on table t2 in db2*/
EXEC SQL insert into table t2 values(10);
/* make con2 available to other threads */
EXEC SQL set connection 'con2' dormant;

}
.
.
.

If a connection to a database environment is initiated with the WITH
CONCURRENT TRANSACTION clause of the CONNECT statement, an ongoing
transaction can used by any thread that subsequently connects to that
database environment. In addition, if an open cursor is associated with such
a connection, the cursor remains open when the connection is made dormant.
Threads within a thread-safe ESQL/C application can use the same cursor by
making the associated connection current even though only one thread can
use the connection at any given time.

For a detailed discussion of thread-safe ESQL/C applications and the use of
the SET CONNECTION statement in these applications, see the
INFORMIX-ESQL/C Programmer’s Manual. ♦
SQL Statements 1-685

SET CONNECTION
Identifying the Connection
If the application did not use connection name in the initial CONNECT
statement, you must use a database environment (such as a database name or
a database pathname) as the connection name. For example, the following
SET CONNECTION statement uses a database environment for the connection
name because the CONNECT statement does not use connection name. For
information about quoted strings that contain a database environment, see
“Database Environment” on page 1-103.

CONNECT TO 'stores7'
...
CONNECT TO 'demo7'
...
SET CONNECTION 'stores7'

If a connection to a database server was assigned a connection name, however,
you must use the connection name to reconnect to the database server. An
error is returned if you use a database environment rather than the
connection name when a connection name exists.

DEFAULT Option
Use the DEFAULT option to identify the default connection for a SET
CONNECTION statement. The default connection is one of the following
connections:

■ An explicit default connection (a connection established with the
CONNECT TO DEFAULT statement)

■ An implicit default connection (any connection made using the
DATABASE, CREATE DATABASE, or START DATABASE statements)

You can use SET CONNECTION without a DORMANT option to reestablish the
default connection or with the DORMANT option to make the default
connection dormant. See “DEFAULT Option” on page 1-100 and “Implicit
Connection with DATABASE Statements” on page 1-101 for more
information.
1-686 Informix Guide to SQL: Syntax

SET CONNECTION
CURRENT Keyword
Use the CURRENT keyword with the DORMANT option of the SET
CONNECTION statement as a shorthand form of identifying the current
connection. The CURRENT keyword replaces the current connection name. If
the current connection is con1, the following two statements are equivalent:

SET CONNECTION 'con1' DORMANT;

SET CONNECTION CURRENT DORMANT;

When a Transaction is Active
When you issue a SET CONNECTION statement without the DORMANT
option, the SET CONNECTION statement implicitly puts the current
connection in the dormant state. When you issue a SET CONNECTION
statement (with the DORMANT option), the SET CONNECTION statement
explicitly puts the current connection in the dormant state. In either case, the
statement can fail if a connection that becomes dormant has an uncommitted
transaction.

If the connection that becomes dormant has an uncommitted transaction, the
following conditions apply:

■ If the connection was established with the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, the SET
CONNECTION statement succeeds and puts the connection in a
dormant state.

■ If the connection was established without the WITH CONCURRENT
TRANSACTION clause of the CONNECT statement, the SET
CONNECTION statement fails and cannot set the connection to a
dormant state and the transaction in the current connection
continues to be active. The statement generates an error and the
application must decide whether to commit or roll back the active
transaction.
SQL Statements 1-687

SET CONNECTION
When Current Connection Is to INFORMIX-OnLine Dynamic Server
Prior to Version 6.0

If the current connection is to a version of the OnLine database server prior
to 6.0, the following conditions apply when a SET CONNECTION statement
with or without the DORMANT option executes:

■ If the connection to be made dormant was established using the
WITH CONCURRENT TRANSACTION clause of the CONNECT
statement, the application can switch to a different connection.

■ If the connection to be made dormant was established without the
WITH CONCURRENT TRANSACTION clause of the CONNECT
statement, the application cannot switch to a different connection; the
SET CONNECTION statement returns an error. The application must
use the CLOSE DATABASE statement to close the database and drop
the connection.

References
See the CONNECT, DISCONNECT, and DATABASE statements in this manual.

In the INFORMIX-ESQL/C Programmer’s Manual, see the discussions of the
SET CONNECTION statement and thread-safe applications.
1-688 Informix Guide to SQL: Syntax

SET DATASKIP
SET DATASKIP
The SET DATASKIP statement allows you to control whether Universal Server
skips a dbspace that is unavailable (for example, due to a media failure) in the
course of processing a transaction.

Syntax

Usage
Use the SET DATASKIP statement to instruct the database server to skip a
dbspace that is unavailable during the course of processing a transaction.

You receive a warning if a dbspace is skipped. The warning flag
sqlca.sqlwarn.sqlwarn6 is set to W if a dbspace is skipped. For more infor-
mation about this topic, see the INFORMIX-ESQL/C Programmer’s Manual. ♦

Element Purpose Restrictions Syntax
dbspace The name of the skipped

dbspace
The dbspace must exist at the
time the statement is executed.

Identifier, p. 1-962

SET DATASKIP ON

OFF

DEFAULT

,

dbspace

+

E/C

DB

SQLE

ESQL
SQL Statements 1-689

SET DATASKIP
When you SET DATASKIP ON without specifying a dbspace, you are telling
the database server to skip any dbspaces in the fragmentation list that are
unavailable. You can use the onstat -d or -D utility to determine if a dbspace
is down.

When you SET DATASKIP ON dbspace, you are telling the database server to
skip the specified dbspace if it is unavailable.

Use the SET DATASKIP OFF statement to turn off the dataskip feature.

When the setting is DEFAULT, the database server uses the setting for the
dataskip feature from the ONCONFIG file. The Universal Server adminis-
trator can change the setting of the dataskip feature at runtime. See the
INFORMIX-Universal Server Administrator’s Guide for more information.

Under What Circumstances Is a Dbspace Skipped?

The database server skips a dbspace when SET DATASKIP is set to ON and the
dbspace is unavailable. The database server cannot skip a dbspace under
certain conditions. The following list outlines those conditions:

■ Referential constraint checking

When you want to delete a parent row, the child rows must also be
available for deletion. The child rows must exist in an available
fragment.

When you want to insert a new child table, the parent table must be
found in the available fragments.

■ Updates

When you perform an update that moves a record from one
fragment to another, both fragments must be available.

■ Inserts

When you try to insert records in a expression-based fragmentation
strategy and the dbspace is unavailable, an error is returned. When
you try to insert records in a round-robin fragment-based strategy,
and a dbspace is down, the database server inserts the rows in any
available dbspace. When no dbspace is available, an error is
returned.
1-690 Informix Guide to SQL: Syntax

SET DATASKIP
■ Indexing

When you perform updates that affect the index, such as when you
insert or delete records, or when you update an indexed field, the
index must be available.

When you try to create an index, the dbspace you want to use must
be available.

■ Serial keys

The first fragment is used to store the current serial-key value inter-
nally. This is not visible to you except when the first fragment
becomes unavailable and a new serial key value is required, which
happens during insert statements.

References
For additional information about how to set the dataskip feature in the
ONCONFIG file and how to use the onspaces utility, see the
INFORMIX-Universal Server Administrator’s Guide.
SQL Statements 1-691

SET DEBUG FILE TO
SET DEBUG FILE TO
Use the SET DEBUG FILE TO statement to name the file that is to hold the run-
time trace output of a stored procedure.

Syntax

Element Purpose Restrictions Syntax
character
expression

An expression that evaluates to a
filename

The filename that is derived
from the expression must be
usable. The same restrictions
apply to the derived filename as
to the filename parameter.

Expression, p. 1-876

filename A quoted string that identifies
the pathname and filename of
the file that contains the output
of the TRACE statement. See
“Location of the Output File” on
page 1-694 for information on
the default actions that are taken
if you omit the pathname.

You can specify a new or existing
file. If you specify an existing
file, you must include the WITH
APPEND keywords if you want
to preserve the current contents
of the file intact. See “Using the
WITH APPEND Option” on
page 1-693 for further
information.

Quoted String,
p. 1-1010. The
pathname and
filename must
conform to the
conventions of your
operating system.

variable name A host variable that holds the
value of filename

The host variable must be a
character data type.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

filename'SET DEBUG FILE TO '

WITH APPENDvariable name

character
expression

+

E/C

DB

SQLE
1-692 Informix Guide to SQL: Syntax

SET DEBUG FILE TO
Usage
This statement indicates that the output of the TRACE statement in the stored
procedure goes to the file that filename indicates. Each time the TRACE
statement is executed, the trace data is added to this output file.

Using the WITH APPEND Option

The output file that you specify in the SET DEBUG TO file statement can be a
new file or existing file.

If you specify an existing file, the current contents of the file are purged when
you issue the SET DEBUG TO FILE statement. The first execution of a TRACE
command sends trace output to the beginning of the file.

However, if you include the WITH APPEND option, the current contents of the
file are preserved when you issue the SET DEBUG TO FILE statement. The first
execution of a TRACE command adds trace output to the end of the file.

If you specify a new file in the SET DEBUG TO FILE statement, it makes no
difference whether you include the WITH APPEND option. The first execution
of a TRACE command sends trace output to the beginning of the new file
whether you include or omit the WITH APPEND option.

Closing the Output File

To close the file that the SET DEBUG FILE TO statement opened, issue another
SET DEBUG FILE TO statement with another filename. You can then edit the
contents of the first file.

Redirecting Trace Output

You can use the SET DEBUG FILE TO statement outside a procedure to direct
the trace output of the procedure to a file. You also can use this statement
inside a procedure to redirect its own output.
SQL Statements 1-693

SET DEBUG FILE TO
Location of the Output File

If you invoke a SET DEBUG FILE TO statement with a simple filename on a
local database, the output file is located in your current directory. If your
current database is on a remote database server, the output file is located in
your home directory on the remote database server. If you provide a full
pathname for the debug file, the file is placed in the directory and file that you
specify on the remote database server. If you do not have write permissions
in the directory, you get an error.

Example of the SET DEBUG FILE TO Statement

The following example sends the output of the SET DEBUG FILE TO statement
to a file called debugging.out:

SET DEBUG FILE TO 'debugging' || '.out'

References
See the TRACE statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of stored procedures
in Chapter 14.
1-694 Informix Guide to SQL: Syntax

SET DEFERRED_PREPARE
SET DEFERRED_PREPARE
The SET DEFERRED_PREPARE statement enables or disables the Deferred-
PREPARE feature for cursors in an INFORMIX-ESQL/C application program.

Syntax

Usage
The Deferred-PREPARE feature is one of the ESQL/C optimization features
that can minimize network traffic when an ESQL/C application receives rows
from a database server. When the Deferred-PREPARE feature is enabled,
ESQL/C saves a round trip of message requests because it does not need to
send the PREPARE statement separately to the database server for execution.
Instead, ESQL/C sends the PREPARE and OPEN statements to the database
server at the same time.

The SET DEFERRED_PREPARE statement allows an ESQL/C application to:

■ enable the Deferred-PREPARE feature.

Use the ENABLED option of the SET DEFERRED_PREPARE statement.

■ disable the Deferred-PREPARE feature.

Use the DISABLED option of the SET DEFERRED_PREPARE statement.

If you do not specify either option, the default is ENABLED. The following SET
DEFERRED_PREPARE statement enables the Deferred-PREPARE feature for all
prepared statements in the application:

EXEC SQL set deferred_prepare;

SET DEFERRED_PREPARE

E/C

+

ENABLED

DISABLED
SQL Statements 1-695

SET DEFERRED_PREPARE
ENABLED Option
The ENABLED option enables the Deferred-PREPARE feature within the
ESQL/C application. The following SET DEFERRED_PREPARE statement
enables the Deferred-PREPARE feature:

EXEC SQL set deferred_prepare enabled;

ESQL/C automatically defers execution of any prepared statement that is
prepared after this SET DEFERRED_PREPARE statement executes.

Important: You can also use the IFX_DEFERRED_PREPARE environment variable
to enable the Deferred-PREPARE feature. For more information on the
IFX_DEFERRED_PREPARE environment variable, see the “Using the
IFX_DEFERRED_PREPARE Environment Variable” on page 1-697.

When you enable the Deferred-PREPARE feature, the application then
exhibits the following behavior:

■ The sequence PREPARE/EXECUTE returns an error on the EXECUTE
statement.

The Deferred-PREPARE feature does not defer the execution of a
PREPARE statement until an EXECUTE statement. This feature is
meant to work primarily with PREPARE, DECLARE, OPEN sequences
that operate with the FETCH or PUT statements. If you enable the
Deferred-PREPARE feature before such a PREPARE/EXECUTE
sequence executes, the EXECUTE statement generates an error.

■ The sequence PREPARE/DESCRIBE/OPEN returns an error on the
DESCRIBE statement.

A DESCRIBE statement must execute on a prepared statement after
the associated cursor has been opened with an OPEN statement. The
following sequence of statements is valid: PREPARE, DECLARE,
OPEN, DESCRIBE. If you enable the Deferred-PREPARE feature before
such a PREPARE/DESCRIBE/OPEN sequence executes, the DESCRIBE
statement generates an error.

■ The sequence PREPARE, DECLARE, OPEN sends the PREPARE
statement to the database server with the OPEN statement.

If a prepared statement contains syntax errors, the database server
does not return error messages to the application until the appli-
cation has declared a cursor for the prepared statement and opened
the cursor.
1-696 Informix Guide to SQL: Syntax

SET DEFERRED_PREPARE
DISABLED Option
The DISABLED option disables the Deferred-PREPARE feature within the
ESQL/C application. The following SET DEFERRED_PREPARE statement
disables the Deferred-PREPARE feature:

EXEC SQL set deferred_prepare disabled;

ESQL/C atomically resumes execution of any prepared statement when the
PREPARE statement after this SET DEFERRED_PREPARE statement executes.
None of the application restrictions listed in “ENABLED Option” on
page 1-674 applies when the Deferred-PREPARE feature is disabled.

Using the IFX_DEFERRED_PREPARE Environment Variable
You can also enable or disable the Deferred-PREPARE feature with the
IFX_DEFERRED_PREPARE environment variable, as follows:

■ Set this environment variable to 1 to enable the Deferred-PREPARE
feature for every prepared statement in every thread of the
application.

■ Set this environment variable to 0 to disable the Deferred-PREPARE
feature for every prepared statement in every thread of the
application.

If you do not set the IFX_DEFERRED_PREPARE environment variable, the
Deferred-PREPARE feature is disabled. However, in each thread, a SET
DEFERRED_PREPARE statement overrides the value of the
IFX_DEFERRED_PREPARE environment variable.

The IFX_DEFERRED_PREPARE environment variable works only with client
applications such as those written in INFORMIX-ESQL/C. This environment
variable has no effect on Informix database utilities such as DB-Access,
dbexport, dbimport, dbload, and dbschema.

For further information on the IFX_DEFERRED_PREPARE environment
variable, see the Informix Guide to SQL: Reference.
SQL Statements 1-697

SET DEFERRED_PREPARE
References
See the DECLARE, DESCRIBE, EXECUTE, OPEN, and PREPARE statements in
this manual. For another ESQL/C optimization, see the SET AUTOFREE
statement.

In the INFORMIX-ESQL/C Programmer’s Manual, see the chapter on how to
use dynamic SQL for information on the Deferred-PREPARE feature.
1-698 Informix Guide to SQL: Syntax

SET DESCRIPTOR
SET DESCRIPTOR
Use the SET DESCRIPTOR statement to assign values to a system-descriptor
area.

Syntax

Item
Descriptor
Information

literal integer

=

TYPE

LENGTH

PRECISION

SCALE

NULLABLE

INDICATOR

ITYPE

IDATA

ILENGTH

NAME

=

Literal Number p. 1-997

Literal INTERVAL p. 1-994

Literal DATETIME p. 1-991

Quoted String p. 1-1010

data variable

integer-host
variable

DATA

EXTYPEID

EXTYPELENGTH

EXTYPEOWNERLENGTH

EXTYPENAME

EXTYPEOWNERNAME

SOURCEID

SOURCETYPE

value'descriptor '

item
number

SET
DESCRIPTOR

descriptor
variable ,

item number
variable

VALUE

COUNT =

Item
Descriptor
Information

count
variable

ESQL

+

SQL Statements 1-699

SET DESCRIPTOR
Element Purpose Restrictions Syntax
count variable A host variable that holds a

literal integer. This integer
specifies how many items are
actually described in the system-
descriptor area.

See restriction for value in this
table.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

data variable A host variable that contains the
information for the specified
field (DATA, IDATA, or NAME) in
the specified item descriptor

The information that is
contained in data variable must be
appropriate for the specified
field.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

descriptor A quoted string that identifies
the system-descriptor area to
which values will be assigned

The system-descriptor area must
have been previously allocated
with the ALLOCATE
DESCRIPTOR statement.

Quoted String,
p. 1-1010

descriptor
variable

A host variable that holds the
value of descriptor

The same restrictions apply to
descriptor variable as apply to
descriptor.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

integer host
variable

The name of a host variable that
contains the value of literal
integer

The same restrictions apply to
integer host variable as apply to
literal integer.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

item number An unsigned integer that
specifies one of the occurrences
(item descriptors) in the system-
descriptor area

The value of item number must be
greater than 0 and less than (or
equal to) the number of occur-
rences that were specified when
the system-descriptor area was
allocated with the ALLOCATE
DESCRIPTOR statement.

Literal Number,
p. 1-997

 (1 of 2)
1-700 Informix Guide to SQL: Syntax

SET DESCRIPTOR
item number
variable

The name of an integer host
variable that holds the value of
item number

The same restrictions apply to
item number variable as apply to
item number.

The name of the host
variable must
conform to
language-specific
rules for variable
names.

literal integer A positive, nonzero integer that
assigns a value to the specified
field in the specified item
descriptor. The specified field
must be one of the following
keywords: TYPE, LENGTH,
PRECISION, SCALE, NULLABLE,
INDICATOR, ITYPE, or ILENGTH.

The restrictions that apply to
literal integer vary with the field
type you specify in the VALUE
option (TYPE, LENGTH, and so
on). For information on the
codes that are allowed for the
TYPE field and their meaning,
see “Setting the TYPE Field” on
page 1-704. For the restrictions
that apply to other field types,
see the individual headings for
field types under “VALUE
Clause” on page 1-703.

Literal Number,
p. 1-997

value A literal integer that specifies
how many items are actually
described in the system-
descriptor area

The integer that value specifies
must be greater than 0 and less
than (or equal to) the number of
occurrences that were specified
when the system-descriptor area
was allocated with the
ALLOCATE DESCRIPTOR
statement.

Literal Number,
p. 1-997

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-701

SET DESCRIPTOR
Usage
The SET DESCRIPTOR statement can be used after you have described SELECT,
EXECUTE FUNCTION, and INSERT statements with the DESCRIBE...USING SQL
DESCRIPTOR statement. The SET DESCRIPTOR statement can assign values to
a system-descriptor area in the following instances:

■ To set the COUNT field of a system-descriptor area to match the
number of items for which you are providing descriptions in the
system-descriptor area

■ To set the item descriptor for each value for which you are providing
descriptions in the system-descriptor area

■ To modify the contents of an item-descriptor field

If an error occurs during the assignment to any field in a system-descriptor
area, the contents of all identified fields are set to 0 or null, depending on the
variable type.

Using the COUNT Keyword

Use the COUNT keyword to set the number of items that are to be used in the
system-descriptor area (typically the items are in a WHERE clause). If you
allocate a system-descriptor area with more items than you are using, you
need to set the COUNT field to the number of items that you are actually
using.
1-702 Informix Guide to SQL: Syntax

SET DESCRIPTOR
The following example shows the sequence of statements in
INFORMIX-ESQL/C that can be used in a program:

EXEC SQL BEGIN DECLARE SECTION;
int count;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate descriptor 'desc_100'; /*allocates for 100 items*/

count = 2;
EXEC SQL set descriptor 'desc_100' count = :count;

VALUE Clause

Use the VALUE clause to assign values from host variables into fields for a
particular item in a system-descriptor area. You can assign values for items
for which you are providing a description (such as parameters in a WHERE
clause), or you can modify values for items after you use the DESCRIBE
statement to fill the fields for a SELECT or an INSERT statement.

The item number must be greater than zero and less than the number of
occurrences that were specified when you allocated the system-descriptor
area with the ALLOCATE DESCRIPTOR statement.
SQL Statements 1-703

SET DESCRIPTOR
Setting the TYPE Field

Use the following codes to set the value of TYPE for each item.

These TYPE constants are the same values that the coltype column in the
syscolumns system catalog table.

SQL Data Type Integer Value
CHAR 0
SMALLINT 1
INTEGER 2
FLOAT 3
SMALLFLOAT 4
DECIMAL 5
SERIAL 6
DATE 7
MONEY 8
DATETIME 10
BYTE 11
TEXT 12
VARCHAR 13
INTERVAL 14
NCHAR 15
NVARCHAR 16
INT8 17
SERIAL8 18
SET 19
MULTISET 20
LIST 21
ROW 22
COLLECTION 23
Varying-length opaque type 40
Fixed-length opaque type 41
LVARCHAR (client-side only) 43
BOOLEAN 45
1-704 Informix Guide to SQL: Syntax

SET DESCRIPTOR
For code that is easier to maintain, use the predefined constants for these SQL
data types instead of their actual integer value. These constants are defined
in the sqltypes.h header file. However, you cannot use the actual constant
name in the SET DESCRIPTOR statement. Instead, assign the constant to an
integer host variable and specify the host variable in the SET DESCRIPTOR
statement.

The following example shows how you can set the TYPE field in ESQL/C:

main()
{
EXEC SQL BEGIN DECLARE SECTION;

int itemno, type;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL allocate descriptor 'desc1' with max 5;
...
type = SQLINT; itemno = 3;
EXEC SQL set descriptor 'desc1' value :itemno type = :type;
}

Compiling without the -xopen option

If you do not compile using the -xopen option, the regular Informix SQL code
is assigned for TYPE. You must be careful not to mix normal and X/Open
modes because errors can result. For example, if a particular type is not
defined under X/Open mode but is defined under normal mode, executing a
SET DESCRIPTOR statement can result in an error.

Setting the TYPE field in X/Open programs

In X/Open mode, you must use the X/Open set of integer codes for the data
type in the TYPE field. The following table shows the X/Open codes for data
types.

SQL Data Type Integer Value
CHAR 1
SMALLINT 4
INTEGER 5
FLOAT 6
DECIMAL 3

X/O
SQL Statements 1-705

SET DESCRIPTOR
If you use the ILENGTH, IDATA, or ITYPE fields in a SET DESCRIPTOR
statement, a warning message appears. The warning indicates that these
fields are not standard X/Open fields for a system-descriptor area.

For code that is easier to maintain, use the predefined constants for these
X/Open SQL data types instead of their actual integer value. These constants
are defined in the sqlxtype.h header file. However, you cannot use the actual
constant name in the SET DESCRIPTOR statement. Instead, assign the constant
to an integer host variable and specify the host variable in the SET
DESCRIPTOR statement.♦

Setting the DATA Field

When you set the DATA field, you must provide the appropriate type of data
(character string for CHAR or VARCHAR, integer for INTEGER, and so on).

When any value other than DATA is set, the value of DATA is undefined. You
cannot set the DATA field for an item without setting TYPE for that item. If you
set the TYPE field for an item to a character type, you must also set the
LENGTH field. If you do not set the LENGTH field for a character item, you
receive an error.

Using LENGTH or ILENGTH

If your DATA or IDATA field contains a character string, you must specify a
value for LENGTH. If you specify LENGTH=0, LENGTH sets automatically to
the maximum length of the string. The DATA or IDATA field can contain a 368-
literal character string or a character string derived from a character variable
of CHAR or VARCHAR data type. This provides a method to determine the
length of a string in the DATA or IDATA field dynamically.

If a DESCRIBE statement precedes a SET DESCRIPTOR statement, DESCRIBE
automatically sets LENGTH to the maximum length of the character field that
is specified in your table.

This information is identical for ILENGTH. Use ILENGTH when you create a
dynamic program that does not comply with the X/Open standard.
1-706 Informix Guide to SQL: Syntax

SET DESCRIPTOR
Using DECIMAL or MONEY Data Types

If you set the TYPE field for a DECIMAL or MONEY data type, and you want
to use a scale or precision other than the default values, set the SCALE and
PRECISION fields. You do not need to set the LENGTH field for a DECIMAL or
MONEY item; the LENGTH field is set accordingly from the SCALE and
PRECISION fields.

Using DATETIME or INTERVAL Data Types

If you set the TYPE field for a DATETIME or INTERVAL value, you can set the
DATA field as a literal DATETIME or INTERVAL or as a character string. If you
use a character string, you must set the LENGTH field to the encoded qualifier
value.

To determine the encoded qualifiers for a DATETIME or INTERVAL character
string, use the datetime and interval macros in the datetime.h header file.

If you set DATA to a host variable of DATETIME or INTERVAL, you do not need
to set LENGTH explicitly to the encoded qualifier integer.

Setting the Indicator Fields

If you want to put a null value in the system-descriptor area, set the following
item-descriptor fields:

■ Set the INDICATOR field to -1, and do not set the DATA field.

If you set the INDICATOR field to 0 to indicate that the data is not
null, you must set the DATA field.

■ The ITYPE field expects an integer constant that indicates the data
type of your indicator variable.

Use the same set of constants as for the TYPE field. The constants are
listed on page 1-704.
SQL Statements 1-707

SET DESCRIPTOR
Setting Opaque-Type Fields

The following item-descriptor fields provide information about a column
that has an opaque type as its data type:

■ The EXTYPEID field stores the extended identifier for the opaque
type.

This integer value must correspond to a value in the extended_id
column of the sysxtdtypes system catalog table.

■ The EXTYPENAME field stores the name of the opaque type.

This character value must correspond to a value in the name column
of the row with the matching extended_id value in the sysxtdtypes
system catalog table.

■ The EXTYPELENGTH field stores the length of the opaque-type name.

This integer value is the length, in bytes, of the string in the
EXTYPENAME field.

■ The EXTYPEOWNERNAME field stores the name of the opaque-type
owner.

This character value must correspond to a value in the owner
column of the row with the matching extended_id value in the
sysxtdtypes system catalog table.

■ The EXTYPEOWNERLENGTH field stores the length of the value in
the EXTTYPEOWNERNAME field.

This integer value is the length, in bytes, of the string in the
EXTYPEOWNERNAME field.

For more information on the sysxtdtypes system catalog table, see Chapter 1
of the Informix Guide to SQL: Reference.
1-708 Informix Guide to SQL: Syntax

SET DESCRIPTOR
Setting Distinct-Type Fields

The following item-descriptor fields provide information about a column
that has an distinct type as its data type:

■ The SOURCEID field stores the extended identifier for the source data
type.

Set this field if the source type of the distinct type is an opaque data
type. This integer value must correspond to a value in the source
column for the row of the sysxtdtypes system catalog table whose
extended_id value matches that of the distinct type you are setting.

■ The SOURCETYPE field stores the data-type constant for the source
data type.

This value is the data-type constant for the built-in data type that is
the source type for the distinct type. The codes for the SOURCETYPE
field are the same as those for the TYPE field (page 1-699). This
integer value must correspond to the value in the type column for
the row of the sysxtdtypes system catalog table whose extended_id
value matches that of the distinct type you are setting.

For more information on the sysxtdtypes system catalog table, see Chapter 1
of the Informix Guide to SQL: Reference.

Modifying Values Set by the DESCRIBE Statement

You can use a DESCRIBE statement to modify the contents of a system-
descriptor area after it is set.

After you use a DESCRIBE statement on SELECT or an INSERT statement, you
must check to determine whether the TYPE field is set to either 11 or 12 to
indicate a TEXT or BYTE data type. If TYPE contains an 11 or a 12, you must
use the SET DESCRIPTOR statement to reset TYPE to 116, which indicates FILE
type.
SQL Statements 1-709

SET DESCRIPTOR
References
See the ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DECLARE,
DESCRIBE, EXECUTE, FETCH, GET DESCRIPTOR, OPEN, PREPARE, and PUT
statements in this manual for further information about using dynamic SQL
statements.

For further information about the system-descriptor area, see the
INFORMIX-ESQL/C Programmer’s Manual.
1-710 Informix Guide to SQL: Syntax

SET EXPLAIN
SET EXPLAIN
Use the SET EXPLAIN statement to obtain a measure of the work involved in
performing a query.

Syntax

Usage
The SET EXPLAIN statement executes during the database server
optimization phase, which occurs when you initiate a query. For queries that
are associated with a cursor, if the query is prepared and does not have host
variables, optimization occurs when you prepare it; otherwise, it occurs
when you open the cursor.

When you issue a SET EXPLAIN ON statement, the path that the optimizer
chooses for each subsequent query is written to the sqexplain.out file. The
SET EXPLAIN ON statement remains in effect until you issue a SET EXPLAIN
OFF statement or until the program ends. The owner name (for example,
owner.customer) qualifies table names in the sqexplain.out file.

If the file already exists, subsequent output is appended to the file. If the
client application and the database server are on the same computer, the
sqexplain.out file is stored in your current directory.

When the current database is on another computer, the sqexplain.out file is
stored in your home directory on the remote host. If you do not have a home
directory on the remote host, the program stores sqexplain.out in the
directory from which the database server was started.

+

E/C

DB

SQLE

ONSET EXPLAIN

OFF
SQL Statements 1-711

SET EXPLAIN
SET EXPLAIN Output
The SET EXPLAIN output file contains a copy of the query, a plan of execution
that the database-server optimizer selects, and an estimate of the amount of
work. The optimizer selects a plan to provide the most efficient way to
perform the query, based on such things as the presence and type of indexes
and the number of rows in each table.

The optimizer uses an estimate to compare the cost of one path with another.
The estimated cost does not translate directly into time. However, when data
distributions are used, a query with a higher estimate generally takes longer
to run than one with a smaller estimate.

The estimated cost of the query is included in the SET EXPLAIN output. In the
case of a query and a subquery, two estimated cost figures are returned; the
query figure also contains the subquery cost. The subquery cost is shown
only so you can see the cost that is associated with the subquery.

In addition to the estimated cost, the output file contains the following
information:

■ An estimate of the number of rows to be returned

■ The order in which tables are accessed during execution

■ The table column or columns that serve as a filter, if any, and whether
the filtering occurs through an index

■ The method (access path) by which the executor reads each table.
The following list shows the possible methods.

Method Effect

SEQUENTIAL SCAN Reads rows in sequence

INDEX PATH Scans one or more indexes

AUTOINDEX PATH Creates a temporary index

SORT SCAN Sorts the result of the preceding join or table scan

MERGE JOIN Uses a sort/merge join instead of nested-loop join

REMOTE PATH Accesses another distributed database

HASH JOIN Uses a hash join
1-712 Informix Guide to SQL: Syntax

SET EXPLAIN
The optimizer chooses the best path of execution to produce the fastest
possible table join using a nested-loop join or sort-merge join wherever
appropriate.

The SORT SCAN section indicates that sorting the result of the preceding join
or table scan is necessary for a sort-merge join. It includes a list of the columns
that form the sort key. The order of the columns is the order of the sort. As
with indexes, the default order is ascending. Where possible, this ordering is
arranged to support any requested ORDER BY or GROUP BY clause. If the
ordering can be generated from a previous sort or an index lookup, the SORT
SCAN section does not appear.

The MERGE JOIN section indicates that a sort-merge join, instead of the
nested-loop join, is to be used on the preceding join/table pair. It includes a
list of the filters that control the sort-merge join and, where applicable, a list
of any other join filters. For example, a join of tables A and B with the filters
A.c1 = B.c1 and A.c2 < B.c2 lists the first join under “Merge Filters” and
the second join under “Other Join Filters.”

The DYNAMIC HASH JOIN section indicates that a hash join is to be used on
the preceding join/table pair. It includes a list of the filters used to join the
tables together.

A dynamic hash join uses one of the tables to construct a hash index and adds
the index for the other table into the hash index. This is referred to as the build
phase. If DYNAMIC HASH JOIN is followed by the (Build Outer) in the output,
then the build phase is occurring on the first table; otherwise it occurs on the
second table, preceding the DYNAMIC HASH JOIN. In the following example,
the build phase occurs on table username.a:

SELECT a.adatetime FROM manytypes a, alltypes b
WHERE a.adatetime = b.adate and a.along + 7 = b.along/3

Estimated Cost: 10
Estimated # of Rows Returned: 2

1) username.a: SEQUENTIAL SCAN
2) username.b: SEQUENTIAL SCAN

DYNAMIC HASH JOIN
Dynamic Hash Filters: username.a.adatetime =
username.b.adate and a.along + 7 = b.along/3

The following output examples represent what you might see when a SET
EXPLAIN ON statement is issued using INFORMIX-Universal Server.
SQL Statements 1-713

SET EXPLAIN
The first two examples contain two entries for a multiple-table query and
show the SORT SCAN and MERGE JOIN lines. Note that in both cases, if SORT
MERGE was not chosen, the second table would have been scanned using an
autoindex path. An autoindex path is an index constructed automatically at
execution time by the database server. It is removed when the query
completes.

QUERY:

select i.stock_num from items i, stock s, manufact m

where i.stock_num = s.stock_num
and i.manu_code = s.manu_code
and s.manu_code = m.manu_code

Estimated Cost: 52
Estimated # of Rows Returned: 130

1) rdtest.m: SEQUENTIAL SCAN

SORT SCAN: rdtest.m.manu_code

2) rdtest.s: SEQUENTIAL SCAN

SORT SCAN: rdtest.s.manu_code

MERGE JOIN:
 Merge Filters: rdtest.m.manu_code = rdtest.s.manu_code

3) rdtest.i: INDEX PATH

(1) Index Keys: stock_num manu_code
 Lower Index Filter: (rdtest.i.stock_num = rdtest.s.stock_num AND
 rdtest.i.manu_code = rdtest.s.manu_code)

QUERY:

select stock.description from stock, stock2

where stock.description = stock2.description
and stock.unit_price < stock2.unit_price

Estimated Cost: 15
Estimated # of Rows Returned: 370

1) rdtest.stock: SEQUENTIAL SCAN

SORT SCAN: rdtest.stock.description

2) rdtest.stock2: SEQUENTIAL SCAN

SORT SCAN: rdtest.stock2.description

MERGE JOIN
 Merge Filters: rdtest.stock2.description = rdtest.stock.description
 Other Join Filters: rdtest.stock.unit_price < rdtest.stock2.unit_price
1-714 Informix Guide to SQL: Syntax

SET EXPLAIN
The following example shows the SET EXPLAIN output for a simple query
and a complex query from the customer table:

QUERY:

SELECT fname, lname, company FROM customer

Estimated Cost: 3
Estimated # of Rows Returned: 28

1) joe.customer: SEQUENTIAL SCAN

QUERY:

SELECT fname, lname, company FROM customer

WHERE company MATCHES 'Sport*' AND customer_num BETWEEN 110 AND 115
ORDER BY lname;

Estimated Cost: 4
Estimated # of Rows Returned: 1
Temporary Files Required For: Order By

1) joe.customer: INDEX PATH

Filters: joe.customer.company MATCHES 'Sport*'

 (1) Index Keys: customer_num
Lower Index Filter: joe.customer.customer_num >= 110
Upper Index Filter: joe.customer.customer_num <= 115

The following example shows the SET EXPLAIN output for a multiple-table
query:

QUERY:

SELECT * FROM customer, orders, items

WHERE customer.customer_num = orders.customer_num
AND orders.order_num = items.order_num

Estimated Cost: 20
Estimated # of Rows Returned: 69

1) joe.orders: SEQUENTIAL SCAN

2) joe.customer: INDEX PATH

 (1) Index Keys: customer_num
 Lower Index Filter: joe.customer.customer_num = joe.orders.customer_num

3) joe.items: INDEX PATH

(1) Index Keys: order_num
Lower Index Filter: joe.items.order_num = joe.orders.order_num
SQL Statements 1-715

SET EXPLAIN
SET EXPLAIN Output with Fragmentation and PDQ
When the table is fragmented, the output shows which table or index is
scanned. Fragments are identified with a fragment number. The fragment
numbers are the same as those contained in the dbspace column in the
sysfragments system catalog table. If the optimizer must scan all fragments
(that is, if it is unable to eliminate any fragment from consideration), the
optimizer indicates this with ALL. In addition, if the optimizer eliminates all
the fragments from consideration, that is, none of the fragments contain the
queried information, the optimizer indicates this with NONE. For infor-
mation on how Universal Server eliminates a fragment from consideration,
see the INFORMIX-Universal Server.

When PDQ is turned on, the output shows whether the optimizer used
parallel scans. If the optimizer used parallel scans, the output shows
PARALLEL; if PDQ is turned off, the output shows SERIAL. If PDQ is turned
on, the optimizer indicates the maximum number of threads that are required
to answer the query. The output shows # of Secondary Threads. This field
indicates the number of threads that are required in addition to your user
session thread. The total number of threads necessary is the number of
secondary threads plus 1.

The output indicates when a hash join is used. The query is marked with
DYNAMIC HASH JOIN, and the table on which the hash is built is marked with
Build Outer.

The following example shows the SET EXPLAIN output for a table with
fragmentation and PDQ priority set to low:

select * from t1 where c1 > 20

Estimated Cost: 2
Estimated # of Rows Returned: 2

1) informix.t1: SEQUENTIAL SCAN (Parallel, fragments: 2)

 Filters: informix.t1.c1 > 20

of Secondary Threads = 1
1-716 Informix Guide to SQL: Syntax

SET EXPLAIN
The following example of SET EXPLAIN output shows a table with
fragmentation but without PDQ:

select * from t1 where c1 > 12

Estimated Cost: 3
Estimated # of Rows Returned: 2

1) informix.t1: SEQUENTIAL SCAN (Serial, fragments: 1, 2)

Filters: informix.t1.c1 > 12

The following example of SET EXPLAIN output shows a table with hash join
(fragmentation, and PDQ priority set to ON). The hash join is created when
you create an equality join between two tables that are not indexed.

QUERY:

select h1.c1, h2.c1 from h1, h2 where h1.c1=h2.c1

Estimated Cost: 2
Estimated # of Rows Returned: 5

1) informix.h1: SEQUENTIAL SCAN (Parallel, fragments: ALL)

2) informix.h2: SEQUENTIAL SCAN (Parallel, fragments: ALL)

DYNAMIC HASH JOIN (Build Outer)
 Dynamic Hash Filters: informix.h1.c1 = informix.h2.c1

of Secondary Threads = 6

The following example of SET EXPLAIN output shows a table with
fragmentation, with PDQ priority set to LOW, and an index that was selected
as the search method:

QUERY:

select * from t1 where c1 < 13

Estimated Cost: 2
Estimated # of Rows Returned: 1

1) informix.t1: INDEX PATH

 (1) Index Keys: c1 (Parallel, fragments: ALL)
 Upper Index Filter: informix.t1.c1 < 13

of Secondary Threads = 3
SQL Statements 1-717

SET EXPLAIN
Using SET EXPLAIN With SET OPTIMIZATION
If you SET OPTIMIZATION to low, the output of SET EXPLAIN displays the
following uppercase string:

QUERY:{LOW}

If you SET OPTIMIZATION to high, the output of SET EXPLAIN displays the
following uppercase string:

QUERY:

SET EXPLAIN Output With Table Inheritance
The SET EXPLAIN statement returns information about the table inheritance
that a query uses. Suppose you a super table, super_tab, and two subtables,
sub_tab11 and sub_tab21. In addition, you have a subtable sub_tab22 that is
derived from sub_tab21. The following SQL statements create this table
inheritance:

CREATE ROW TYPE super_tab (id INTEGER, a SMALLINT);
CREATE ROW TYPE sub_tab21 (b INTEGER) UNDER super_tab;
CREATE ROW TYPE sub_tab22 (C DECIMAL(5,2)) UNDER sub_tab21;
CREATE ROW TYPE sub_tab11 (d CHAR(5)) UNDER super_tab;

Suppose further that you now run the following query (with SET EXPLAIN set
to ON):

SELECT DISTINCT TYPE id FROM super_tab WHERE a IN (15, -23, 42, 17);

The following example shows the SET EXPLAIN output for this query:

select distinct type id from super_tab where a in (15, -23, 42, 17);

Estimated Cost: 12
Estimated # of Rows Returned: 1

1) USERNAME.super_tab: SEQUENTIAL SCAN (Serial)
USERNAME.sub_tab21: SEQUENTIAL SCAN (Serial)
USERNAME.sub_tab11: SEQUENTIAL SCAN (Serial)
USERNAME.sub_tab22: SEQUENTIAL SCAN (Serial)

Filters: USERNAME.super_tab.a IN (15, -23, 43, 17)

Reference
In the INFORMIX-Universal Server Performance Guide, see the discussion of
SET EXPLAIN and the optimizer discussion.
1-718 Informix Guide to SQL: Syntax

SET ISOLATION
SET ISOLATION
Use the SET ISOLATION statement with INFORMIX-Universal Server to define
the degree of concurrency among processes that attempt to access the same
rows simultaneously.

The SET ISOLATION statement is an Informix extension to the ANSI SQL-92
standard. If you want to set isolation levels through an ANSI-compliant
statement, use the SET TRANSACTION statement instead. See the SET
TRANSACTION statement on page 1-738 for a comparison of these two
statements.

Syntax

Usage
The database isolation level affects read concurrency when rows are retrieved
from the database. Universal Server uses shared locks to support four levels
of isolation among processes attempting to access data.

The update or delete process always acquires an exclusive lock on the row
that is being modified. The level of isolation does not interfere with rows that
you are updating or deleting. If another process attempts to update or delete
rows that you are reading with an isolation level of Repeatable Read, that
process will be denied access to those rows.

DIRTY READSET ISOLATION TO

COMMITTED READ

CURSOR STABILITY

REPEATABLE READ

+

E/C

DB

SQLE
SQL Statements 1-719

SET ISOLATION
Cursors that are currently open when you execute the SET ISOLATION
statement might or might not use the new isolation level when rows are later
retrieved. The isolation level in effect could be any level that was set from the
time the cursor was opened until the time the application actually fetches a
row. The database server might have read rows into internal buffers and
internal temporary tables using the isolation level that was in effect at that
time. To ensure consistency and reproducible results, close open cursors
before you execute the SET ISOLATION statement. ♦

Informix Isolation Levels
The following definitions explain the critical characteristics of each isolation
level, from the lowest level of isolation to the highest.

Isolation Level Characteristics

Dirty Read Provides zero isolation. Dirty Read is appropriate for static
tables that are used for queries. With a Dirty Read isolation
level, a query might return a phantom row, which is an uncom-
mitted row that was inserted or modified within a transaction
that has subsequently rolled back. No other isolation level
allows access to a phantom row. Dirty Read is the only
isolation level available to databases that do not have
transactions.

Committed Read Guarantees that every retrieved row is committed in the table
at the time that the row is retrieved. Even so, no locks are
acquired. After one process retrieves a row because no lock is
held on the row, another process can acquire an exclusive lock
on the same row and modify or delete data in the row.
Committed Read is the default level of isolation in a database
with logging that is not ANSI compliant.

 (1 of 2)

ESQL
1-720 Informix Guide to SQL: Syntax

SET ISOLATION
Default Isolation Levels

The default isolation level for a particular database is established when you
create the database according to database type. The following list describes
the default isolation level for each database type.

Cursor Stability Acquires a shared lock on the selected row. Another process
can also acquire a shared lock on the same row, but no process
can acquire an exclusive lock to modify data in the row. When
you fetch another row or close the cursor, Universal Server
releases the shared lock.

If you set the isolation level to Cursor Stability, but you are not
using a transaction, the Cursor Stability isolation level acts
like the Committed Read isolation level. Locks are acquired
when the isolation level is set to Cursor Stability outside a
transaction, but they are released immediately at the end of
the statement that reads the row.

Repeatable Read Acquires a shared lock on every row that is selected during the
transaction. Another process can also acquire a shared lock on
a selected row, but no other process can modify any selected
row during your transaction. If you repeat the query during
the transaction, you reread the same information. The shared
locks are released only when the transaction commits or rolls
back. Repeatable Read is the default isolation level in an ANSI-
compliant database.

Isolation Level Database Type

Dirty Read Default level of isolation in a database without logging

Committed Read Default level of isolation in a database with logging that is not
ANSI compliant

Repeatable Read Default level of isolation in an ANSI-compliant database

Isolation Level Characteristics

 (2 of 2)
SQL Statements 1-721

SET ISOLATION
The default level remains in effect until you issue a SET ISOLATION statement.
After a SET ISOLATION statement executes, the new isolation level remains in
effect until one of the following events occurs:

■ You enter another SET ISOLATION statement.

■ You open another database that has a default isolation level different
from the isolation level that your last SET ISOLATION statement
specified.

■ The program ends.

Effects of Isolation Levels
You cannot set the database isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Dirty Read.

You can issue a SET ISOLATION statement from a client computer only after a
database has been opened.

The data obtained during blob retrieval can vary, depending on the database
isolation level. Under Dirty Read or Committed Read levels of isolation, a
process is permitted to read a blob that is either deleted (if the delete is not
yet committed) or in the process of being deleted. Under these isolation
levels, an application can read a deleted blob when certain conditions exist.
See the INFORMIX-Universal Server Administrator’s Guide for information
about these conditions.

When you use DB-Access, you see more lock conflicts with higher levels of
isolation. For example, if you use Cursor Stability, you see more lock conflicts
than if you use Committed Read. ♦

If you use a scroll cursor in a transaction, you can force consistency between
your temporary table and the database table either by setting the isolation
level to Repeatable Read or by locking the entire table during the transaction.

If you use a scroll cursor with hold in a transaction, you cannot force consis-
tency between your temporary table and the database table. A table-level
lock or locks that are set by Repeatable Read are released when the
transaction is completed, but the scroll cursor with hold remains open
beyond the end of the transaction. You can modify released rows as soon as
the transaction ends, but the retrieved data in the temporary table might be
inconsistent with the actual data. ♦

DB

ESQL
1-722 Informix Guide to SQL: Syntax

SET ISOLATION
References
See the CREATE DATABASE, SET LOCK MODE, and SET TRANSACTION
statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of isolation levels in
Chapter 7.
SQL Statements 1-723

SET LOCK MODE
SET LOCK MODE
Use the SET LOCK MODE statement to define how the database server
handles a process that tries to access a locked row or table.

Syntax

Element Purpose Restrictions Syntax
seconds The maximum number of

seconds that a process waits for a
lock to be released. If the lock is
still held at the end of the
waiting period, the database
server ends the operation and
returns an error code to the
process.

In a networked environment, the
DBA establishes a default value
for the waiting period by using
the ONCONFIG parameter
DEADLOCK_TIMEOUT. See
“WAIT Keyword” on page 1-725
for an explanation of when the
seconds parameter overrides the
DEADLOCK_TIMEOUT
parameter.

Literal Number,
p. 1-997

NOT WAIT

+

E/C

DB

SQLE

 WAIT

 seconds

SET LOCK MODE TO
1-724 Informix Guide to SQL: Syntax

SET LOCK MODE
Usage
You can direct the response of the database server in the following ways
when a process tries to access a locked row or table.

The SET LOCK MODE statement is available on computers that use kernel
locking. To determine whether your computer uses kernel locking, check the
directory that holds the database files. If the directory contains files with the
extension .lok, your system does not use kernel locking, and the SET LOCK
MODE statement is unavailable.

WAIT Keyword
The database server protects against the possibility of a deadlock when you
request the WAIT option. Before the database server suspends a process, it
checks whether suspending the process could create a deadlock. If the
database server discovers that a deadlock could occur, it ends the operation
(overruling your instruction to wait) and returns an error code. In the case of
either a suspected or actual deadlock, the database server returns an error.

Cautiously use the unlimited waiting period that was created when you
specify the WAIT option without seconds. If you do not specify an upper limit,
and the process that placed the lock somehow fails to release it, suspended
processes could wait indefinitely. Because a true deadlock situation does not
exist, the database server does not take corrective action.

Lock Mode Effect

NOT WAIT Ends the operation immediately and returns an error code.
This condition is the default.

WAIT Suspends the process until the lock releases

WAIT seconds Suspends the process until the lock releases or until the end of
a waiting period, which is specified in seconds. If the lock
remains after the waiting period, it ends the operation and
returns an error code.
SQL Statements 1-725

SET LOCK MODE
In a networked environment, the DBA uses the ONCONFIG parameter
DEADLOCK_TIMEOUT to establish a default value for seconds. If you use a SET
LOCK MODE statement to set an upper limit, your value applies only when
your waiting period is shorter than the system default. The number of
seconds that the process waits applies only if you acquire locks within the
current database server and a remote database server within the same
transaction.

References
See the LOCK TABLE, UNLOCK TABLE, SET ISOLATION, and SET
TRANSACTION statements in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of SET LOCK MODE
in Chapter 7.
1-726 Informix Guide to SQL: Syntax

SET LOG
SET LOG
Use the SET LOG statement to change your database server logging mode
from buffered transaction logging to unbuffered transaction logging or vice
versa.

Syntax

Usage
You activate transaction logging when you create a database or add logging
to an existing database. These transaction logs can be buffered or unbuffered.

The default condition for transaction logs is unbuffered logging. As soon as
a transaction ends, the database server writes the transaction to the disk. If a
system failure occurs when you are using unbuffered logging, you recover all
completed transactions.

You gain a marginal increase in efficiency with buffered logging, but you
incur some risk. In the event of a system failure, the database server cannot
recover the completed transactions that were buffered in memory.

The SET LOG statement changes the transaction-logging mode to unbuffered
logging; the SET BUFFERED LOG statement changes the mode to buffered
logging.

The SET LOG statement redefines the mode for the current session only. The
default mode, which the Universal Server administrator sets using
ON-Monitor, remains unchanged.

SET LOG

BUFFERED

+

E/C

DB

SQLE
SQL Statements 1-727

SET LOG
 The buffering option does not affect retrievals from external tables. For
distributed queries, a database with logging can retrieve only from databases
with logging, but it makes no difference whether the databases use buffered
or unbuffered logging.

An ANSI-compliant database cannot use buffered logs. ♦

References
See the CREATE DATABASE and START DATABASE statements in this manual.

ANSI
1-728 Informix Guide to SQL: Syntax

SET OPTIMIZATION
SET OPTIMIZATION
Use the SET OPTIMIZATION statement to specify a high or low level of
database server optimization.

Syntax

Usage
You can execute a SET OPTIMIZATION statement at any time. The
optimization level carries across databases but applies only within the
current database server.

After a SET OPTIMIZATION statement executes, the new optimization level
remains in effect until you enter another SET OPTIMIZATION statement or
until the program ends.

The default database server optimization level, HIGH, remains in effect until
you issue another SET OPTIMIZATION statement. The LOW option invokes a
less sophisticated, but faster, optimization algorithm.

The algorithm that a SET OPTIMIZATION HIGH statement invokes is a
sophisticated, cost-based strategy that examines all reasonable choices and
selects the best overall alternative. For large joins, this algorithm can incur
more overhead than desired. In extreme cases, you can run out of memory.

SET OPTIMIZATION

LOW

HIGH

+

E/C

DB

SQLE
SQL Statements 1-729

SET OPTIMIZATION
The alternative algorithm that a SET OPTIMIZATION LOW statement invokes
eliminates unlikely join strategies during the early stages, which reduces the
time and resources spent during optimization. However, when you specify a
low level of optimization, the optimal strategy might not be selected because
it was eliminated from consideration during early stages of the algorithm.

The following example shows optimization across a network. The central
database (on computer 1) is to have LOW optimization; the western database
(on computer 2) is to have HIGH optimization. If the western database were
on the same computer as central, it would have LOW optimization.

CONNECT TO 'central';
SET OPTIMIZATION low;
SELECT catalog.*, description, unit_price, unit,

unit_descr, manu_name, lead_time
FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

CLOSE DATABASE;
CONNECT TO 'western@rockie';
SET OPTIMIZATION low;
SELECT catalog.*, description, unit_price, unit,

unit_descr, manu_name, lead_time
FROM catalog, stock, manufact
WHERE catalog.stock_num = stock.stock_num

AND stock.manu_code = manufact.manu_code
AND catalog_num = 10025

Optimizing SPL Routines

In earlier Informix products, the term stored procedure was used for both SPL
procedures and SPL functions. In Universal Server, the term SPL routine is
used for both SPL procedures and SPL functions.

For SPL routines that remain unchanged or change only slightly, you might
want to set the SET OPTIMIZATION statement to HIGH when you create the
routine. This optimization level stores the best query plans for the routine.
Then SET OPTIMIZATION to LOW before you execute the routine. The routine
then uses the optimal query plans and runs at the more cost-effective rate.

References
In the INFORMIX-Universal Server Performance Guide, see the discussion of
optimizing queries.
1-730 Informix Guide to SQL: Syntax

SET PDQPRIORITY
SET PDQPRIORITY
The SET PDQPRIORITY statement allows an application to set the query
priority level dynamically within an application.

Syntax

Usage
Priority set with the SET PDQPRIORITY statement overrides the environment
variable PDQPRIORITY. However, no matter what priority value you set with
the SET PDQPRIORITY statement, the ONCONFIG configuration parameter
MAX_PDQPRIORITY determines the actual priority value that the INFORMIX-
Universal Server uses for your queries.

Element Purpose Restrictions Syntax
percent-of-
resources

An integer value that specifies
the query priority level and the
amount of resources the
database server uses in order to
process the query

You must specify a value in the
following range: -1, 0, 1 to 100.
The values -1, 0, and 1 have
special meanings. See “Meaning
of SET PDQPRIORITY Param-
eters” on page 1-732 for an
explanation of these values.

Literal Number,
p. 1-997

SET PDQPRIORITY DEFAULT

OFF

HIGH

percent-of-resources

LOW

+

E/C

DB

SQLE
SQL Statements 1-731

SET PDQPRIORITY
For example, assume that the DBA has set the MAX_PDQPRIORITY parameter
to 50. A user enters the following SET PDQPRIORITY statement to set the
query priority level to 80.

SET PDQPRIORITY 80

When it processes the user’s query, Universal Server uses the value of the
MAX_PDQPRIORITY parameter to factor the query priority level set by the
user. Universal Server silently processes the query with a priority level of 40.
This priority level represents 50 percent of the 80 percent of resources
specified by the user.

Meaning of SET PDQPRIORITY Parameters
The parameters that the SET PDQPRIORITY statement can use are shown in
the following table.

Parameter Meaning

DEFAULT Uses the value that is specified in the PDQPRIORITY environment
variable, if any. DEFAULT is the symbolic equivalent of -1.

LOW Signifies that data is fetched from fragmented tables in parallel.
Universal Server uses no other forms of parallelism. LOW is the
symbolic equivalent of 1.

OFF Indicates that PDQ is turned off. Universal Server uses no paral-
lelism. OFF is the symbolic equivalent of 0. OFF is the default
setting if you do not specify the PDQPRIORITY environment
variable or the SET PDQPRIORITY statement.

 (1 of 2)
1-732 Informix Guide to SQL: Syntax

SET PDQPRIORITY
References
For information about the PDQPRIORITY environment variable, see the
Informix Guide to SQL: Reference. See the INFORMIX-Universal Server Admin-
istrator’s Guide for information about the ONCONFIG parameter
MAX_PDQPRIORITY.

HIGH Signifies that the database server determines an appropriate value
to use for PDQPRIORITY. This decision is based on several things,
including the number of available processors, the fragmentation of
the tables being queried, the complexity of the query, and so on.
Informix reserves the right to change the performance behavior of
queries when HIGH is specified in future releases.

percent-of-
resources

Indicates a query priority level and indicates the percent of
resources a database server uses in order to answer the query.
Resources include the amount of memory and the number of
processors. The higher the number, the more resources the
database server uses. Although usually the more resources a
database server uses indicates better performance for a given
query, using too many resources can cause contention among the
resources and remove resources from other queries, which results
in degraded performance. Range = -1, 0, 1 to 100.

Parameter Meaning

 (2 of 2)
SQL Statements 1-733

SET ROLE
SET ROLE
Use the SET ROLE statement to enable the privileges of a role.

Syntax

Usage
Any user who is granted a role can enable the role using the SET ROLE
statement. A user can enable only one role at a time. If a user executes the SET
ROLE statement after a role is already set, the new role replaces the old role.

All users are, by default, assigned the role NULL or NONE (NULL and NONE
are synonymous). The roles NULL and NONE have no privileges. When you
set the role to NULL or NONE, you disable the current role.

Element Purpose Restrictions Syntax

role name Name of the role that you want
to enable

The role must have been created
with the CREATE ROLE
statement.

Identifier, p. 1-962

SET ROLE role name

NULL

NONE

+

E/C

DB

SQLE
1-734 Informix Guide to SQL: Syntax

SET ROLE
When a user sets a role, the user gains the privileges of the role, in addition
to the privileges of PUBLIC and the user’s own privileges. If a role is granted
to another role, the user gains the privileges of both roles, in addition to those
of PUBLIC and the user’s own privileges. After a SET ROLE statement executes
successfully, the role remains effective until the current database is closed or
the user executes another SET ROLE statement. Additionally, the user, not the
role, retains ownership of all the objects, such as tables, that were created
during a session.

A user cannot execute the SET ROLE statement while in a transaction. If the
SET ROLE statement is executed while a transaction is active, an error occurs.

If the SET ROLE statement is executed as a part of a trigger or stored
procedure, and the owner of the trigger or stored procedure was granted the
role with the WITH GRANT OPTION, the role is enabled even if the user is not
granted the role.

The following example sets the role engineer:

SET ROLE engineer

The following example sets a role and then relinquishes the role after it
performs a SELECT operation:

EXEC SQL set role engineer;
EXEC SQL select fname, lname, project

into :efname, :elname, :eproject
where project_num > 100 and lname = 'Larkin';

printf ("%s is working on %s\n", efname, eproject);
EXEC SQL set role null;

References
See the CREATE ROLE, DROP ROLE, GRANT, and REVOKE statements in this
manual.
SQL Statements 1-735

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION
The SET SESSION AUTHORIZATION statement lets you change the user name
under which database operations are performed in the current Universal
Server session. This statement is enabled by the DBA privilege, which you
must obtain from the DBA before the start of your current session. The new
identity remains in effect in the current database until you execute another
SET SESSION AUTHORIZATION statement or until you close the current
database.

Syntax

Usage
The SET SESSION AUTHORIZATION statement allows a user with the DBA
privilege to bypass the privileges that protect database objects. You can use
this statement to gain access to a table and adopt the identity of a table owner
to grant access privileges. You must obtain the DBA privilege before you start
a session in which you use this statement. Otherwise, this statement returns
an error.

When you use this statement, the user name to which the authorization is set
must have the Connect privilege on the current database. Additionally, the
DBA cannot set the authorization to PUBLIC or to any defined role in the
current database.

Element Purpose Restrictions Syntax

' user ' The user name under which
database operations are to be
performed in the current session

You must specify a valid user
name. You must put quotation
marks around the user name.

Identifier, p. 1-962

SET SESSION AUTHORIZATION TO ' user'

E/C

SQLE
1-736 Informix Guide to SQL: Syntax

SET SESSION AUTHORIZATION
Setting a session to another user causes a change in a user name in the current
active database server. In other words, these users are, as far as this database
server process is concerned, completely dispossessed of any privileges that
they might have while accessing the database server through some adminis-
trative utility. Additionally, the new session user is not able to initiate an
administrative operation (execute a utility, for example) by virtue of the
acquired identity.

After the SET SESSION AUTHORIZATION statement successfully executes, the
user must use the SET ROLE statement to assume a role granted to the current
user. Any role enabled by a previous user is relinquished.

Using SET SESSION AUTHORIZATION to Obtain Privileges

You can use the SET SESSION AUTHORIZATION statement either to obtain
access to the data directly or to grant the database-level or table-level
privileges needed for the database operation to proceed. The following
example shows how to use the SET SESSION AUTHORIZATION statement to
obtain table-level privileges:

SET SESSION AUTHORIZATION TO 'cathl';
GRANT ALL ON spec TO mary;
SET SESSION AUTHORIZATION TO 'mary';
UPDATE case

SET col1 = SELECT state FROM zip
WHERE zip_code = 94433;

References
See the CONNECT, DATABASE, GRANT, and SET ROLE statements in this
manual.
SQL Statements 1-737

SET TRANSACTION
SET TRANSACTION
Use the SET TRANSACTION statement to define isolation levels and to define
the access mode of a transaction (read-only or read-write).

Syntax

Usage
You can use SET TRANSACTION only in databases with logging.

You can issue a SET TRANSACTION statement from a client computer only
after a database has been opened.

1

,

SET TRANSACTION READ WRITE

READ ONLY

READ COMMITTEDISOLATION LEVEL

REPEATABLE READ

,

READ UNCOMMITTEDISOLATION LEVEL

READ ONLY1

1

1

SERIALIZABLE

E/C

DB

SQLE
1-738 Informix Guide to SQL: Syntax

SET TRANSACTION
The database isolation level affects concurrency among processes that
attempt to access the same rows simultaneously from the database.
INFORMIX-Universal Server uses shared locks to support four levels of
isolation among processes that are attempting to read data as the following
list shows:

■ Read Uncommitted

■ Read Committed

■ (ANSI) Repeatable Read

■ Serializable

The update or delete process always acquires an exclusive lock on the row
that is being modified. The level of isolation does not interfere with rows that
you are updating or deleting; however, the access mode does affect whether
you can update or delete rows. If another process attempts to update or
delete rows that you are reading with an isolation level of Serializable or
(ANSI) Repeatable Read, that process will be denied access to those rows.

Comparing SET TRANSACTION with SET ISOLATION

The SET TRANSACTION statement complies with ANSI SQL-92. This statement
is similar to the Informix SET ISOLATION statement; however, the SET
ISOLATION statement is not ANSI compliant and does not provide access
modes. In fact, the isolation levels that you can set with the SET
TRANSACTION statement are almost parallel to the isolation levels that you
can set with the SET ISOLATION statement, as the following table shows.

SET TRANSACTION Correlates to SET ISOLATION

Read Uncommitted Dirty Read

Read Committed Committed Read

Not supported Cursor Stability

(ANSI) Repeatable Read (Informix) Repeatable Read

Serializable (Informix) Repeatable Read
SQL Statements 1-739

SET TRANSACTION
Another difference between the SET TRANSACTION and SET ISOLATION
statements is the behavior of the isolation levels within transactions. The SET
TRANSACTION statement can be issued only once for a transaction. Any
cursors that are opened during that transaction are guaranteed to get that
isolation level (or access mode if you are defining an access mode). With the
SET ISOLATION statement, after a transaction is started, you can change the
isolation level more than once within the transaction. The following
examples show the SET ISOLATION and SET TRANSACTION statements,
respectively:

SET ISOLATION

EXEC SQL BEGIN WORK;
EXEC SQL SET ISOLATION TO DIRTY READ;
EXEC SQL SELECT ... ;
EXEC SQL SET ISOLATION TO REPEATABLE READ;
EXEC SQL INSERT ... ;
EXEC SQL COMMIT WORK;

-- Executes without error

SET TRANSACTION

EXEC SQL BEGIN WORK;
EXEC SQL SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
EXEC SQL SELECT ... ;
EXEC SQL SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
Error 876: Cannot issue SET TRANSACTION in an active
transaction.
1-740 Informix Guide to SQL: Syntax

SET TRANSACTION
Isolation Levels
The following definitions explain the critical characteristics of each isolation
level, from the lowest level of isolation to the highest.

Isolation Level Characteristics

Read Uncommitted Provides zero isolation. Read Uncommitted is appropriate
for static tables that are used for queries. With a Read
Uncommitted isolation level, a query might return a
phantom row, which is an uncommitted row that was
inserted or modified within a transaction that has subse-
quently rolled back. Read Uncommitted is the only
isolation level that is available to databases that do not
have transactions.

Read Committed Guarantees that every retrieved row is committed in the
table at the time that the row is retrieved. Even so, no locks
are acquired. After one process retrieves a row because no
lock is held on the row, another process can acquire an
exclusive lock on the same row and modify or delete data
in the row. Read Committed is the default isolation level in
a database with logging that is not ANSI compliant.

(ANSI) Repeatable
Read

The Informix implementation of ANSI Repeatable Read.
Informix uses the same approach to implement Repeatable
Read that it uses for Serializable. Thus Repeatable Read
meets the SQL-92 requirements.

Serializable Acquires a shared lock on every row that is selected during
the transaction. Another process can also acquire a shared
lock on a selected row, but no other process can modify any
selected row during your transaction. If you repeat the
query during the transaction, you reread the same infor-
mation. The shared locks are released only when the
transaction commits or rolls back. Serializable is the
default isolation level in an ANSI-compliant database.
SQL Statements 1-741

SET TRANSACTION
Default Isolation Levels

The default isolation level for a particular database is established according
to database type when you create the database. The default isolation level for
each database type is described in the following table.

The default isolation level remains in effect until you issue a SET
TRANSACTION statement within a transaction. After a COMMIT WORK
statement completes the transaction or a ROLLBACK WORK statement cancels
the transaction, the isolation level is reset to the default.

Access Modes
Access modes affect read and write concurrency for rows within transactions.
Use access modes to control data modification.

You can specify that a transaction is read-only or read-write through the SET
TRANSACTION statement. By default, transactions are read-write. When you
specify that a transaction is read-only, certain limitations apply. Read-only
transactions cannot perform the following actions:

■ Insert, delete, or update table rows

■ Create, alter, or drop any database object such as schemas, tables,
temporary tables, indexes, or stored procedures

■ Grant or revoke privileges

■ Update statistics

■ Rename columns or tables

Informix ANSI Description

Dirty Read Read Uncommitted Default level of isolation in a
database without logging

Committed Read Read Committed Default level of isolation in a
database with logging that is not
ANSI compliant

Repeatable Read Serializable Default level of isolation in an ANSI-
compliant database
1-742 Informix Guide to SQL: Syntax

SET TRANSACTION
You can execute stored procedures in a read-only transaction as long as the
procedure does not try to perform any restricted statement.

Effects of Isolation Levels
You cannot set the database isolation level in a database that does not have
logging. Every retrieval in such a database occurs as a Read Uncommitted.

The data that is obtained during blob retrieval can vary, depending on the
database isolation levels. Under Read Uncommitted or Read Committed
isolation levels, a process is permitted to read a blob that is either deleted (if
the delete is not yet committed) or in the process of being deleted. Under
these isolation levels, an application can read a deleted blob when certain
conditions exist. See the INFORMIX-Universal Server Administrator’s Guide for
information about these conditions.

If you use a scroll cursor in a transaction, you can force consistency between
your temporary table and the database table either by setting the isolation
level to Serializable or by locking the entire table during the transaction.

If you use a scroll cursor with hold in a transaction, you cannot force
consistency between your temporary table and the database table. A table-
level lock or locks set by Serializable are released when the transaction is
completed, but the scroll cursor with hold remains open beyond the end of
the transaction. You can modify released rows as soon as the transaction
ends, so the retrieved data in the temporary table might be inconsistent with
the actual data. ♦

References
See the CREATE DATABASE, SET ISOLATION, and SET LOCK MODE statements
in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of isolation levels and
concurrency issues in Chapter 7.

ESQL
SQL Statements 1-743

1-744 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
START VIOLATIONS TABLE
The START VIOLATIONS TABLE statement creates a violations table and a
diagnostics table for a specified target table. The database server associates
the violations and diagnostics tables with the target table by recording the
relationship among the three tables in the sysviolations system catalog table.

Syntax

Element Purpose Restrictions Syntax

diagnostics The name of the diagnostics
table to be associated with the
target table. The default name is
the name of the target table
followed by the characters _dia.
For further information on the
diagnostics table, see “Structure
of the Diagnostics Table” on
page 1-756.

Whether you specify the name of
the diagnostics table explicitly,
or the database server generates
the name implicitly, the name
cannot match the name of any
existing table in the database.

Identifier, p. 1-962

 (1 of 2)

START VIOLATIONS TABLE FOR table name

numrowsMAX ROWSUSING violations , diagnostics

+

E/C

DB

SQLE

START VIOLATIONS TABLE
Usage
The START VIOLATIONS TABLE statement creates the special violations table
that holds rows that fail to satisfy constraints and unique indexes during
insert, update, and delete operations on target tables. This statement also
creates the special diagnostics table that contains information about the
integrity violations caused by each row in the violations table.

numrows The maximum number of rows
that can be inserted into the
diagnostics table when a single
statement (for example, INSERT
or SET) is executed on the target
table. There is no default value
for numrows. If you do not
specify a value for numrows,
there is no upper limit on the
number of rows that can be
inserted into the diagnostics
table when a single statement is
executed on the target table.

You must specify an integer
value in the range 1 to the
maximum value of the INTEGER
data type.

Literal Number,
p. 1-997

table name The name of the target table for
which a violations table and
diagnostics table are to be
created. There is no default
value.

If you do not include the USING
clause in the statement, the name
of the target table must be less
than 15 characters. The target
table cannot have a violations
and diagnostics table associated
with it before you execute the
statement. The target table
cannot be a system catalog table.
The target table must be a local
table.

Identifier, p. 1-962

violations The name of the violations table
to be associated with the target
table. The default name is the
name of the target table followed
by the characters _vio. For
further information on the
violations table, see “Structure of
the Violations Table” on
page 1-748.

Whether you specify the name of
the violations table explicitly, or
the database server generates
the name implicitly, the name
cannot match the name of any
existing table in the database.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-745

START VIOLATIONS TABLE
Relationship of START VIOLATIONS TABLE and SET Statements

The START VIOLATIONS TABLE statement is closely related to the SET
statement. If you use the SET statement to set the constraints or unique
indexes defined on a table to the filtering object mode, but you do not use the
START VIOLATIONS TABLE statement to start the violations and diagnostics
tables for this target table, any rows that violate a constraint or unique-index
requirement during an insert, update, or delete operation are not filtered out
to a violations table. Instead you receive an error message indicating that you
must start a violations table for the target table.

Similarly, if you use the SET statement to set a disabled constraint or disabled
unique index to the enabled or filtering object mode, but you do not use the
START VIOLATIONS TABLE statement to start the violations and diagnostics
tables for the table on which the objects are defined, any existing rows in the
table that do not satisfy the constraint or unique-index requirement are not
filtered out to a violations table. If, in these cases, you want the ability to
identify existing rows that do not satisfy the constraint or unique-index
requirement, you must issue the START VIOLATIONS TABLE statement to start
the violations and diagnostics tables before you issue the SET statement to set
the objects to the enabled or filtering object mode.

Starting and Stopping the Violations and Diagnostics Tables

After you use a START VIOLATIONS TABLE statement to create an association
between a target table and the violations and diagnostics tables, the only way
to drop the association between the target table and the violations and
diagnostics tables is to issue a STOP VIOLATIONS TABLE statement for the
target table. For further information see the STOP VIOLATIONS TABLE
statement on page 1-763.

Examples of START VIOLATIONS TABLE Statements

The following examples show different ways to execute the START
VIOLATIONS TABLE statement.
1-746 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Starting Violations and Diagnostics Tables Without Specifying Their Names

The following statement starts violations and diagnostics tables for the target
table named cust_subset. The violations table is named cust_subset_vio by
default, and the diagnostics table is named cust_subset_dia by default.

START VIOLATIONS TABLE FOR cust_subset

Starting Violations and Diagnostics Tables and Specifying Their Names

The following statement starts a violations and diagnostics table for the
target table named items. The USING clause assigns explicit names to the
violations and diagnostics tables. The violations table is to be named
exceptions, and the diagnostics table is to be named reasons.

START VIOLATIONS TABLE FOR items
USING exceptions, reasons

Specifying the Maximum Number of Rows in the Diagnostics Table

The following statement starts violations and diagnostics tables for the target
table named orders. The MAX ROWS clause specifies the maximum number
of rows that can be inserted into the diagnostics table when a single
statement, such as an INSERT or SET statement, is executed on the target table.

START VIOLATIONS TABLE FOR orders MAX ROWS 50000

Privileges Required for Starting Violations Tables
To start a violations and diagnostics table for a target table, you must meet
one of the following requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the target table and have the Resource
privilege on the database.

■ You must have the Alter privilege on the target table and the
Resource privilege on the database.
SQL Statements 1-747

START VIOLATIONS TABLE
Structure of the Violations Table
When you issue a START VIOLATIONS TABLE statement for a target table, the
violations table that the statement creates has a predefined structure. This
structure consists of the columns of the target table and three additional
columns.

The following table shows the structure of the violations table.

Column Name Type Explanation

All columns of the target
table, in the same order
that they appear in the
target table

These columns of the
violations table match the
data type of the
corresponding columns
in the target table, except
that SERIAL columns in
the target table are
converted to INTEGER
data types in the
violations table.

The table definition of the target table is
reproduced in the violations table so that rows
that violate constraints or unique-index
requirements during insert, update, and delete
operations can be filtered to the violations table.
Users can examine these bad rows in the
violations table, analyze the related rows that
contain diagnostics information in the diagnostics
table, and take corrective actions.

informix_tupleid SERIAL This column contains the unique serial identifier
that is assigned to the nonconforming row.

informix_optype CHAR(1) This column indicates the type of operation that
caused this bad row. This column can have the
following values:

I = Insert

D = Delete

O = Update (with this row containing the
original values)

N = Update (with this row containing the
new values)

S = SET statement

informix_recowner CHAR(8) This column identifies the user who issued the
statement that created this bad row.
1-748 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Relationship Between the Violations and Diagnostics Tables

Users can take advantage of the relationships among the target table, viola-
tions table, and diagnostics table to obtain complete diagnostic information
about rows that have caused data-integrity violations during INSERT,
DELETE, and UPDATE statements.

Each row of the violations table has at least one corresponding row in the
diagnostics table. The row in the violations table contains a copy of the row
in the target table for which a data-integrity violation was detected. The row
in the diagnostics table contains information about the nature of the data-
integrity violation caused by the bad row in the violations table. The row in
the violations table has a unique serial identifier in the informix_tupleid
column. The row in the diagnostics table has the same serial identifier in its
informix_tupleid column.

A given row in the violations table can have more than one corresponding
row in the diagnostics table. The multiple rows in the diagnostics table all
have the same serial identifier in their informix_tupleid column so that they
are all linked to the same row in the violations table. Multiple rows can exist
in the diagnostics table for the same row in the violations table because a bad
row in the violations table can cause more than one data-integrity violation.

For example, a bad row can violate a unique-index requirement for one
column, a not null constraint for another column, and a check constraint for
yet another column. In this case, the diagnostics table contains three rows for
the single bad row in the violations table. Each of these diagnostic rows
identifies a different data-integrity violation that the nonconforming row in
the violations table caused.

By joining the violations and diagnostics tables, the DBA or target table owner
can obtain complete diagnostic information about any or all bad rows in the
violations table. You can use SELECT statements to perform these joins
interactively, or you can write a program to perform them within
transactions.
SQL Statements 1-749

START VIOLATIONS TABLE
Initial Privileges on the Violations Table

When you issue the START VIOLATIONS TABLE statement to create the viola-
tions table, the database server uses the set of privileges granted on the target
table as a basis for granting privileges on the violations table. However, the
database server follows different rules when it grants each type of privilege.

The following table shows the initial set of privileges on the violations table.
The Privilege column lists the privilege. The Condition column explains the
conditions under which the database server grants the privilege to a user.

Privilege Condition

Insert The user has the Insert privilege on the violations table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Delete The user has the Delete privilege on the violations table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Select The user has the Select privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Select privilege on any column of the target
table.

The user has the Select privilege on any other column of the violations
table if the user has the Select privilege on the same column in the
target table.

Update The user has the Update privilege on the informix_tupleid,
informix_optype, and informix_recowner columns of the violations
table if the user has the Update privilege on any column of the target
table.

The user has the Update privilege on any other column of the
violations table if the user has the Update privilege on the same
column in the target table.

 (1 of 2)
1-750 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
The following rules apply to ownership of the violations table and privileges
on the violations table:

■ When the violations table is created, the owner of the target table
becomes the owner of the violations table.

■ The owner of the violations table automatically receives all table-
level privileges on the violations table, including the Alter and
References privileges. However, the database server prevents the
owner of the violations table from altering the violations table or
adding a referential constraint to the violations table.

■ You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the violations table.

■ When you issue an INSERT, DELETE, or UPDATE statement on a target
table that has a filtering-mode unique index or constraint defined on
it, you must have the Insert privilege on the violations and
diagnostics tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the INSERT, DELETE,
or UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Index The user has the Index privilege on the violations table if the user has
the Index privilege on the target table.

Alter The Alter privilege is not granted on the violations table. (Users cannot
alter violations tables.)

References The References privilege is not granted on the violations table. (Users
cannot add referential constraints to violations tables.)

Privilege Condition

 (2 of 2)
SQL Statements 1-751

START VIOLATIONS TABLE
Similarly, when you issue a SET statement to set a disabled constraint
or disabled unique index to the enabled or filtering mode, and a
violations table and diagnostics table exist for the target table, you
must have the Insert privilege on the violations and diagnostics
tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the SET statement
provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of
insert permission on the violations and diagnostics tables unless an
integrity violation is detected during the execution of the SET
statement.

■ The grantor of the initial set of privileges on the violations table is the
same as the grantor of the privileges on the target table. For example,
if the user henry has been granted the Insert privilege on the target
table by both the user jill and the user albert, the Insert privilege on
the violations table is granted to user henry both by user jill and by
user albert.

■ Once a violations table has been started for a target table, revoking a
privilege on the target table from a user does not automatically
revoke the same privilege on the violations table from that user.
Instead you must explicitly revoke the privilege on the violations
table from the user.

■ If you have fragment-level privileges on the target table, you have
the corresponding fragment-level privileges on the violations table.

Example of Privileges on the Violations Table

The following example illustrates how the initial set of privileges on a viola-
tions table is derived from the current set of privileges on the target table.

For example, assume that we have created a table named cust_subset and
that this table consists of the following columns: ssn (customer’s social
security number), fname (customer’s first name), lname (customer’s last
name), and city (city in which the customer lives).
1-752 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
The following set of privileges exists on the cust_subset table:

■ User alvin is the owner of the table.

■ User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.

■ User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

■ User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table, as
follows:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_viols violations table:

■ User alvin is the owner of the violations table, so he has all table-
level privileges on the table.

■ User barbara has the Insert, Delete, and Index privileges on the
violations table. She also has the Select privilege on the following
columns of the violations table: the ssn column, the lname column,
the informix_tupleid column, the informix_optype column, and the
informix_recowner column.

■ User carrie has the Insert and Delete privileges on the violations
table. She has the Update privilege on the following columns of the
violations table: the city column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column. She
has the Select privilege on the following columns of the violations
table: the ssn column, the informix_tupleid column, the
informix_optype column, and the informix_recowner column.

■ User danny has no privileges on the violations table.
SQL Statements 1-753

START VIOLATIONS TABLE
Using the Violations Table

The following rules concern the structure and use of the violations table:

■ Every pair of update rows in the violations table has the same value
in the informix_tupleid column to indicate that both rows refer to
the same row in the target table.

■ If the target table has columns named informix_tupleid,
informix_optype, or informix_recowner, the database server
attempts to generate alternative names for these columns in the
violations table by appending a digit to the end of the column name
(for example, informix_tupleid1). If this attempt fails, the database
server returns an error, and the violations table is not started for the
target table.

■ When a table functions as a violations table, it cannot have triggers
or constraints defined on it.

■ When a table functions as a violations table, users can create indexes
on the table, even though the existence of an index affects perfor-
mance. Unique indexes on the violations table cannot be set to the
filtering object mode.

■ If a target table has a violations and diagnostics table associated with
it, dropping the target table in cascade mode (the default mode)
causes the violations and diagnostics tables to be dropped also. If the
target table is dropped in the restricted mode, the existence of the
violations and diagnostics tables causes the DROP TABLE statement
to fail.

■ Once a violations table is started for a target table, you cannot use the
ALTER TABLE statement to add, modify, or drop columns in the target
table, violations table, or diagnostics table. Before you can alter any
of these tables, you must issue a STOP TABLE VIOLATIONS statement
for the target table.

■ The database server does not clear out the contents of the violations
table before or after it uses the violations table during an Insert,
Update, Delete, or Set operation.
1-754 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
■ If a target table has a filtering-mode constraint or unique index
defined on it and a violations table associated with it, users cannot
insert into the target table by selecting from the violations table.
Before you insert rows into the target table by selecting from the
violations table, you must take one of the following steps:

❑ You can set the object mode of the constraint or unique index to
the enabled or disabled object mode.

❑ You can issue a STOP VIOLATIONS TABLE statement for the target
table.

If it is inconvenient to take either of these steps, but you still want to
copy records from the violations table into the target table, a third
option is to select from the violations table into a temporary table and
then insert the contents of the temporary table into the target table.

■ If the target table that is specified in the START VIOLATIONS TABLE
statement is fragmented, the violations table has the same fragmen-
tation strategy as the target table. Each fragment of the violations
table is stored in the same dbspace as the corresponding fragment of
the target table.

■ If the target table specified in the START VIOLATIONS TABLE
statement is not fragmented, the database server places the viola-
tions table in the same dbspace as the target table.

■ If the target table has blob columns, blobs in the violations table are
created in the same blob space as the blobs in the target table.

Example of a Violations Table

To start a violations and diagnostics table for the target table named customer
in the stores7 demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR customer
SQL Statements 1-755

START VIOLATIONS TABLE
Because your START VIOLATIONS statement does not include a USING clause,
the violations table is named customer_vio by default. The customer_vio
table includes the following columns:

customer_num
fname
lname
company
address1
address2
city
state
zipcode
phone
informix_tupleid
informix_optype
informix_recowner

The customer_vio table has the same table definition as the customer table
except that the customer_vio table has three additional columns that contain
information about the operation that caused the bad row.

Structure of the Diagnostics Table
When you issue a START VIOLATIONS TABLE statement for a target table, the
diagnostics table that the statement creates has a predefined structure. This
structure is independent of the structure of the target table.

The following table shows the structure of the diagnostics table.

Column Name Type Explanation

informix_tupleid INTEGER This column in the diagnostics table implicitly
refers to the values in the informix_tupleid
column in the violations table. However, this
relationship is not declared as a foreign-key to
primary-key relationship.

objtype CHAR(1) This column identifies the type of the violation.
This column can have the following values.

C = Constraint violation

I = Unique-index violation

 (1 of 2)
1-756 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
Initial Privileges on the Diagnostics Table

When the START VIOLATIONS TABLE statement creates the diagnostics table,
the database server uses the set of privileges granted on the target table as a
basis for granting privileges on the diagnostics table. However, the database
server follows different rules when it grants each type of privilege.

The following table shows the initial set of privileges on the diagnostics table.
The Privilege column lists the privilege. The Condition column explains the
conditions under which the database server grants the privilege to a user.

objowner CHAR(8) This column identifies the owner of the constraint
or index for which an integrity violation was
detected.

objname CHAR(18) This column contains the name of the constraint
or index for which an integrity violation was
detected.

Privilege Condition

Insert The user has the Insert privilege on the diagnostics table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Delete The user has the Delete privilege on the diagnostics table if the user has
any of the following privileges on the target table: the Insert privilege,
the Delete privilege, or the Update privilege on any column.

Select The user has the Select privilege on the diagnostics table if the user has
the Select privilege on any column in the target table.

Update The user has the Update privilege on the diagnostics table if the user
has the Update privilege on any column in the target table.

 (1 of 2)

Column Name Type Explanation

 (2 of 2)
SQL Statements 1-757

START VIOLATIONS TABLE
The following rules concern privileges on the diagnostics table:

■ When the diagnostics table is created, the owner of the target table
becomes the owner of the diagnostics table.

■ The owner of the diagnostics table automatically receives all table-
level privileges on the diagnostics table, including the Alter and
References privileges. However, the database server prevents the
owner of the diagnostics table from altering the diagnostics table or
adding a referential constraint to the diagnostics table.

■ You can use the GRANT and REVOKE statements to modify the initial
set of privileges on the diagnostics table.

■ When you issue an INSERT, DELETE, or UPDATE statement on a target
table that has a filtering-mode unique index or constraint defined on
it, you must have the Insert privilege on the violations and
diagnostics tables.

If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the INSERT, DELETE,
or UPDATE statement on the target table provided that you have the
necessary privileges on the target table. The database server does not
return an error concerning the lack of insert permission on the viola-
tions and diagnostics tables unless an integrity violation is detected
during the execution of the INSERT, DELETE, or UPDATE statement.

Similarly, when you issue a SET statement to set a disabled constraint
or disabled unique index to the enabled or filtering mode, and a
violations table and diagnostics table exist for the target table, you
must have the Insert privilege on the violations and diagnostics
tables.

Index The user has the Index privilege on the diagnostics table if the user has
the Index privilege on the target table.

Alter The Alter privilege is not granted on the diagnostics table. (Users
cannot alter diagnostics tables.)

References The References privilege is not granted on the diagnostics table. (Users
cannot add referential constraints to diagnostics tables.)

Privilege Condition

 (2 of 2)
1-758 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
If you do not have the Insert privilege on the violations and
diagnostics tables, the database server executes the SET statement
provided that you have the necessary privileges on the target table.
The database server does not return an error concerning the lack of
insert permission on the violations and diagnostics tables unless an
integrity violation is detected during the execution of the SET
statement.

■ The grantor of the initial set of privileges on the diagnostics table is
the same as the grantor of the privileges on the target table. For
example, if the user jenny has been granted the Insert privilege on
the target table by both the user wayne and the user laurie, both user
wayne and user laurie grant the Insert privilege on the diagnostics
table to user jenny.

■ Once a diagnostics table has been started for a target table, revoking
a privilege on the target table from a user does not automatically
revoke the same privilege on the diagnostics table from that user.
Instead you must explicitly revoke the privilege on the diagnostics
table from the user.

■ If you have fragment-level privileges on the target table, you have
the corresponding table-level privileges on the diagnostics table.

Example of Privileges on the Diagnostics Table

The following example illustrates how the initial set of privileges on a
diagnostics table is derived from the current set of privileges on the target
table.

For example, assume that there is a table called cust_subset and that this
table consists of the following columns: ssn (customer’s social security
number), fname (customer’s first name), lname (customer’s last name), and
city (city in which the customer lives).

The following set of privileges exists on the cust_subset table:

■ User alvin is the owner of the table.

■ User barbara has the Insert and Index privileges on the table. She
also has the Select privilege on the ssn and lname columns.
SQL Statements 1-759

START VIOLATIONS TABLE
■ User carrie has the Update privilege on the city column. She also has
the Select privilege on the ssn column.

■ User danny has the Alter privilege on the table.

Now user alvin starts a violations table named cust_subset_viols and a
diagnostics table named cust_subset_diags for the cust_subset table, as
follows:

START VIOLATIONS TABLE FOR cust_subset
USING cust_subset_viols, cust_subset_diags

The database server grants the following set of initial privileges on the
cust_subset_diags diagnostics table:

■ User alvin is the owner of the diagnostics table, so he has all table-
level privileges on the table.

■ User barbara has the Insert, Delete, Select, and Index privileges on
the diagnostics table.

■ User carrie has the Insert, Delete, Select, and Update privileges on
the diagnostics table.

■ User danny has no privileges on the diagnostics table.

Using the Diagnostics Table

For information on the relationship between the diagnostics table and the
violations table, see “Relationship Between the Violations and Diagnostics
Tables” on page 1-749.

The following issues concern the structure and use of the diagnostics table:

■ The MAX ROWS clause of the START VIOLATIONS TABLE statement
sets a limit on the number of rows that can be inserted into the
diagnostics table when you execute a single statement, such as an
INSERT or SET statement, on the target table.

■ The MAX ROWS clause limits the number of rows only for operations
in which the table functions as a diagnostics table.

■ When a table functions as a diagnostics table, it cannot have triggers
or constraints defined on it.
1-760 Informix Guide to SQL: Syntax

START VIOLATIONS TABLE
■ When a table functions as a diagnostics table, users can create
indexes on the table, even though the existence of an index affects
performance. You cannot set unique indexes on the diagnostics table
to the filtering object mode.

■ If a target table has a violations and diagnostics table associated with
it, dropping the target table in the cascade mode (the default mode)
causes the violations and diagnostics tables to be dropped also. If the
target table is dropped in the restricted mode, the existence of the
violations and diagnostics tables causes the DROP TABLE statement
to fail.

■ Once a violations table is started for a target table, you cannot use the
ALTER TABLE statement to add, modify, or drop columns in the target
table, violations table, or diagnostics table. Before you can alter any
of these tables, you must issue a STOP TABLE VIOLATIONS statement
for the target table.

■ The database server does not clear out the contents of the diagnostics
table before or after it uses the diagnostics table during an Insert,
Update, Delete, or Set operation.

■ If the target table that is specified in the START VIOLATIONS TABLE
statement is fragmented, the diagnostics table is fragmented with a
round-robin strategy over the same dbspaces in which the target
table is fragmented.

Example of a Diagnostics Table

To start a violations and diagnostics table for the target table named stock in
the stores7 demonstration database, enter the following statement:

START VIOLATIONS TABLE FOR stock

Because your START VIOLATIONS TABLE statement does not include a USING
clause, the diagnostics table is named stock_dia by default. The stock_dia
table includes the following columns:

informix_tupleid
objtype
objowner
objname
SQL Statements 1-761

START VIOLATIONS TABLE
This list of columns shows an important difference between the diagnostics
table and violations table for a target table. Whereas the violations table has
a matching column for every column in the target table, the columns of the
diagnostics table do not match any columns in the target table. The
diagnostics table created by any START VIOLATIONS TABLE statement always
has the same columns with the same column names and data types.

References
See the STOP VIOLATIONS TABLE and SET statements in this manual.

For information on the system catalog tables that are associated with the
START VIOLATIONS TABLE statement, see the sysobjstate and sysviolations
tables in the Informix Guide to SQL: Reference.
1-762 Informix Guide to SQL: Syntax

STOP VIOLATIONS TABLE
STOP VIOLATIONS TABLE
The STOP VIOLATIONS TABLE statement drops the association between a
target table and the special violations and diagnostics tables.

Syntax

Usage
The STOP VIOLATIONS TABLE statement drops the association between the
target table and the violations and diagnostics tables. After you issue this
statement, the former violations and diagnostics tables continue to exist, but
they no longer function as violations and diagnostics tables for the target
table. They now have the status of regular database tables instead of viola-
tions and diagnostics tables for the target table. You must issue the DROP
TABLE statement to drop these two tables explicitly.

When Insert, Delete, and Update operations cause data-integrity violations
for rows of the target table, the nonconforming rows are no longer filtered to
the former violations table, and diagnostics information about the data-
integrity violations is not placed in the former diagnostics table.

Element Purpose Restrictions Syntax
table name The name of the target table

whose association with the
violations and diagnostics table
is to be dropped. There is no
default value.

The target table must have a
violations and diagnostics table
associated with it before you can
execute the statement. The target
table must be a local table.

Identifier, p. 1-962

STOP VIOLATIONS TABLE FOR table name

+

E/C

DB

SQLE
SQL Statements 1-763

STOP VIOLATIONS TABLE
Example of Stopping a Violations and Diagnostics Table

Assume that a target table named cust_subset has an associated violations
table named cust_subset_vio and an associated diagnostics table named
cust_subset_dia. To drop the association between the target table and the
violations and diagnostics tables, enter the following statement:

STOP VIOLATIONS TABLE FOR cust_subset

Example of Dropping a Violations and Diagnostics Table

After you execute the STOP VIOLATIONS TABLE statement in the preceding
example, the cust_subset_vio and cust_subset_dia tables continue to exist,
but they are no longer associated with the cust_subset table. Instead they
now have the status of regular database tables. To drop these two tables, enter
the following statements:

DROP TABLE cust_subset_vio;
DROP TABLE cust_subset_dia;

Privileges Required for Stopping a Violations Table
To stop a violations and diagnostics table for a target table, you must meet
one of the following requirements:

■ You must have the DBA privilege on the database.

■ You must be the owner of the target table and have the Resource
privilege on the database.

■ You must have the Alter privilege on the target table and the
Resource privilege on the database.

References
See the SET and START VIOLATIONS TABLE statements in this manual.

For information on the system catalog tables associated with the STOP
VIOLATIONS TABLE statement, see the sysobjstate and sysviolations tables
in the Informix Guide to SQL: Reference.
1-764 Informix Guide to SQL: Syntax

UNLOAD
UNLOAD
Use the UNLOAD statement to write the rows retrieved in a SELECT statement
to an operating-system file.

Syntax

Element Purpose Restrictions Syntax
delimiter A quoted string that identifies

the character to use as the
delimiter in the output file. The
delimiter is a character that
separates the data values in each
line of the output file. If you do
not specify a delimiter character,
the database server uses the
setting in the DBDELIMITER
environment variable. If
DBDELIMITER has not been set,
the default delimiter is the
vertical bar (|).

You cannot use the following
items as the delimiter character:
backslash (\), new-line character
(=CTRL-J), hexadecimal numbers
(0 to 9, a to f, A to F).

Quoted String,
p. 1-1010

filename A quoted string that specifies the
pathname and filename of an
ASCII operating-system file. This
output file receives the selected
rows from the table during the
unload operation. The default
pathname for the output file is
the current directory.

You can unload table data
containing VARCHAR or BLOB
data types to the output file, but
you should be aware of the
consequences. See “The
UNLOAD TO File” on
page 1-766 for further
information.

Quoted String,
p. 1-1010. The
pathname and
filename specified in
the quoted string
must conform to the
conventions of your
operating system.

DELIMITER 'delimiter '

UNLOAD TO 'filename '
SELECT

Statement
p. 1-593

+

DB
SQL Statements 1-765

UNLOAD
Usage
To use the UNLOAD statement, you must have the Select privilege on all
columns selected in the SELECT statement. For information on database-level
and table-level privileges, see the GRANT statement on page 1-458.

The SELECT statement can consist of a literal SELECT statement or the name
of a character variable that contains a SELECT statement. (See the SELECT
statement on page 1-593.)

The UNLOAD TO File

The UNLOAD TO file contains the selected rows retrieved from the table. You
can use the UNLOAD TO file as the LOAD FROM file in a LOAD statement.

The following table shows types of data and their output format for an
UNLOAD statement in DB-Access (when DB-Access uses the default locale,
U.S. English).

Data Type Output Format

boolean BOOLEAN data is represented as a't' for a TRUE value and
an 'f' for a FALSE value.

character If a character field contains the delimiter character,
Informix products automatically escape it with a backslash
(\) to prevent interpretation as a special character. (If you
use a LOAD statement to insert the rows into a table,
backslashes are automatically stripped.) Trailing blanks are
automatically clipped.

collections A collection is unloaded with its values surrounded by
braces ({}) and a field delimiter separating each element.
For more information, see “Unloading Complex Types” on
page 1-771.

date DATE values are represented as mm/dd/yyyy, where mm is
the month (January = 1, and so on), dd is the day, and yyyy
is the year. If you have set the GL_DATE or DBDATE
environment variable, the UNLOAD statement uses the
specified date format for DATE values. See the Guide to GLS
Functionality for more information about these
environment variables.

 (1 of 3)
1-766 Informix Guide to SQL: Syntax

UNLOAD
MONEY MONEY values are unloaded with no leading currency
symbol. They use the comma (,) as the thousands separator
and the period as the decimal separator. If you have set the
DBMONEY environment variable, the UNLOAD statement
uses the specified currency format for MONEY values. See
the Guide to GLS Functionality for more information about
this environment variable.

NULL NULL columns are unloaded by placing no characters
between the delimiters.

number Number data types are displayed with no leading blanks.
INT8, INTEGER or SMALLINT zero are represented as 0, and
FLOAT, SMALLFLOAT, DECIMAL, or MONEY zero are repre-
sented as 0.00.

row types
(named and
unnamed)

A row type is unloaded with its values surrounded by
parentheses and a field delimiter separating each element.
For more information, see “Unloading Complex Types” on
page 1-771.

simple large objects
(TEXT, BYTE)

TEXT and BYTE columns are unloaded directly into the
UNLOAD TO file. For more information, see “Unloading
Simple Large Objects” on page 1-769.

smart large objects
(CLOB, BLOB)

CLOB and BLOB columns are unloaded into a separate
operating-system file on the client computer. The field for
the CLOB or BLOB column in the UNLOAD TO file contains
the name of this separate file. For more information, see
“Unloading Smart Large Objects” on page 1-769.

Data Type Output Format

 (2 of 3)
SQL Statements 1-767

UNLOAD
If you are using a nondefault locale, the formats of DATE, DATETIME, MONEY,
and numeric column values in the UNLOAD TO file are determined by the
formats that the locale supports for these data types. For more information,
see the Guide to GLS Functionality. ♦

The following statement unloads rows from the customer table where the
value of customer_num is greater than or equal to 138, and puts them in a
file named cust_file:

UNLOAD TO 'cust_file' DELIMITER '!'
SELECT * FROM customer WHERE customer_num> = 138

The output file, cust_file, appears as shown in the following example:

138!Jeffery!Padgett!Wheel Thrills!3450 El Camino!Suite
10!Palo Alto!CA!94306!!
139!Linda!Lane!Palo Alto Bicycles!2344 University!!Palo
Alto!CA!94301!(415)323-5400

If you are unloading columns of the VARCHAR data type, the database server
does not retain trailing blanks.

time DATETIME and INTERVAL values are represented in
character form, showing only their field digits and delim-
iters. No type specification or qualifiers are included in the
output. The following pattern is used: yyyy-mm-dd
hh:mi:ss.fff, omitting fields that are not part of the data. If
you have set the GL_DATETIME or DBTIME environment
variable, the UNLOAD statement uses the specified format
for DATETIME values. See the Guide to GLS Functionality for
more information on these environment variables.

user-defined data
formats (opaque
types)

The associated opaque type must have an export support
function defined if special processing is required to copy
the data in the internal format of the opaque type to the
format in the UNLOAD TO file. An exportbinary support
function might also be required if the data is in binary
format. The data in the UNLOAD TO file would correspond
to the format that the export or exportbinary support
function returns.

Data Type Output Format

 (3 of 3)

GLS
1-768 Informix Guide to SQL: Syntax

UNLOAD
Unloading Simple Large Objects

The database server unloads simple large objects (BYTE and TEXT columns)
directly into the UNLOAD TO file. BYTE data are written in hexadecimal
dump format with no added spaces or new lines. Consequently, the logical
length of an unloaded file that contains BYTE items can be very long and very
difficult to print or edit.

For TEXT columns, the database server handles any required code-set conver-
sions for the data. For more information, see the Guide to GLS Functionality. ♦

If you are unloading files that contain simple large object data types, objects
smaller than 10 kilobytes are stored temporarily in memory. You can adjust
the 10-kilobyte setting to a larger setting with the DBBLOBBUF environment
variable. Simple large objects that are larger than the default or the setting of
the DBBLOBBUF environment variable are stored in a temporary file. For
additional information about the DBBLOBBUF environment variable, see the
Informix Guide to SQL: Reference.

Unloading Smart Large Objects

The database server unloads smart large objects (BLOB and CLOB columns)
into a separate operating-system file on the client computer. It creates this file
in the same directory as the UNLOAD TO file. The filename of this file has one
of the following formats:

■ For a BLOB value:
blob########

■ For a CLOB value:
clob########

In the preceding formats, the # symbols represent the digits of the unique
hexadecimal smart large-object identifier. The database server uses the
hexadecimal id for the first smart large object in the file. The maximum
number of digits for a smart large-object identifier is 17; however must smart
large objects would have an identifier with significantly fewer digits.

GLS
SQL Statements 1-769

UNLOAD
When the database server unloads the first smart large object, it creates the
appropriate BLOB or CLOB file with the hexadecimal identifier of the smart
large object. It appends any additional BLOB or CLOB values to the appro-
priate file until the file size reaches a limit of 2 gigabytes. If there are still
additional smart large-object values, the database server creates another
BLOB or CLOB file whose filename contains the hexadecimal identifier of the
next smart large object to unload.

Each BLOB or CLOB value is appended to the appropriate file. The database
server might create several files if the values are extremely large or there any
many values.

In an UNLOAD TO file, a BLOB or CLOB column value appears as follows:

start_off, end_off, client_path

In this format, start_off is the starting offset of the smart large-object value
within the file, end_off is the length of the BLOB or CLOB value, and client_path
is the pathname for the client file.

For example, suppose the database server unloads the following CLOB
values.

If the first CLOB value has a hexadecimal identifier of 203b2, the database
server creates the clob203b2 file to hold this first value. It then unloads the
next four CLOB values to the clob203b2 file. The corresponding fields in the
UNLOAD TO file appears as follows:

|0, 2048, /usr/apps/clob203b2|
|2049, 6145, /usr/apps/clob203b2|
|6146, 7170, /usr/apps/clob203b2|
|7171, 8195, /usr/apps/clob203b2|
|8196, 10244, /usr/apps/clob203b2|

CLOB Value Size

1 2048

2 4096

3 1024

4 1024

5 2048
1-770 Informix Guide to SQL: Syntax

UNLOAD
If the database server unloaded additional CLOB values, it would store these
values in the clob203b2 file until this file reached a size of 2 gigabytes. It
would then create a new file of the form clob########, with the # symbols
replaced by the hexadecimal identifier of the first CLOB value in the file.

Unloading Complex Types

In an UNLOAD TO file, complex types appear as follows:

■ Collections are introduced with the appropriate constructor (SET,
MULTISET, LIST), and have their elements enclosed in braces ({}) and
separated with a comma, as follows:

constructor{val1 , val2 , ... }

For example, to unload the SET values {1, 3, 4} from a column of the
SET (INTEGER NOT NULL) data type, the corresponding field of the
UNLOAD TO file appears as follows:

|SET{1 , 3 , 4}|

■ Row types (named and unnamed) have their fields enclosed with
parentheses and separated with the field separator, as follows:

(val1 | val2 | ...)

For example, to unload the ROW values (1, 'abc'), the corresponding
field of the UNLOAD TO file appears as follows:

|(1 | abc)|

DELIMITER Clause

Use the DELIMITER clause to identify the delimiter that separates the data
contained in each column in a row in the output file. If you omit this clause,
DB-Access checks the DBDELIMITER environment variable.

If DBDELIMITER has not been set, the default delimiter is the vertical bar (|).
See Chapter 3 of the Informix Guide to SQL: Reference for information about
setting the DBDELIMITER environment variable.

You can specify the TAB (= CTRL-I) or <blank> (= ASCII 32) as the delimiter
symbol. You cannot use the following as the delimiter symbol:

■ Backslash (\)

■ New-line character (= CTRL-J)

■ Hexadecimal numbers (0 to 9, a to f, A to F)
SQL Statements 1-771

UNLOAD
Do not use the backslash (\) as a field separator or UNLOAD delimiter. It
serves as an escape character to inform the UNLOAD statement that the next
character is to be interpreted as part of the data.

The following statement specifies the semicolon (;) as the delimiter character:

UNLOAD TO 'cust.out' DELIMITER ';'
SELECT fname, lname, company, city

FROM customer

References
See the LOAD and SELECT statements in this manual.

In the Guide to GLS Functionality, see the discussion of the GLS aspects of the
UNLOAD statement.

In the Informix Migration Guide, see the task-oriented discussion of the
UNLOAD statement and other utilities for moving data.
1-772 Informix Guide to SQL: Syntax

UNLOCK TABLE
UNLOCK TABLE
Use the UNLOCK TABLE statement in a database without transactions to
unlock a table that you previously locked with the LOCK TABLE statement.

Syntax

Usage
You can lock a table if you own the table or if you have the Select privileges
on the table, either from a direct grant or from a grant to public. You can only
unlock a table that you locked. You cannot unlock a table that another process
locked. Only one lock can apply to a table at a time.

The table name either is the name of the table you are unlocking or a synonym
for the table. Do not specify a view or a synonym of a view.

To change the lock mode of a table in a database without transactions, use the
UNLOCK TABLE statement to unlock the table, then issue a new LOCK TABLE
statement.

The UNLOCK TABLE statement fails if it is issued within a transaction. Table
locks set within a transaction are released automatically when the transaction
completes.

Table
Name

p. 1-1044

Synonym
Name

p. 1-1042

UNLOCK TABLE

+

E/C

DB

SQLE
SQL Statements 1-773

UNLOCK TABLE
You should not issue an UNLOCK TABLE statement within an ANSI-compliant
database. The UNLOCK TABLE statement fails if it is issued within a trans-
action, and a transaction is always in effect in an ANSI-compliant database. ♦

References
See the COMMIT WORK, ROLLBACK WORK, and LOCK TABLE statements in
this manual.

ANSI
1-774 Informix Guide to SQL: Syntax

UPDATE
UPDATE
Use the UPDATE statement to change the values in one or more columns or
one or more elements in an SPL or INFORMIX-ESQL/C collection variable.

Syntax

UPDATE

WHERE CURRENT OF cursor
name

Collection Derived
Table

p. 1-827

+

E/C
SET

SET SET Clause
p. 1-779

Single-Column
SET Clause

p. 1-780

WHERE Condition
p. 1-831

CURRENT OF

E/C

SPL

cursor
name

E/C

DB

SQLE

Table
Name

p. 1-1044

View
Name

p. 1-1047

ONLY ()Table
Name

p. 1-1044

+

Synonym
Name

p. 1-1042
SQL Statements 1-775

UPDATE
Usage
Use the UPDATE statement to update any of the following types of objects:

■ A row in a table: a single row, a group of rows, or all rows in a table

■ An element in a collection variable ♦
■ A ESQL/C row variable: a field or all fields ♦

For information on how to update elements of a collection variable, see
“Updating a Collection Variable” on page 1-793. The other sections of this
UPDATE statement describe how to update a row in a table.

Element Purpose Restrictions Syntax
derived column An alias for the column name

used in a SET clause to update a
collection.

You can only specify a derived
column if the collection being
updated is a collection of
opaque, distinct, built-in, or
collection data types. You cannot
specify a derived column for
collections of named or
unnamed row types.

Identifier, p. 1-962

cursor name The name of the cursor to be
used by the UPDATE statement.
The current row of the active set
for this cursor is updated when
the UPDATE statement is
executed. See “WHERE
CURRENT OF Clause” on
page 1-789 for more information
on this parameter.

You cannot update a row with a
cursor if that row includes
aggregates. The specified cursor
(as defined in the SELECT...FOR
UPDATE portion of a DECLARE
statement) can contain only
column names. If the cursor was
created without specifying
particular columns for updating,
you can update any column in a
subsequent UPDATE...WHERE
CURRENT OF statement. But if
the DECLARE statement that
created the cursor specified one
or more columns in the FOR
UPDATE clause, you can update
only those columns in a subse-
quent UPDATE...WHERE
CURRENT OF statement.

Identifier, p. 1-962

E/C

SPL
1-776 Informix Guide to SQL: Syntax

UPDATE
To update data in a table, you must either own the table or have the Update
privilege for the table (see the GRANT statement on page 1-458). To update
data in a view, you must have the Update privilege, and the view must meet
the requirements that are explained in “Updating Rows Through a View”.

If you omit the WHERE clause, all rows of the target table are updated.

If you are using effective checking, and the checking mode is set to
IMMEDIATE, all specified constraints are checked at the end of each UPDATE
statement. If the checking mode is set to DEFERRED, all specified constraints
are not checked until the transaction is committed.

If you omit the WHERE clause and are in interactive mode, DB-Access does
not run the UPDATE statement until you confirm that you want to change all
rows. However, if the statement is in a command file, and you are running
from the command line, the statement executes immediately. ♦

Updating Rows Through a View
You can update data through a single-table view if you have the Update
privilege on the view (see the GRANT statement on page 1-458). To do this,
the defining SELECT statement can select from only one table, and it cannot
contain any of the following elements:

■ DISTINCT keyword

■ GROUP BY clause

■ Derived value (also called a virtual column)

■ Aggregate value

DB
SQL Statements 1-777

UPDATE
You can use data-integrity constraints to prevent users from updating values
in the underlying table when the update values do not fit the SELECT
statement that defined the view. For further information, refer to the WITH
CHECK OPTION discussion in the CREATE VIEW statement on page 1-286.

Because duplicate rows can occur in a view even though the underlying table
has unique rows, be careful when you update a table through a view. For
example, if a view is defined on the items table and contains only the
order_num and total_price columns, and if two items from the same order
have the same total price, the view contains duplicate rows. In this case, if
you update one of the two duplicate total price values, you have no way to
know which item price is updated.

Important: You cannot update rows to a remote table through views with check
options.

Updating Rows in a Database Without Transactions
If you are updating rows in a database without transactions, you must take
explicit action to restore updated rows. For example, if the UPDATE statement
fails after updating some rows, the successfully updated rows remain in the
table. You cannot automatically recover from a failed update.

Updating Rows in a Database with Transactions
If you are updating rows in a database with transactions, and you are using
transactions, you can undo the update using the ROLLBACK WORK
statement. If you do not execute a BEGIN WORK statement before the update,
and the update fails, the database server automatically rolls back any
database modifications made since the beginning of the update.

If you are updating rows in an ANSI-compliant database, transactions are
implicit, and all database modifications take place within a transaction. In
this case, if an UPDATE statement fails, you can use the ROLLBACK WORK
statement to undo the update.

When you use INFORMIX-Universal Server, you are within an explicit trans-
action, and the update fails, the database server automatically undoes the
effects of the update. ♦

ANSI
1-778 Informix Guide to SQL: Syntax

UPDATE
Locking Considerations
When Universal Server selects a row with the intent to update, the update
process acquires an update lock. Update locks permit other processes to read,
or share, a row that is about to be updated but do not let those processes
update or delete it. Just before the update occurs, the update process promotes
the shared lock to an exclusive lock. An exclusive lock prevents other
processes from reading or modifying the contents of the row until the lock is
released.

Universal Server allows only one update lock at a time on a row or a page (the
type of lock depends on the lock mode that is selected in the CREATE TABLE
or ALTER TABLE statements). An update process can acquire an update lock
on a row or a page that has a shared lock from another process, but you
cannot promote the update lock from shared to exclusive (and the update
cannot occur) until the other process releases its lock.

If the number of rows affected by a single update is very large, you can
exceed the limits placed on the maximum number of simultaneous locks. If
this occurs, you can reduce the number of transactions per UPDATE
statement, or you can lock the page or the entire table before you execute the
statement.

SET Clause

SET
Clause

Single-
Column

SET Clause
p. 1-780

Multiple-
Column

SET Clause
p. 1-782

,

+

SQL Statements 1-779

UPDATE
The SET clause identifies the columns to be updated and assigns values to
each column. The clause supports the following formats:

■ A single-column SET clause, which pairs a single column to a single
expression

■ A multiple-column SET clause, which lists multiple columns and sets
them equal to corresponding expressions.

Single-Column SET Clause

Element Purpose Restrictions Syntax
column name The name of the column that you

want to update
You cannot update SERIAL or
SERIAL8 columns. You can use
this syntax to update a row
column.

An expression list can include an
SQL subquery that returns a
single row of multiple values as
long as the number of columns
named in the column list equals
the number of values that the
expressions in the expression list
produce.

Identifier, p. 1-962

SELECT
Statement
(Subset)
p. 1-784

Single-Column
SET Clause

column
name

= Expression
(Subset)
p. 1-784

NULL
1-780 Informix Guide to SQL: Syntax

UPDATE
You can use a SET clause to set a single column to a single expression. A single
column in a SET clause can be a named row type column or an unnamed row
type column. When you use UPDATE to update a database column, you can
include any number of single-column to single-expressions in the UPDATE
statement. The following examples illustrate the single-column to single-
expression form of the SET clause:

UPDATE customer
SET address1 = '1111 Alder Court',

city = 'Palo Alto',
zipcode = '94301'

WHERE customer_num = 103

UPDATE orders
SET ship_charge =

(SELECT SUM(total_price) * .07
FROM items
WHERE orders.order_num = items.order_num)

WHERE orders.order_num = 1001

UPDATE stock
SET unit_price = unit_price * 1.07

UPDATE empinfo
SET name = ROW('dennis', 'banks')

WHERE emp_id = 322

For more information on the column values that are valid in a SET clause, see
“SET-Clause Values” on page 1-784. For more information on how to specify
values of a row column in a SET clause, see “Updating Row-Type Columns”
on page 1-785.

If you use UPDATE to update a collection variable (an UPDATE with a
Collection Derived Table segment), you can include only one pair of column
name and column value. Furthermore, you cannot include complex expres-
sions as the column values. Column values are restricted to literal values or
collection variables. For more information, see “Updating a Collection
Variable” on page 1-793. ♦

E/C
SQL Statements 1-781

UPDATE
Multiple-Column SET Clause

Element Purpose Restrictions Syntax
* Indicator that all columns in the

specified table or view are to be
updated

The restrictions that are
discussed under column name
also apply to the asterisk (*).

The asterisk (*) is a
literal value with a
special meaning in
this statement.

column name The name of the column that you
want to update

You cannot update SERIAL or
SERIAL8 columns. You cannot
use this syntax to update a row
column. For more information,
see page 1-785.

An expression list can include an
SQL subquery that returns a
single row of multiple values as
long as the number of columns
named in the column list equals
the number of values that the
expressions in the expression list
produce.

Identifier, p. 1-962

Multiple-Column
SET Clause

*

column
name

,

() =

SELECT
Statement
(Subset)
p. 1-784

Expression
(Subset)
p. 1-784

NULL

,

()
1-782 Informix Guide to SQL: Syntax

UPDATE
You can use a second format of the SET clause to set multiple columns to
multiple expression. The SET clause offers the following options for listing a
series of columns you intend to update:

■ Explicitly list each column, placing commas between columns and
enclosing the set of columns in parentheses.

■ Implicitly list all columns in table name using the asterisk notation (*).

To complete the multiple-column SET clause, you must list each expression
explicitly, placing commas between expressions and enclosing the set of
expressions in parentheses. The number of columns in the column list must
be equal to the number of expressions in the expression list, unless the
expression list includes an SQL subquery. The following examples illustrate
this form of the multiple-column SET clause:

UPDATE customer
SET (fname, lname) = ('John', 'Doe')
WHERE customer_num = 101

UPDATE manufact
SET * = ('HNT', 'Hunter')
WHERE manu_code = 'ANZ'

An expression list can include an SQL subquery that returns a single row of
multiple values as long as the number of columns named, explicitly or
implicitly, equals the number of values produced by the expression or expres-
sions that follow the equal sign. The following examples show the use of SQL
subqueries in a multiple-column SET clause:

UPDATE items
SET (stock_num, manu_code, quantity) =

((SELECT stock_num, manu_code FROM stock
WHERE description = 'baseball'), 2)

WHERE item_num = 1 AND order_num = 1001

UPDATE table1
SET (col1, col2, col3) =

((SELECT MIN (ship_charge),
MAX (ship_charge) FROM orders),
'07/01/1993')

WHERE col4 = 1001

For more information on the column values that are valid in a SET clause, see
“SET-Clause Values” on page 1-784.
SQL Statements 1-783

UPDATE
SET-Clause Values

You can express a value in a single-column or multiple-column SET clause in
any of following ways:

■ As an expression

■ As a SELECT statement

■ As a NULL value

Subset of Expressions Allowed in the SET Clause

When you update a table or view, you cannot use an expression comprised
of aggregate functions in the SET clause. For a complete description of syntax
and usage, see the Expression segment on page 1-876.

Subset of SELECT Statements Allowed in the SET Clause

A SELECT statement used in a SET clause can return more than one column of
information in a row. However, the SELECT statement cannot return more
than one row of information in a table. For a complete description of syntax
and usage, refer to the SELECT statement on page 1-593.

Updating a Column to NULL

You can use the NULL keyword to modify a column value when you use the
UPDATE statement. For a customer whose previous address required two
address lines but now requires only one, you would use the following entry:

UPDATE customer SET
address1 = '123 New Street',
address2 = null,
city = 'Palo Alto',
zipcode = '94303'
WHERE customer_num = 134
1-784 Informix Guide to SQL: Syntax

UPDATE
Updating Row-Type Columns

You use the SET clause to update a named row type or unnamed row type
column. For example, suppose you define the following named row type and
a table that contains columns of both named and unnamed row types:

CREATE ROW TYPE address_t
(

street CHAR(20),
city CHAR(15),
state CHAR(2)

);

CREATE TABLE empinfo
(

emp_id INT
name ROW (fname CHAR(20), lname CHAR(20)),
address address_t

);

To update an unnamed row type, specify the ROW constructor before the
parenthesized list of field values. The following statement updates the name
column (an unnamed row type) of the empinfo table:

UPDATE empinfo
SET name = ROW('John','Williams')
WHERE emp_id =455

To update a named row type, specify the ROW constructor before the paren-
thesized list of field values and use the cast operator (::) to cast the row value
as a named row type. The following statement updates the address column
(a named row type) of the empinfo table:

UPDATE empinfo
SET address = ROW('103 Baker St','Tracy','CA')::address_t
WHERE emp_id = 3568

For more information on the syntax for ROW constructors, see “Constructor
Expressions” on page 1-895 in the Expression segment. See also the Literal
Row segment on page 1-999.

The row-column SET clause can only support literal values for fields. To use
a variable to specify a field value, you must select the row into a row variable,
use host variables for the individual field values, then update the row
column with the row variable. For more information, see “Updating a Row
Variable” on page 1-798. ♦

ESQL
SQL Statements 1-785

UPDATE
You can use ESQL/C host variables to insert non-literal values as:

■ an entire row type into a column.

Use a row variable as a variable name in the SET clause to update all
fields in a row column at one time.

■ individual fields of a row type.

To insert non-literal values into a row-type column, you can first
update the elements in a row variable and then specify the collection
variable in the SET clause of an UPDATE statement.

When you use a row variable in the SET clause, the row variable must contain
values for each field value. For information on how to insert values into a row
variable, see “Updating a Row Variable” on page 1-798. ♦

To update only some of the fields in a row, you can perform one of the
following operations:

■ Specify the field names with field projection for all fields whose
values remain unchanged.

For example, the following UPDATE statement changes only the
street and city fields of the address column of the empinfo table:

UPDATE empinfo
SET address = ROW('23 Elm St', 'Sacramento',

address.state)
WHERE emp_id = 433

The address.state field remains unchanged.

■ Select the row into a row variable and update the desired fields.

For more information, see “Updating a Row Variable” on
page 1-798. ♦

Updating Collection Columns

You can use the SET clause to insert literal values into a collection column,
which can be a LIST, MULTISET, or SET. For example, suppose you define the
tab1 table as follows:

CREATE TABLE tab1
(

int1 INTEGER,
list1 LIST(ROW(a INTEGER, b CHAR(5)) NOT NULL),
dec1 DECIMAL(5,2)

)

E/C

ESQL
1-786 Informix Guide to SQL: Syntax

UPDATE
The following UPDATE statement updates a row in the tab1 table with literal
values:

EXEC SQL update tab1
set list1 = "LIST{ROW(4, 'opqrs'),

ROW(5, 'tuvwx'),
ROW(6, 'yxabc')}"

where int1 = 5

The collection column, list1, in the tab1 row has three elements, and each
element is an unnamed row type with an INTEGER field and a CHAR(5) field.
For more information on the syntax for literal collection values, see “Literal
DATETIME” on page 1-991.

You can use an ESQL/C collection variable or an SPL collection variable to
update:

■ an entire collection into a column.

Use a collection variable as a variable name in the SET clause to insert
an entire collection.

For example, the following ESQL/C code fragment updates with the
elements of the a_set host variable the set_col column of the row in
the tab_a table whose int_col value is 6:

EXEC SQL BEGIN DECLARE SECTION;
client collection set(smallint not null) a_set;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL update tab_a set set_col = :a_set

where int_col = 6;

■ individual elements in a collection.

To update a collection column with non-literal values, you must first
update the elements in a collection variable and then specify the
collection variable in the SET clause of an UPDATE statement. For
information on how to update elements of a collection variable, see
“Updating a Collection Variable” on page 1-793. ♦

E/C

SPL
SQL Statements 1-787

UPDATE
Updating Values in Opaque-Type Columns

Some opaque data types require special processing when they are updated.
For example, if an opaque data type contains spatial or multirepresentational
data, it might provide a choice of how to store the data: inside the internal
structure or, for very large objects, in a smart large object.

This processing is accomplished by calling a user-defined support function
called assign(). When you execute the UPDATE statement on a table whose
rows contains one of these opaque types, the database server automatically
invokes the assign() function for the type. The assign() function can make the
decision of how to store the data. For more information about the assign()
support function, see the Extending INFORMIX-Universal Server: Data Types
manual.

WHERE Clause
The WHERE clause lets you limit the rows that you want to update. If you
omit the WHERE clause, every row in the table is updated.

The WHERE clause consists of a standard search condition. (For more
information, see the SELECT statement on page 1-593). The following
example illustrates a WHERE condition within an UPDATE statement. In this
example, the statement updates three columns (state, zipcode, and phone) in
each row of the customer table that has a corresponding entry in a table of
new addresses called new_address.

UPDATE customer
SET (state, zipcode, phone) =

((SELECT state, zipcode, phone FROM new_address N
WHERE N.cust_num =

customer.customer_num))
WHERE customer_num IN

(SELECT cust_num FROM new_address)
1-788 Informix Guide to SQL: Syntax

UPDATE
Updating and the WHERE Clause

When you update a table in an ANSI-compliant database using an UPDATE
statement with the WHERE clause, and the database server finds no matching
rows, the database server issues a warning. You can detect this warning
condition in either of the following ways:

■ The GET DIAGNOSTICS statement sets the RETURNED_SQLSTATE
field to the value ‘02000.’ In an SQL API application, the SQLSTATE
variable contains this same value.

■ In an SQL API application, the sqlca.sqlcode and SQLCODE variables
contain the value 100.

The database server also sets SQLSTATE and SQLCODE to these values if the
UPDATE ... WHERE ... is a part of a multistatement prepare and the database
server returns no rows. ♦

In a database that is not ANSI compliant, the database server does not return
a warning when it finds no matching rows for the WHERE clause of an
UPDATE statement. The SQLSTATE code is ‘00000’ and the SQLCODE code is
zero (0). However, if the UPDATE ... WHERE ... is a part of a multistatement
prepare, and no rows are returned, the database server does issue a warning.
It sets SQLSTATE to ‘02000’ and SQLCODE value to 100.

For additional information about the SQLSTATE code, see the GET
DIAGNOSTICS statement in this manual. For information about the SQLCODE
code, see the description of the sqlca structure in the Informix Guide to SQL:
Tutorial.

WHERE CURRENT OF Clause
You can use the WHERE CURRENT OF clause to update either of the following
objects:

■ The current row of the active set of a cursor

■ The current element of a collection cursor (INFORMIX-ESQL/C only)

You access both of these objects with an update cursor. An update cursor is a
sequential cursor that is associated with a SELECT statement but can modify
and delete the contents of the cursor. For more information on the update
cursor, see page 1-307. ♦

ANSI

ESQL

SPL
SQL Statements 1-789

UPDATE
To use the WHERE CURRENT OF clause, you must have previously used the
DECLARE statement with the FOR UPDATE clause to define the cursor name for
the update cursor. (See the DECLARE statement on page 1-300.) ♦

Before you can use the WHERE CURRENT OF clause, you must declare a
cursor with the FOREACH statement. (See the FOREACH statement on
page 2-27.) ♦

All select cursors are potentially update cursors in ANSI-compliant
databases. You can use the WHERE CURRENT OF clause with any select
cursor. ♦

Tip: You can use an update cursor to perform updates that are not possible with the
UPDATE statement.

Updating the Current Row

When you specify a table or view name in the FROM clause of the SELECT, the
DECLARE statement defines a cursor that populates an active set with the
rows of the specified tables or views. The UPDATE...WHERE CURRENT OF
statement updates values in the current row of the active set. However, you
cannot update a row with a cursor if that row includes aggregates. The cursor
named in the WHERE CURRENT OF clause can only contain column names.
The UPDATE statement does not advance the cursor to the next row, so the
current row position remains unchanged.

To use the WHERE CURRENT OF clause, you must have previously used the
DECLARE statement with the FOR UPDATE clause to define the cursor name for
the update cursor. (See the DECLARE statement on page 1-300.) If you created
the cursor without specifying any columns for updating, you can update any
column in a subsequent UPDATE...WHERE CURRENT OF statement.

You can restrict the effect of the WHERE CURRENT OF clause if the DECLARE
statement that created the cursor specified one or more columns in the FOR
UPDATE clause. In this case, you are restricted to updating only those
columns in a subsequent UPDATE...WHERE CURRENT OF statement. The
advantage to specifying columns in the FOR UPDATE clause of a DECLARE
statement is speed. Universal Server can usually perform updates more
quickly if columns are specified in the DECLARE statement.

ESQL

SPL

ANSI

ESQL

SPL
1-790 Informix Guide to SQL: Syntax

UPDATE
The following INFORMIX-ESQL/C example illustrates the WHERE CURRENT
OF clause of the UPDATE statement. In this example, updates are performed
on a range of customers who receive 10-percent discounts (assume that a new
column, discount, is added to the customer table). The UPDATE statement is
prepared outside the WHILE loop to ensure that parsing is done only once.
(For more information, see the PREPARE statement on page 1-538.)

char answer [1] = 'y';
EXEC SQL BEGIN DECLARE SECTION;

char fname[32],lname[32];
int low,high;

EXEC SQL END DECLARE SECTION;

main()
{

EXEC SQL connect to 'stores7';
EXEC SQL prepare sel_stmt from

'select fname, lname from customer \
 where cust_num between ? and ? for update';

EXEC SQL declare x cursor for sel_stmt;
printf("\nEnter lower limit customer number: ");
scanf("%d", &low);
printf("\nEnter upper limit customer number: ");
scanf("%d", &high);
EXEC SQL open x using :low, :high;
EXEC SQL prepare u from

'update customer set discount = 0.1 \
where current of x';

while (1)
{
EXEC SQL fetch x into :fname, :lname;
if (SQLCODE == SQLNOTFOUND)

break;
}

printf("\nUpdate %.10s %.10s (y/n)?", fname, lname);
if (answer = getch() == 'y')

EXEC SQL execute u;
EXEC SQL close x;

}

♦

SQL Statements 1-791

UPDATE
Updating A Collection Element

You declare a collection cursor when you associate a cursor with SELECT
statement that includes a Collection Derived Table clause. You use one of the
following statements to declare a collection cursor:

■ In an ESQL/C program, use the DECLARE statement.

For more information, see “Associating a Cursor With a Collection
Variable” on page 1-317 in the DECLARE statement.

■ In an SPL routine, use the FOREACH statement.

For more information, see the FOREACH statement on page 2-27.

A collection cursor is an update cursor by default. However, you can
optionally specify the FOR UPDATE clause with the SELECT statement. With
an update cursor, you can use the UPDATE...WHERE CURRENT OF statement
to update the current element of a collection cursor. For more information,
see “Updating a Collection Variable” on page 1-793.

Important: You can only declare a select cursor on a collection variable. Neither
INFORMIX-ESQL/C nor SPL supports cursors on row variables. For more informa-
tion, see “Updating a Row Variable” on page 1-798.

♦

ESQL

SPL
1-792 Informix Guide to SQL: Syntax

UPDATE
Updating a Collection Variable
The UPDATE statement with the Collection Derived Table segment allows
you to update elements in a collection variable. The Collection Derived Table
segment identifies the collection variable in which to update the elements.
For more information on the Collection Derived Table segment, see
page 1-827.

In an INFORMIX-ESQL/C program, declare a host variable of type collection
for a collection variable. This collection variable can be typed or untyped. ♦

In an SPL routine, declare a variable of type COLLECTION, LIST, MULTISET, or
SET for a collection variable. This collection variable can be typed or
untyped. ♦

To update elements, follow these steps:

1. Create a collection variable in your SPL routine or ESQL/C program.

2. Optionally, select a collection column into the collection variable
with the SELECT statement (without the Collection Derived Table
segment).

3. Update elements of the collection variable with the UPDATE
statement and the Collection Derived Table segment.

4. Once the collection variable contains the correct elements, you then
use the UPDATE or INSERT statement on a table or view name to save
the collection variable in the collection column (SET, MULTISET, or
LIST).

E/C

SPL
SQL Statements 1-793

UPDATE
The UPDATE statement and the Collection Derived Table segment allow you
to perform the following operations on a collection variable:

■ Update a particular element in the collection

You must declare an update cursor for the collection variable and use
UPDATE with the WHERE CURRENT OF clause. For more information
on how to use an update cursor with ESQL/C, see the DECLARE
statement. For more information on how to use an update cursor
with SPL, see “FOREACH” on page 2-27.

The application or SPL routine must position the update cursor on
the element to be updated and then use UPDATE...WHERE CURRENT
OF to update this value. For more information on the WHERE
CURRENT OF clause of UPDATE, see page 1-789.

■ Update all elements in the collection to the same value

Use the UPDATE statement (without the WHERE CURRENT OF clause)
and specify a derived column name in the SET clause.

For example, the following UPDATE changes all elements in the a_list
ESQL/C collection variable to a value of 16:

EXEC SQL update table(:a_list) (list_elmt)
set list_elmt = 16;

♦
The following UPDATE changes all elements in a_list to the value 16
in an SPL routine:

UPDATE TABLE (a_list) (list_elmt)
SET list_elmt = 16;

♦

E/C

SPL
1-794 Informix Guide to SQL: Syntax

UPDATE
In these examples, the derived column list_elmt provides an alias to identify
an element of the collection. No update cursor is required to update all
elements of a collection.

An UPDATE of an element or elements in a collection variable cannot include
a WHERE clause. When you use UPDATE to update a collection variable, you
can only include one pair of column-name and column-value. Furthermore,
you cannot include complex expressions as the column values. Column
values are restricted to literal values or collection variables.

The collection variable stores the elements of the collection. However, it has
no intrinsic connection with a database column. Once the collection variable
contains the correct elements, you must then save the variable into the
collection column with one of the following SQL statements:

■ To update the collection column in the table with the collection
variable, use an UPDATE statement on a table or view name and
specify the collection variable in the SET clause.

For more information, see “Updating Collection Columns” on
page 1-786.

■ To insert a collection in a column, use the INSERT statement on a table
or view name and specify the collection variable in the VALUES
clause.

For more information, see “Inserting Into a Collection Variable” on
page 1-506 in the INSERT statement.

Suppose that the set_col column of a table called table1 is defined as a SET
and that it contains the values {1,8,4,5,2}. The following ESQL/C program
changes the element whose value is 4 to a value of 10.

main
{

EXEC SQL BEGIN DECLARE SECTION;
int a;
collection b;

EXEC SQL END DECLARE SECTION;

EXEC SQL allocate collection :b;
EXEC SQL select set_col into :b from table1

where int_col = 6;

EXEC SQL declare set_curs cursor for
select * from table(:b)
for update;

E/C
SQL Statements 1-795

UPDATE
EXEC SQL open set_curs;
while (SQLCODE != SQLNOTFOUND)
{

EXEC SQL fetch set_curs into :a;
if (a = 4)
{

EXEC SQL update table(:b)(x)
set x = 10
where current of set_curs;

break;
}

}

EXEC SQL update table1 set set_col = :b
where int_col = 6;

EXEC SQL deallocate collection :b;
EXEC SQL close set_curs;
EXEC SQL free set_curs;

}

After you execute this ESQL/C program, the SET column in table1 contains
the values {1,8,10,5,2}.

This ESQL/C program defines two collection variables, a and b, and selects
a SET from table1 into b. The WHERE clause ensures that only one row is
returned. Then, the program defines a collection cursor, which selects
elements one at a time from b into a. When the program locates the element
with the value 4, the first UPDATE statement changes that element value to 10
and exits the loop.

In the first UPDATE statement, x is a derived column name used to update the
current element in the collection derived table. The second UPDATE
statement updates the base table table1 with the new collection. For infor-
mation on how to use collection host variables in an ESQL/C program, see
the discussion of complex data types in the INFORMIX-ESQL/C Programmer’s
Manual. ♦
1-796 Informix Guide to SQL: Syntax

UPDATE
The following SPL routine performs the same task as preceding ESQL/C
program.

CREATE PROCEDURE test5()

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);

SELECT set_col INTO b FROM table1
WHERE id = 6;
-- select the collection from the database
-- into a collection variable

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

-- select one element at a time
-- from the collection derived table b

IF a = 4 THEN
UPDATE TABLE(b)(x)

SET x = 10
WHERE CURRENT OF cursor1;

EXIT FOREACH;
-- if the element has the value 4
-- update it to have the value 10 and exit

END IF;
END FOREACH;

UPDATE table1 SET set_col = b;
WHERE id = 6;
-- update the base table with the new collection

END PROCEDURE;

After you execute this SPL routine, the SET stored in table1 will contain the
values {1,8,10,5,2}. This SPL routine defines two collection variables, a and
b, and selects a SET from table1 into b. For more information on how to use
SPL collection variables, see Chapter 14 in the Informix Guide to SQL:
Tutorial. ♦

You can also use a collection variable as a variable name in the SET clause to
update all elements of a collection. For more information, see “Updating
Collection Columns” on page 1-786.

SPL
SQL Statements 1-797

UPDATE
Updating a Row Variable
The UPDATE statement with the Collection Derived Table segment allows
you to update fields in a row variable. The Collection Derived Table segment
identifies the row variable in which to update the fields. For more infor-
mation on the Collection Derived Table segment, see page 1-827.

To update fields, follow these steps:

1. Create a row variable in your ESQL/C program.

2. Optionally, select a row-type column into the row variable with the
SELECT statement (without the Collection Derived Table segment).

3. Update fields of the row variable with the UPDATE statement and the
Collection Derived Table segment.

4. Once the row variable contains the correct fields, you then use the
UPDATE or INSERT statement on a table or view name to save the row
variable in the row column (named or unnamed).

The UPDATE statement and the Collection Derived Table segment allow you
to update a particular field or group of fields in the row variable. You specify
the new field value(s) in the SET clause. For example, the following UPDATE
changes the x and y fields in myrect ESQL/C row variable:

EXEC SQL BEGIN DECLARE SECTION;
row (x int, y int, length float, width float) myrect;

EXEC SQL END DECLARE SECTION;
.
.
.
EXEC SQL select into :myrect from rectangles

where area = 64;
EXEC SQL update table(:myrect)

set x=3, y=4;

Suppose that after the SELECT statement, the myrect2 variable has the values
x=0, y=0, length=8, and width=8. After the UPDATE statement, myrect2
variable has field values of x=3, y=4, length=8, and width=8.

E/C
1-798 Informix Guide to SQL: Syntax

UPDATE
You cannot use a row variable in the Collection Derived Table segment of an
INSERT statement. However, you can use the UPDATE statement and the
Collection Derived Table segment to insert new field values into a row host
variable, as long as you specify a value for every field in the row. For
example, the following code fragment inserts new field values into the
myrect row variable and then inserts this row variable into the database:

EXEC SQL update table(:myrect)
set x=3, y=4, length=12, width=6;

EXEC SQL insert into rectangles
values (72, :myrect);

If the row variable is an untyped variable, you must use a SELECT statement
before the UPDATE so that ESQL/C can determine the data types of the fields.
An UPDATE of a field or fields in a row variable cannot include a WHERE
clause.

The row variable stores the fields of the row. However, it has no intrinsic
connection with a database column. Once the row variable contains the
correct field values, you must then save the variable into the row column
with one of the following SQL statements:

■ To update the row column in the table with contents of the row
variable, use an UPDATE statement on a table or view name and
specify the row variable in the SET clause.

For more information, see “Updating Row-Type Columns” on
page 1-785 in the UPDATE statement.

■ To insert a row in a column, use the INSERT statement on a table or
view name and specify the row variable in the VALUES clause.

For more information, see “Inserting Values into Row-Type
Columns” on page 1-502.

For more information on how to use SPL row variables, see Chapter 14 in the
Informix Guide to SQL: Tutorial. For more information on how to use ESQL/C
row variables, see the discussion of complex data types in the
INFORMIX-ESQL/C Programmer’s Manual. ♦
SQL Statements 1-799

UPDATE
References
See the DECLARE, INSERT, OPEN, and SELECT statements in Chapter 1 of this
manual. See also the FOREACH statement in Chapter 2 of this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of the UPDATE
statement in Chapter 6 and Chapter 12. In the Guide to GLS Functionality, see
the discussion of the GLS aspects of the UPDATE statement.

For information on how to access row and collections with ESQL/C host
variables, see the discussion of complex data types in the
INFORMIX-ESQL/C Programmer’s Manual.
1-800 Informix Guide to SQL: Syntax

UPDATE STATISTICS
UPDATE STATISTICS
Use the UPDATE STATISTICS statement to:

■ determine the distribution of column values.

■ update the system catalog tables that the server uses to optimize
queries.

■ force reoptimization of stored procedures.

■ convert existing table indexes when you upgrade the database
server.
SQL Statements 1-801

UPDATE STATISTICS
Syntax

DROP
DISTRIBUTIONS

MEDIUM

RESOLUTION percent

HIGH

LOW

RESOLUTION percent

UPDATE STATISTICS

Synonym
Name

p. 1-1042

Table
Name
1-1044 ,

column
name()

FOR
TABLE

Synonym
Name

p. 1-1042

Table
Name

p. 1-1044 ,

column
name

()

FOR
TABLE

Synonym
Name

p. 1-1042

Table
Name

p. 1-1044 ,
column
name()

FOR
TABLE

DISTRIBUTIONS ONLY
conf

DISTRIBUTIONS ONLY

+

E/C

DB

SQLE
Routine

Statistics
p. 1-811
1-802 Informix Guide to SQL: Syntax

UPDATE STATISTICS
Element Purpose Restrictions Syntax
column name The name of a column in the

specified table
The column must exist. You
cannot use the name of a BYTE or
TEXT column with the MEDIUM
or HIGH keywords.

Identifier, p. 1-962

conf A measure of confidence in the
accuracy of medium distribution
data. Confidence level is
expressed as the proportion of
values obtained with the
MEDIUM keyword that you
project you would also obtain
with the HIGH keyword. The
default confidence level is 0.95.

Valid values range from the min-
imum confidence level of 0.80
to the maximum value of 0.99.

Literal Number,
p. 1-997

percent The percentage of samples in
each bin of a distribution, or bin
resolution. With the MEDIUM
keyword, the default value of
percent is 2.5. With the HIGH
keyword, the default value of
percent is 0.5. For further
information on this parameter,
see “Using the MEDIUM or
HIGH Keyword” on page 1-808.

The minimum resolution
possible for a table is 1/nrows,
where nrows is the number of
rows in the table.

Literal Number,
p. 1-997
SQL Statements 1-803

UPDATE STATISTICS
Usage
Use the UPDATE STATISTICS statement to distribute data values in table
columns and to optimize execution plans for routines. The information
produced by the UPDATE STATISTICS statement is restricted to objects in the
database from which you execute the statement.

Tables and Columns

The database server evaluates statistics to determine the optimal execution
plan for queries

The UPDATE STATISTICS statement stores statistics in the systables,
syscolumns, sysindexes, and sysdistrib system catalog tables. These stored
statistics describe the distribution of data values in tables, columns, and
indexes.

The server does not automatically update systables, syscolumns,
sysindexes, and sysdistrib if a change to the database obsoletes the corre-
sponding statistics in these system catalog tables. Issue an UPDATE
STATISTICS statement to ensure that the stored distribution information
reflects the state of the database.

Routines

The sysprocplan system catalog table stores execution plans for routines.
Two actions update the sysprocplan system catalog table:

■ Execution of a routine that uses a modified table

■ The UPDATE STATISTICS statement

If you change an object, such as a table, you can run UPDATE STATISTICS to
reoptimize on demand, rather than waiting until the routine next executes.
1-804 Informix Guide to SQL: Syntax

UPDATE STATISTICS
When to Update Statistics

Update the statistics in the following situations:

■ You perform extensive modifications to a table.

■ You change a table referenced by a routine, if you want the server to
immediately reoptimize rather than wait for execution time.

■ An application changes the distribution of column values. UPDATE
STATISTICS reoptimizes queries on the modified objects.

■ You upgrade a database for use with a newer database server. The
UPDATE STATISTICS statement converts the old indexes to conform
to the newer database server index format and implicitly drops the
old indexes.

You can choose to convert the indexes table by table or for the entire
database at one time. Follow the conversion guidelines in the
Informix Migration Guide.

Updating Statistics for Tables
The optimizer estimates the effect of a WHERE clause by examining, for each
column included in the WHERE clause, the proportionate occurrence of data
values contained in the column. To prepare for the optimizer, the UPDATE
STATISTICS statement distributes cell values from a one column into ranges,
each of which contains an equal portion of the column data.

A distribution is a mapping of the data in a column into a set of column values.
The contents of the column are divided into bins, each of which represents a
percentage of data. For example, if one bin holds 2 percent of the data, 50 of
these 2-percent bins hold all the data. A bin contains the particular range of
data values that reflects the appropriate percentage of entries in the column.
SQL Statements 1-805

UPDATE STATISTICS
Using the FOR TABLE Keywords

Without a FOR TABLE clause, UPDATE STATISTICS updates data for every
table in the current database, including the system tables.

Use FOR TABLE to exclude statistics on system tables.

The FOR TABLE clause without a table name updates the statistics for all
tables, including temporary tables, in the current database.

Specify a table name or synonym name to update statistics for only that table.
You can explicitly update the statistics for a temporary table or build distri-
butions for a temporary table by specifying the name of the table.

To narrow the scope of UPDATE STATISTICS further, specify column names.

Important: You cannot create distributions for TEXT or BYTE columns. If you
include a TEXT or BYTE column in UPDATE STATISTICS (MEDIUM) or UPDATE
STATISTICS (HIGH), the statement does not return an error or create distributions
for those columns, but it does construct distributions for other columns in the list.

Using the FOR TABLE ONLY Keywords

If the table specified in the UPDATE STATISTICS ON TABLE statement has
subtables, the database server creates distributions for that table and every
table under it in the hierarchy. For example, assume your database has the
typed table hierarchy that appears in Figure 1-2, which shows a supertable
named employee that has a subtable named sales_rep. The sales_rep table,
in turn, has a subtable named us_sales_rep.

Figure 1-2

us_sales_rep

employee

sales_rep

Table Hierarchy
1-806 Informix Guide to SQL: Syntax

UPDATE STATISTICS
To update statistics on both tables sales_rep and us_sales_rep, you would use
the following statement:

UPDATE STATISTICS ON TABLE sales_rep

Use the ONLY keyword to collect data for one table in a hierarchy of typed
tables. The following example creates a distribution of data for each column
in table sales_rep but does not act on tables employee or us_sales_rep:

UPDATE STATISTICS ON TABLE ONLY sales_rep

Tip: The more specific you make the list of objects that UPDATE STATISTICS
examines, the faster it completes execution. For help in deciding what is needed, see
“When to Update Statistics” on page 1-805.

Use the FOR TABLE and ONLY keywords to specify that you want statistics
updated for only some of the tables and columns in the database. Use the
LOW, MEDIUM, or HIGH keyword to indicate the precision of every distri-
bution that a single UPDATE STATISTICS statement creates. Limiting the
number of columns distributed speeds the update. Similarly, precision effects
the speed of the update. If all other keywords are the same, LOW works
fastest, but HIGH examines the most data.

Using the LOW Keyword

To create a low distribution, use the LOW keyword or issue the UPDATE
STATISTICS statement without a distribution level keyword. A low distri-
bution update does the following:

■ Updates data in the systables, syscolumns, and sysindexes tables

■ Adds no new information to the sysdistrib system catalog table

Normally a low distribution update does not remove data from the
sysdistrib system catalog table. You can optionally remove it with
the DROP DISTRIBUTIONS option. “Using LOW with DROP DISTRI-
BUTIONS” on page 1-808 explains how this option works.

■ Updates table, row, and page counts, as well as index and column
statistics for specified columns

Tip: If you want the UPDATE STATISTICS statement to do minimal work, specify a
column that is not part of an index.
SQL Statements 1-807

UPDATE STATISTICS
The following example updates statistics on the customer_num column of
the customer table. All distributions associated with the customer table
remain intact, even those that already exist on the customer_num column.

UPDATE STATISTICS LOW FOR TABLE customer (customer_num)

Using LOW with DROP DISTRIBUTIONS

The DROP DISTRIBUTIONS keywords force the removal of distribution infor-
mation from the sysdistrib system catalog table to accompany the
construction of a low distribution.

When you issue the statement with a table name but no column names, all
the distributions for the table name are dropped. When you specify column
names in the UPDATE STATISTICS, only the distribution data for those
columns is dropped from sysdistrib.

You must have the DBA privilege or be the owner of the table in order to drop
distributions.

The following example shows how to remove distributions for the
customer_num column in the customer table:

UPDATE STATISTICS LOW
FOR TABLE customer (customer_num) DROP DISTRIBUTIONS

Using the MEDIUM or HIGH Keyword

A medium or high distribution update does the following:

■ Updates data in the systables, syscolumns, and sysindexes tables

■ Updates distribution data in the sysdistrib system catalog table

■ Updates table, row, and page counts, as well as index and column
statistics for specified columns

You must have the DBA privilege or be the owner of the table in order to
create high or medium distributions.
1-808 Informix Guide to SQL: Syntax

UPDATE STATISTICS
Both the MEDIUM or HIGH keywords provide a RESOLUTION percent clause
with which you can set the percentage of data distributed to every bin. Unless
you change the percent value with a RESOLUTION clause:

■ The resolution for HIGH keyword defaults to 0.5 percent, which
means that each bin contains 0.5 percent of one column’s data.

■ The resolution for HIGH keyword defaults to 2.5 percent.

The HIGH keyword collects data from every row to construct an exact distri-
bution for each column. UPDATE STATISTICS (MEDIUM) samples a percentage
of data rows to construct statistically significant, but not exact, distribution
data. The medium distribution usually contains significantly less data and
takes less time to construct than a high distribution on the same table.

You can specify a confidence ratio with the MEDIUM keyword. If you do not
specify a value for conf, the default confidence is 0.95, which means that for
approximately 95 percent of samples, the estimate is equivalent to using high
distributions.

The HIGH keyword can take considerable time to gather the information
across the database, particularly a database with large tables. The HIGH
keyword might scan each table several times. The MEDIUM keyword scans
tables at least once and takes longer to execute on a given table than the LOW
keyword. To minimize processing time, specify a table name and column
names within that table.

Tip: The amount of space that the DBUPSPACE environment variable designates
determines the number of times that the database server scans a table. For infor-
mation about DBUPSPACE, see Chapter 3 of the Informix Guide to SQL: Reference.
SQL Statements 1-809

UPDATE STATISTICS
MEDIUM or HIGH with DISTRIBUTIONS ONLY

The UPDATE STATISTICS statement reads through index pages to:

■ compute statistics for the query optimizer.

■ locate pages that have the delete flag marked as one.

Keys in these pages are removed from the btree cleaner list. For infor-
mation on the btree cleaner list, see the INFORMIX-Universal Server
Administrator’s Guide.

Examining index information can consume considerable processing time. If
you specify the DISTRIBUTIONS ONLY option with the MEDIUM or HIGH
keywords, you do not collect statistics for index information.

The DISTRIBUTIONS ONLY keyword has no effect on information about
tables, such as the number of pages used, the number of rows, and fragment
information. UPDATE STATISTICS needs this data to construct accurate
column distributions and requires little time and system resources to collect
it.

In the following example, the UPDATE STATISTICS statement gathers distri-
butions information, index information, and table information for the
customer table:

UPDATE STATISTICS MEDIUM FOR TABLE customer

However, in the following example, only distributions information and table
information are gathered for the customer table. The DISTRIBUTIONS ONLY
option prevents the construction of index information.

UPDATE STATISTICS MEDIUM FOR TABLE customer
DISTRIBUTIONS ONLY
1-810 Informix Guide to SQL: Syntax

UPDATE STATISTICS
Updating Statistics for Routines
Use the FOR ROUTINE, FOR FUNCTION, FOR PROCEDURE, or FOR SPECIFIC
clause to avoid updating tables. You specify a routine name or specific name,
or a routine parameter list to limit the scope of the UPDATE STATISTICS
statement to a particular definition of a routine.

Element Purpose Restrictions Syntax
routine name The name given to the routine in

a CREATE FUNCTION or
CREATE PROCEDURE statement

The identifier must refer to an
existing user-defined routine.

In an ANSI-compliant database,
specify the owner as the prefix to
the routine name.

Function Name,
p. 1-959 or Procedure
Name, p. 1-1004

Routine Statistics

FOR Specific
Name

p. 1-1034
SPECIFIC

PROCEDURE

ROUTINE

()

Routine
Parameter

List, p. 1-1028

FUNCTION

routine
name
SQL Statements 1-811

UPDATE STATISTICS
Recommended Procedure for Updating Statistics
Informix recommends the following procedure for giving the optimizer the
best possible information while incurring the lowest performance penalty:

1. Run UPDATE STATISTICS in medium mode with the DISTRIBUTIONS
ONLY option for each table. (If you are the database owner or DBA,
and you want to gather statistics for the entire database, you can do
that with a single command instead.). The default parameters are
sufficient unless the table is very large. In this case, use a resolution
of 1.00 and a confidence level of 0.99.

2. Run UPDATE STATISTICS in high mode for all columns that head an
index. For the fastest execution time of the UPDATE STATISTICS
statement, you must execute one UPDATE STATISTICS statement in
the high mode for each such column.

3. For each multicolumn index, run UPDATE STATISTICS in low mode
for all its columns.

This procedure executes rapidly because it constructs the index-information
statistics only once for each index.

Keyword Function

SPECIFIC Reoptimizes the execution plan for a routine identified by
specific name.

FUNCTION Reoptimizes the execution plan for any function with the
specified routine name (and parameter types that match
routine parameter list, if supplied).

PROCEDURE Reoptimizes the execution plan for any procedure with the
specified routine name (and parameter types that match
routine parameter list, if supplied).

ROUTINE Reoptimizes the execution plan for functions and procedures
with the specified routine name (and parameter types that
match routine parameter list, if supplied).
1-812 Informix Guide to SQL: Syntax

UPDATE STATISTICS
References
In the INFORMIX-Universal Server Performance Guide, see the discussion of
UPDATE STATISTICS. In the Informix Migration Guide, see the discussion of
how to use the dbschema utility to view distributions created with UPDATE
STATISTICS.
SQL Statements 1-813

WHENEVER
WHENEVER
Use the WHENEVER statement to trap exceptions that occur during the
execution of SQL statements.

Syntax

Element Purpose Restrictions Syntax
function name Function or procedure that is

called when an exception occurs
Function or procedure must
exist at compile time.

Function or
procedure name
must conform to
language-specific
rules for functions or
procedures.

label Statement label to which
program control transfers when
an exception occurs

The label must be defined in
same source file.

Label must conform
to language-specific
rules for statement
labels.

WHENEVER

+

SQLERROR

NOT FOUND

CONTINUE

CALL function
name

GO TO

STOP

label

SQLWARNING

: label

+

GOTO

E/C
1-814 Informix Guide to SQL: Syntax

WHENEVER
Usage
Use of the WHENEVER statement is equivalent to placing an exception-
checking routine after every SQL statement. The following table summarizes
the types of exceptions for which you can check with the WHENEVER
statement.

If you do not use the WHENEVER statement in a program, the program does
not automatically abort when an exception occurs. Your program must
explicitly check for exceptions and take whatever corrective action you
desire. If you do not check for exceptions, the program simply continues
running. However, as a result of the errors, the program might not perform
its intended purpose.

In addition to specifying the type of exception for which to check, the
WHENEVER statement also specifies what action to take when the specified
exception occurs. The following table summarizes possible actions that
WHENEVER can specify.

Type of Exception WHENEVER Clause For More Information

Errors SQLERROR page 1-817

Warnings SQLWARNING page 1-817

Not Found Condition
End of Data Condition

NOT FOUND page 1-818

Type of Action WHENEVER Keyword For More Information

Continue program execution CONTINUE page 1-818

Stop program execution STOP page 1-818

Transfer control to a specified label GOTO page 1-818

Transfer control to a named function
or procedure

CALL page 1-819
SQL Statements 1-815

WHENEVER
Scope of WHENEVER
The ESQL preprocessor, not the database server, handles the interpretation of
the WHENEVER statement. When the preprocessor encounters a WHENEVER
statement in an ESQL source file, it inserts the appropriate code into the
preprocessed code after each SQL statement based on the exception and the
action that WHENEVER lists. The preprocessor defines the scope of a
WHENEVER statement as from the point that it encounters the statement in
the source module until it encounters one of the following conditions:

■ The next WHENEVER statement with the same exception condition
(SQLERROR, SQLWARNING, and NOT FOUND) in the same source
module

■ The end of the source module

Whichever condition the preprocessor encounters first as it sequentially
processes the source module marks the end of the scope of the WHENEVER
statement.

The following ESQL/C example program has three WHENEVER statements,
two of which are WHENEVER SQLERROR statements. Line 4 uses STOP with
SQLERROR to override the default CONTINUE action for errors. Line 8
specifies the CONTINUE keyword to return the handling of errors to the
default behavior. For all SQL statements between lines 4 and 8, the prepro-
cessor inserts code that checks for errors and halts program execution if an
error occurs. Therefore, any errors that the INSERT statement on line 6
generates cause the program to stop.

After line 8, the preprocessor does not insert code to check for errors after SQL
statements. Therefore, any errors that the INSERT statement (line 10), the
SELECT statement (line 11), and DISCONNECT statement (line 12) generate are
ignored. However, the SELECT statement does not stop program execution if
it does not locate any rows; the WHENEVER statement on line 7 tells the
program to continue if such an exception occurs.

1 main()
2 {

3 EXEC SQL connect to 'test';

4 EXEC SQL WHENEVER SQLERROR STOP;

5 printf("\n\nGoing to try first insert\n\n");
6 EXEC SQL insert into test_color values ('green');
1-816 Informix Guide to SQL: Syntax

WHENEVER
7 EXEC SQL WHENEVER NOT FOUND CONTINUE;
8 EXEC SQL WHENEVER SQLERROR CONTINUE;

9 printf("\n\nGoing to try second insert\n\n");
10 EXEC SQL insert into test_color values ('blue');
11 EXEC SQL select paint_type from paint where color='red';
12 EXEC SQL disconnect all;
13 printf("\n\nProgram over\n\n");
14 }

SQLERROR Keyword
If you use the SQLERROR keyword, any SQL statement that encounters an
error is handled as the WHENEVER SQLERROR statement directs. If an error
occurs, the SQLCODE variable (sqlca.sqlcode) is less than zero and the
SQLSTATE variable has a class code with a value greater than 02. The
following statement causes a program to stop execution if an SQL error exists:

WHENEVER SQLERROR STOP

If you do not use any WHENEVER SQLERROR statements in a program, the
default for WHENEVER SQLERROR is CONTINUE.

SQLWARNING Keyword
If you use the SQLWARNING keyword, any SQL statement that generates a
warning is handled as the WHENEVER SQLWARNING statement directs. If a
warning occurs, the first field of the warning structure in SQLCA
(sqlca.sqlwarn.sqlwarn0) is set to W, and the SQLSTATE variable has a class
code of 01.

In addition to setting the first field of the warning structure, a warning also
sets an additional field to W. The field that is set indicates the type of warning
that occurred. For more information, see the chapter on exception checking
in the INFORMIX-ESQL/C Programmer’s Manual.

The following statement causes a program to stop execution if a warning
condition exists:

WHENEVER SQLWARNING STOP

If you do not use any WHENEVER SQLWARNING statements in a program, the
default for WHENEVER SQLWARNING is CONTINUE.
SQL Statements 1-817

WHENEVER
NOT FOUND Keywords
If you use the NOT FOUND keywords, exception handling for SELECT and
FETCH statements is treated differently than for other SQL statements. The
NOT FOUND keyword checks for the following cases:

■ The End of Data condition: a FETCH statement that attempts to get a
row beyond the first or last row in the active set

■ The Not Found condition: a SELECT statement that returns no rows

In each case, the SQLCODE variable (sqlca.sqlcode) is set to 100, and the
SQLSTATE variable has a class code of 02.

The following statement calls the no_rows() function each time the NOT
FOUND condition exists:

WHENEVER NOT FOUND CALL no_rows

If you do not use any WHENEVER NOT FOUND statements in a program, the
default for WHENEVER NOT FOUND is CONTINUE.

CONTINUE Keyword
Use the CONTINUE keyword to instruct the program to ignore the exception
and to continue execution at the next statement after the SQL statement. The
default action for all exceptions is CONTINUE. You can use this keyword to
turn off a previously specified option.

STOP Keyword
Use the STOP keyword to instruct the program to stop execution when the
specified exception occurs. The following statement halts execution of an
ESQL/C program each time that an SQL statement generates a warning:

EXEC SQL WHENEVER SQLWARNING STOP;

GOTO Keyword
Use the GOTO clause to transfer control to the statement that the label
identifies when a particular exception occurs. The GOTO keyword is the
ANSI-compliant syntax of the clause. The GO TO keywords are a non-ANSI
synonym for GOTO.
1-818 Informix Guide to SQL: Syntax

WHENEVER
The following example shows a WHENEVER statement in INFORMIX-ESQL/C
code that transfers control to the label missing each time that the NOT
FOUND condition occurs:

query_data()
.
.
.
EXEC SQL WHENEVER NOT FOUND GO TO missing;
.
.
.
EXEC SQL fetch lname into :lname;
.
.
.
missing:

printf("No Customers Found\n");
.
.
.

You must define the labeled statement in each program block that contains
SQL statements. If your program contains more than one function, you might
need to include the labeled statement and its code in each function. When the
preprocessor reaches the function that does not contain the labeled
statement, it tries to insert the code associated with the labeled statement.
However, if you do not define this labeled statement within the function, the
preprocessor generates an error.

To correct this error, either put a labeled statement with the same label name
in each function, issue another WHENEVER statement to reset the error
condition, or use the CALL clause to call a separate function.

CALL Clause
Use the CALL clause to transfer program control to the named function or
procedure when a particular exception occurs. Do not include parentheses
after the function or procedure name. The following WHENEVER statement
causes the program to call the error_recovery() function if the program
detects an error:

EXEC SQL WHENEVER SQLERROR CALL error_recovery;
SQL Statements 1-819

WHENEVER
When the named function completes, execution resumes at the next
statement after the line that is causing the error. If you want to halt execution
when an error occurs, include statements that terminate the program as part
of the named function.

Observe the following restrictions on the named function:

■ You cannot pass arguments to the named function nor can you return
values from the named function. If the named function needs
external information, use global variables or the GOTO clause of
WHENEVER to transfer control to a label that calls the named
function.

■ You cannot specify the name of a stored function as a named
function. To call a stored function, use the CALL clause to execute a
function that contains the EXECUTE FUNCTION statement. ♦

■ Make sure that all functions that the WHENEVER...CALL statement
affects can find a declaration of the named function.

References
See the EXECUTE FUNCTION, FETCH and GET DIAGNOSTICS statements in
this manual.

See the chapter on exception checking and error checking in your SQL API
product manual.

SPL
1-820 Informix Guide to SQL: Syntax

Segments
Segments
Segments are language elements, such as table names and expressions, that
occur repeatedly in the syntax diagrams for SQL and SPL statements. These
language elements are discussed separately in this section for the sake of
clarity, ease of use, and comprehensive treatment.

Whenever a segment occurs within the syntax diagram for an SQL or SPL
statement, the diagram references the description of the segment in this
section.

Scope of Segment Descriptions
The description of each segment includes the following information:

■ A brief introduction that explains the purpose of the segment

■ A syntax diagram that shows how to enter the segment correctly

■ A syntax table that explains each input parameter in the syntax
diagram

■ Rules of usage, including examples that illustrate these rules

If a segment consists of multiple parts, the segment description provides the
same set of information for each part. Each segment description concludes
with references to related information in this manual and other manuals.

Use of Segment Descriptions
The syntax diagram within each segment description is not a standalone
diagram. Instead it is a subdiagram that is subordinate to the syntax diagram
for an SQL or SPL statement. A reference box in the syntax diagram for the
statement refers to this subdiagram by providing the name of the segment
and the page number on which the segment description begins.

First look up the syntax for the statement, and then turn to the segment
description to find out the complete syntax for the segment. You will
probably never need to look up the segment first and then work backward to
a statement or statements that contain the segment.
SQL Statements 1-821

Segments
For example, if you are using INFORMIX-Universal Server, and you want to
enter a CREATE VIEW statement that includes a database name and database
server name in the view name, first look up the syntax diagram for the
CREATE VIEW statement. Then use the reference box for the View Name
segment in that syntax diagram to look up the subdiagram for the View
Name segment.

The subdiagram for the View Name segment shows you how to qualify the
simple name of a view with the name of the database or with the name of
both the database and the database server. Use the syntax in the subdiagram
to enter a CREATE VIEW statement that includes the database name and
database server name in the view name. The following example creates the
name_only view in the sales database on the boston database server:

CREATE VIEW sales@boston:name_only AS
SELECT customer_num, fname, lname FROM customer

Segments in This Section
This section describes the following segments:

■ Argument

■ Collection Derived Table

■ Condition

■ Constraint Name

■ Database Name

■ Data Type

■ DATETIME Field Qualifier

■ Expression

■ External Routine Reference

■ Function Name

■ Identifier

■ Index Name

■ INTERVAL Field Qualifier

■ Literal Collection

■ Literal DATETIME

■ Literal INTERVAL
1-822 Informix Guide to SQL: Syntax

Segments
■ Literal Number

■ Literal Row

■ Procedure Name

■ Quoted Pathname

■ Quoted String

■ Relational Operator

■ Return Clause

■ Routine Modifier

■ Routine Parameter List

■ Specific Name

■ Statement Block

■ Synonym Name

■ Table Name

■ View Name
SQL Statements 1-823

1-824 Informix Guide to SQL: Syntax

Argument
Argument
Use an Argument to pass a specific value to a routine parameter.

Syntax

Usage
A parameter list for a routine is defined in the CREATE PROCEDURE or
CREATE FUNCTION statement. If the routine has a parameter list, you can
enter arguments when you execute the routine. An argument is a specific
data element that matches the data type of one of the parameters for the
routine.

Element Purpose Restrictions Syntax
parameter
name

The name of a routine parameter
for which you supply an
argument

The parameter name must match the
parameter name that you specified in a corre-
sponding CREATE FUNCTION or CREATE
PROCEDURE statement.

Expression,
p. 1-876

=

Expression
p. 1-876

parameter
name

Argument

SELECT
Statement
(Subset)
p. 1-826

NULL

()

Argument
When you execute a routine, you can enter arguments in one of two ways:

■ With a parameter name (in the form parameter name = expression),
even if the arguments are not in the same order as the parameters

■ With no parameter name, if the arguments are in the same order as
the parameters

If you use a parameter name for one argument, you must use a parameter
name for all the arguments.

In the following example, both statements are valid for a function that
expects three character arguments, t, d, and n:

EXECUTE FUNCTION add_col (t ='customer', d ='integer', n ='newint');
EXECUTE FUNCTION add_col ('customer','newint','integer') ;

When you use the parameter name in the argument list (called passing
parameters by name), the process of routine resolution is partial, based only
on the routine type (FUNCTION or PROCEDURE), the routine name, and the
number of arguments.

Comparing Arguments to the Parameter List
When you create or register a routine with CREATE PROCEDURE or CREATE
FUNCTION, you specify a parameter list with the names and data types of the
parameters the routine expects.

If you attempt to execute a routine with more arguments than the routine
expects, you receive an error.

If you execute a routine with fewer arguments than the routine expects, the
arguments are said to be missing. The database server initializes missing
arguments to their corresponding default values. This initialization occurs
before the first executable statement in the body of the routine.

If missing arguments do not have default values, the database server
initializes the arguments to the value UNDEFINED. However, you cannot use
a variable with a value of UNDEFINED within the routine. If you do,
INFORMIX-Universal Server issues an error.
SQL Statements 1-825

Argument
Subset of SELECT Allowed in a Routine Argument
You can use any SELECT statement as the argument for a routine if it returns
exactly one value of the proper data type and length. For more information,
see the discussion of the SELECT statement on page 1-593.

Subset of Expressions Allowed as an Argument
You can use any expression as an argument, except an aggregate expression.
If you use a subquery or function call, the subquery or function must return
a single value of the appropriate data type and size. For the full syntax of an
expression, see page 1-876.

References
In this manual, see the CREATE FUNCTION, CREATE PROCEDURE, EXECUTE
FUNCTION, EXECUTE PROCEDURE, CALL, FOREACH, and LET statements.
See also the Parameter List segment.

For information about how to write external routines, see the Extending
INFORMIX-Universal Server: User-Defined Routines manual. In the Informix
Guide to SQL: Tutorial, see Chapter 14 for information about how to write SPL
routines.
1-826 Informix Guide to SQL: Syntax

Collection Derived Table
Collection Derived Table
The Collection Derived Table segment specifies a collection or row variable
to access instead of a table name.

Syntax

Usage
The TABLE keyword introduces the name of the collection or row variable
that you want to access as a collection derived table. The variable can be
typed or untyped. For example, the following INSERT statement uses the
variable in its Collection Derived Table clause:

INSERT INTO TABLE(variable) VALUES ...

In an ESQL/C program, variable is a host variable for either a collection or a
row and is declared as either the collection or row data type. ♦

In an SPL program, variable is an SPL variable that is declared as a
COLLECTION, MULTISET, SET, or LIST data type. ♦

When you use the Collection Derived Table segment, you access the elements
of a collection or the fields of a row variable. Use of this segment does not
affect the associated column or columns in a database. Once you have
completed the modifications to the variable, save the new values in the
database with the UPDATE or INSERT statement.

Element Purpose Restrictions Syntax
variable The name of an ESQL/C or SPL

collection variable or of an
ESQL/C row variable.

The variable must be declared as
a collection variable in an
ESQL/C program or SPL
routine, or as a row variable in
an ESQL/C program.

Variable name must
conform to
language-specific
rules for variable
names.

TABLE variable()+

E/C

SPL
SQL Statements 1-827

Collection Derived Table
Accessing a Collection Variable

The TABLE keyword makes the collection variable a collection derived table,
that is, a collection appears as a table in an SQL statement. You can think of a
collection derived table as a table of one column, with each element of the
collection being a row of the table.

Use the TABLE keyword in place of the name of a table, synonym, or view
name in the following SQL statements:

■ The FROM clause of the SELECT statement to access an element of the
collection variable

■ The INTO clause of the INSERT statement to add a new element to the
collection variable

■ The DELETE statement to remove an element from the collection
variable

■ The UPDATE statement to modify an existing element in the
collection variable

■ The DECLARE statement to declare a select or insert cursor to access
multiple elements of an ESQL/C collection host variable.

■ The FETCH statement to retrieve a single element from a collection
host variable that is associated with a select cursor.

■ The PUT statement to retrieve a single element from a collection host
variable that is associated with an insert cursor. ♦

■ The FOREACH statement to declare a cursor to access multiple
elements of an SPL collection variable and to retrieve a single element
from this collection variable. ♦

The following ESQL/C code fragment inserts the element 3 into the a_list
collection variable and then saves this collection variable in the list_col
column of the tab_list table:

EXEC SQL insert into table(:a_list) values(3);
EXEC SQL update tab_list set list_col = :a_list;

E/C

SPL

E/C
1-828 Informix Guide to SQL: Syntax

Collection Derived Table
If the ESQL/C collection variable is an untyped collection variable, you must
perform a SELECT from the collection column before you use the variable in
the Collection Derived Table segment. The SELECT statement allows the
database server to obtain the collection type. Suppose the a_list host variable
is declared as an untyped collection variable, as follows:

EXEC SQL BEGIN DECLARE SECTION;
client collection a_list;

EXEC SQL END DECLARE SECTION;

The following code fragment obtains the collection type for the a_list
variable before it uses the collection variable in an UPDATE statement:

/* select LIST column into the untyped collection variable */
/* to obtain the element type */
EXEC SQL select list_col into :a_list from tab_list;

/* insert an element into the untyped collection variable */
EXEC SQL insert into table(:a_list) values (7);

/* update the LIST column with the collection variable */
EXEC SQL update tab_list set list_col = :a_list;

The following SPL code fragment inserts the element 3 into the a_list
collection variable and then saves this collection variable in the list_col
column of the tab_list table:

INSERT INTO TABLE(a_list) VALUES(3);
UPDATE tab_list SET list_col = a_list;
SQL Statements 1-829

Collection Derived Table
Accessing a Row Variable

The TABLE keyword can make an ESQL/C row variable a collection derived
table, that is, a row appears as a table in an SQL statement. For a row variable,
you can think of the collection derived table as a table of one row, with each
field of the row type being a column of the table row.

Use the TABLE keyword in place of the name of a table, synonym, or view
name in the following SQL statements:

■ The FROM clause of the SELECT statement to access a field of the row
variable

■ The UPDATE statement to modify an existing field in the row variable

The DELETE and INSERT statements do not support a row variable in the
Collection Derived Table segment.

For example, suppose an ESQL/C host variable a_row has the following
declaration:

EXEC SQL BEGIN DECLARE SECTION;
row(x int, y int,length float, width float) a_row;

EXEC SQL END DECLARE SECTION;

The following ESQL/C code fragment adds the fields in the a_row variable to
the row_col column of the tab_row table:

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

EXEC SQL update rectangles set rect = :a_row;

♦

References
See the DECLARE, DELETE, FETCH, INSERT, SELECT, and UPDATE statements
in Chapter 1 of this manual for further information about how to access
collection variables.

For information on how to use collection variables in an SPL routine, see
Chapter 14 in the Informix Guide to SQL: Tutorial. For information on how to
use collection or row variables in an ESQL/C program, see the chapter on
complex data types in the INFORMIX-ESQL/C Programmer’s Manual.
1-830 Informix Guide to SQL: Syntax

Condition
Condition
A condition tests data to determine whether it meets certain qualifications.
Use the Condition segment wherever you see a reference to a condition in a
syntax diagram.

Syntax

Usage
A condition is a collection of one or more search conditions, optionally
connected by the logical operators AND or OR. Search conditions fall into the
following categories:

■ Comparison conditions (also called filters or Boolean expressions)

■ Conditions with a subquery

Restrictions on a Condition
A condition can contain only an aggregate function if it is used in the HAVING
clause of a SELECT statement or the HAVING clause of a subquery. You cannot
use an aggregate function in a comparison condition that is part of a WHERE
clause in a DELETE, SELECT, or UPDATE statement unless the aggregate is on
a correlated column that originates from a parent query and the WHERE
clause is within a subquery that is within a HAVING clause.

Comparison
Condition
p. 1-832

Condition with
Subquery
p. 1-844

NOT

OR

AND
SQL Statements 1-831

Condition
NOT Operator
If you preface a condition with the keyword NOT, the test is true only if the
condition that NOT qualifies is false. If the condition that NOT qualifies is
unknown (uses a null in the determination), the NOT operator has no effect.
The following truth table shows the effect of NOT. The letter T represents a
true condition, F represents a false condition, and a question mark (?)
represents an unknown condition.Unknown values occur when part of an
expression that uses an arithmetic operator is null.

Comparison Conditions (Boolean Expressions)
Five kinds of comparison conditions exist: Relational Operator, BETWEEN,
IN, IS NULL, and LIKE and MATCHES. Comparison conditions are often called
Boolean expressions because they evaluate to a simple true or false result.
Their syntax is summarized in the following diagram and explained in detail
after the diagram.

NOT

T F

? ?

F T
1-832 Informix Guide to SQL: Syntax

Condition
Relational
Operator
p. 1-1014

Expression
p. 1-876

Expression
p. 1-876

Expression
p. 1-876

Expression
p. 1-876

IS

Expression
p. 1-876

NOT

NOT

NOT

BETWEEN AND

MATCHES

NULL

+

.

Comparison
Condition

Table
Name

p. 1-1044

View
Name

p. 1-1047

Synonym
Name

p. 1-1042

alias

.

Table
Name

p. 1-1044

View
Name

p. 1-1047

Synonym
Name

p. 1-1042

alias

LIKE
Quoted
String

p. 1-1010

ESCAPE 'char'

.

.

.

.

.

.

.

.

IN Condition
p. 1-838

+

Column
Name

p. 1-834

Column
Name

p. 1-834

Column
Name

p. 1-834
SQL Statements 1-833

Condition
Element Purpose Restrictions Syntax
alias A temporary alternative name

for a table or view within the
scope of a SELECT statement

You must have defined the alias
in the FROM clause of the SELECT
statement.

Identifier, p. 1-962

char A single ASCII character that is to
be used as the escape character
within the quoted string in a
LIKE or MATCHES condition

See “ESCAPE with LIKE” on
page 1-843 and “ESCAPE with
MATCHES” on page 1-843.

Quoted String,
p. 1-1010

Column
Name

column name

field name

row-column name

.

3

Element Purpose Restrictions Syntax
column name The name of a column that is

used in an IS NULL condition or
in a LIKE or MATCHES condition.
See “IS NULL Condition” on
page 1-840 and “LIKE and
MATCHES Condition” on
page 1-840 for more information
on the meaning of column name
in these conditions.

The column must exist in the
specified table.

Identifier, p. 1-962

field name The name of the field that you
want to compare in the row
column.

The field must be a component
of the row type that row-column
name or field name (for nested
rows) specifies.

Identifier, p. 1-962

row-column
name

The name of the row column
that you specify.

The data type of the column
must be a named row type or an
unnamed row type.

Identifier, p. 1-962
1-834 Informix Guide to SQL: Syntax

Condition
Refer to the following sections for more information on the use of the
different types of comparison conditions:

■ For relational-operator conditions, refer to “Relational-Operator
Condition” on page 1-836.

■ For the BETWEEN condition, refer to “BETWEEN Condition” on
page 1-837.

■ For the IN condition, refer to “IN Condition” on page 1-838.

■ For the IS NULL condition, refer to “IS NULL Condition” on
page 1-840.

■ For the LIKE and MATCHES condition, refer to “LIKE and MATCHES
Condition” on page 1-840.

Quotation Marks in Conditions

When you compare a column expression with a constant expression in any
type of comparison condition, observe the following rules:

■ If the column has a numeric data type, you do not need to surround
the constant expression with quotation marks.

■ If the column has a character data type, you must surround the
constant expression with quotation marks.

■ If the column has a date data type, you should surround the constant
expression with quotation marks. Otherwise, you might get
unexpected results.
SQL Statements 1-835

Condition
The following example shows the correct use of quotation marks in
comparison conditions. The ship_instruct column has a character data type.
The order_date column has a date data type. The ship_weight column has a
numeric data type.

SELECT * FROM orders
WHERE ship_instruct = 'express'
AND order_date > '05/01/94'
AND ship_weight < 30

Relational-Operator Condition

Some relational-operator conditions are shown in the following examples:

city[1,3] = 'San'

o.order_date > '6/12/86'

WEEKDAY(paid_date) = WEEKDAY(CURRENT-31 UNITS day)

YEAR(ship_date) < YEAR (TODAY)

quantity <= 3

customer_num <> 105

customer_num != 105

If either expression is null for a row, the condition evaluates to false. For
example, if paid_date has a null value, you cannot use either of the following
statements to retrieve that row:

SELECT customer_num, order_date FROM orders
WHERE paid_date = ''

SELECT customer_num, order_date FROM orders
WHERE NOT PAID !=''
1-836 Informix Guide to SQL: Syntax

Condition
An IS NULL condition finds a null value, as shown in the following example.
The IS NULL condition is explained fully in “IS NULL Condition” on
page 840.

SELECT customer_num, order_date FROM orders
WHERE paid_date IS NULL

For more information, see the Relational Operator segment on page 1-1014.

BETWEEN Condition

For a BETWEEN test to be true, the value of the expression on the left of the
BETWEEN keyword must be in the inclusive range of the values of the two
expressions on the right of the BETWEEN keyword. Null values do not satisfy
the condition. You cannot use NULL for either expression that defines the
range.

Some BETWEEN conditions are shown in the following examples:

order_date BETWEEN '6/1/93' and '9/7/93'

zipcode NOT BETWEEN '94100' and '94199'

EXTEND(call_dtime, DAY TO DAY) BETWEEN
(CURRENT - INTERVAL(7) DAY TO DAY) AND CURRENT

lead_time BETWEEN INTERVAL (1) DAY TO DAY
AND INTERVAL (4) DAY TO DAY

unit_price BETWEEN loprice AND hiprice
SQL Statements 1-837

Condition
IN Condition

The IN condition is satisfied when the expression to the left of the word IN is
included in the list of items.

Element Purpose Restrictions Syntax
collection
column name

The name of a collection column
that is used in an IN condition

The column must exist in the
specified table.

Identifier, p. 1-962

Expression
p. 1-876

,

)(IN Literal Number
p. 1-997

SITENAME

DBSERVERNAME

NOT

Literal Collection
p. 1-985

collection column name

Literal Row
p. 1-999

DATETIME
Field

Qualifier
p. 1-874

)(

,

Quoted String
p. 1-1010

Literal DATETIME
p. 1-991

Literal INTERVAL
p. 1-994

CURRENT

USER

TODAY

Literal Collection
p. 1-985
1-838 Informix Guide to SQL: Syntax

Condition
The NOT option produces a search condition that is satisfied when the
expression is not in the list of items. Null values do not satisfy the condition.

The following examples show some IN conditions:

WHERE state IN ('CA', 'WA', 'OR')

WHERE manu_code IN ('HRO', 'HSK')

WHERE user_id NOT IN (USER)

WHERE order_date NOT IN (TODAY)

WHERE row_col.state IN ('CA', 'WA')

The TODAY function is evaluated at execution time; CURRENT is evaluated
when a cursor opens or when the query executes, if it is a singleton SELECT
statement. ♦

The USER function is case sensitive; it perceives minnie and Minnie as
different values.

Using the IN Operator with Collection Data Types

You can use the IN operator to determine if an element is contained in a
collection. The collection you search can be a simple or nested collection. In a
nested collection type, the element type of the collection is also a collection
type.

When you use the IN operator to search for an element in a collection the
expression to the left or right of the IN keyword cannot contain a BYTE or
TEXT data type.

Suppose you create the following table that contains two collection columns:

CREATE TABLE tab_coll
(
set_num SET(INT NOT NULL),
list_name LIST(SET(CHAR(10) NOT NULL) NOT NULL)
);

ESQL
SQL Statements 1-839

Condition
The following partial examples show how you might use the IN operator for
search conditions on the collection columns of the tab_coll table:

WHERE 5 IN set_num

WHERE 5.0::INT IN set_num

WHERE "5" NOT IN set_num

WHERE set_num IN ("SET{1,2,3}", "SET{7,8,9}")

WHERE "SET{'john', 'sally', 'bill'}" IN list_name

WHERE list_name IN ("LIST{""SET{'bill','usha'}"",
""SET{'ann' 'moshi'}""}",

"LIST{""SET{'bob','ramesh'}"",
""SET{'bomani' 'ann'}""}")

In general, when you use the IN operator on a collection data type, the
database server checks whether the value on the left hand side of the of the
IN operator is an element in the set of values on the right hand side.

IS NULL Condition

The IS NULL condition is satisfied if the column contains a null value. If you
use the IS NOT NULL option, the condition is satisfied when the column
contains a value that is not null. The following example shows an IS NULL
condition:

WHERE paid_date IS NULL

LIKE and MATCHES Condition

A LIKE or MATCHES condition tests for matching character strings. The
condition is true, or satisfied, when either of the following tests is true:

■ The value of the column on the left matches the pattern that the
quoted string specifies. You can use wildcard characters in the string.
Null values do not satisfy the condition.

■ The value of the column on the left matches the pattern that the
column on the right specifies. The value of the column on the right
serves as the matching pattern in the condition.
1-840 Informix Guide to SQL: Syntax

Condition
You can use the single quote (') only with the quoted string to match a literal
quote; you cannot use the ESCAPE keyword. You can use the quote character
as the escape character in matching any other pattern if you write it as ''''.

Important: You cannot specify a row-type column in a LIKE or MATCHES condition.
A row-type column is a column that is defined on a named row type or unnamed row
type.

NOT Operator

The NOT operator makes the search condition successful when the column on
the left has a value that is not null and does not match the pattern that the
quoted string specifies. For example, the following conditions exclude all
rows that begin with the characters Baxter in the lname column:

WHERE lname NOT LIKE 'Baxter%'
WHERE lname NOT MATCHES 'Baxter*'

LIKE Operator

If you use the keyword LIKE, you can use the following wildcard characters
in the quoted string.

Using the backslash (\) as an escape character is an Informix extension to
ANSI-compliant SQL.

If you use an escape character to escape anything other than percent sign (%),
underscore (_), or the escape character itself, an error is returned. ♦

The following condition tests for the string tennis, alone or in a longer
string, such as tennis ball or table tennis paddle:

WHERE description LIKE '%tennis%'

Wildcard Meaning

% The percent sign (%) matches zero or more characters.

_ The underscore (_) matches any single character.

\ The backslash (\) removes the special significance of the next
character (used to match % or _ by writing \% or _).

ANSI
SQL Statements 1-841

Condition
The following condition tests for all descriptions that contain an underscore.
The backslash (\) is necessary because the underscore (_) is a wildcard
character.

WHERE description LIKE '%_%'

The LIKE operator has an associated operator function called like(). You can
define a like() function to handle your own user-defined data types. For more
information, see the Extending INFORMIX-Universal Server: Data Types
manual.

MATCHES Operator

If you use the keyword MATCHES, you can use the following wildcard
characters in the quoted string.

The following condition tests for the string tennis, alone or in a longer
string, such as tennis ball or table tennis paddle:

WHERE description MATCHES '*tennis*'

The following condition is true for the names Frank and frank:

WHERE fname MATCHES '[Ff]rank'

The following condition is true for any name that begins with either F or f:

WHERE fname MATCHES '[Ff]*'

Wildcard Meaning

* The asterisk (*) matches zero or more characters.

? The question mark (?) matches any single character.

[...] The brackets ([...]) match any of the enclosed characters,
including character ranges as in [a to z]. A caret (^) as the
first character within the brackets matches any character that
is not listed. Hence [^abc] matches any character that is not
a, b, or c.

\ The backslash (\) removes the special significance of the next
character (used to match * or ? by writing * or \?).
1-842 Informix Guide to SQL: Syntax

Condition
The MATCHES operator has an associated operator function called matches().
You can define a matches() function to handle your own user-defined data
types. For more information, see the Extending INFORMIX-Universal Server:
Data Types manual.

ESCAPE with LIKE

The ESCAPE keyword lets you include an underscore (_) or a percent sign (%)
in the quoted string and avoid having them be interpreted as wildcards. If
you choose to use z as the escape character, the characters z_ in a string stand
for the character _. Similarly, the characters z% represent the percent sign (%).
Finally, the characters zz in the string stand for the single character z. The
following statement retrieves rows from the customer table in which the
company column includes the underscore character:

SELECT * FROM customer
WHERE company LIKE '%z_%' ESCAPE 'z'

You can also use a single-character host variable as an escape character. The
following statement shows the use of a host variable as an escape character:

EXEC SQL BEGIN DECLARE SECTION;
char escp='z';
char fname[20];

EXEC SQL END DECLARE SECTION;
EXEC SQL select fname from customer

into :fname
where company like '%z_%' escape :escp;

ESCAPE with MATCHES

The ESCAPE clause lets you include a question mark (?), an asterisk (*), and a
left or right bracket ([]) in the quoted string and avoid having them be inter-
preted as wildcards. If you choose to use z as the escape character, the
characters z? in a string stand for the question mark (?). Similarly, the
characters z* stand for the asterisk (*). Finally, the characters zz in the string
stand for the single character z.

The following example retrieves rows from the customer table in which the
value of the company column includes the question mark (?):

SELECT * FROM customer
WHERE company MATCHES '*z?*' ESCAPE 'z'
SQL Statements 1-843

Condition
Stand-Alone Condition

A stand-alone condition can be any expression that is not explicitly listed in
the syntax for the comparison condition. Such an expression is valid only if
its result is of the Boolean type. For example, the following example returns
a value of the Boolean type:

funcname(x)

Condition with a Subquery

You can use a SELECT statement within a condition; this combination is called
a subquery. You can use a subquery in a SELECT statement to perform the
following functions:

■ Compare an expression to the result of another SELECT statement

■ Determine whether an expression is included in the results of
another SELECT statement

■ Ask whether another SELECT statement selects any rows

The subquery can depend on the current row that the outer SELECT statement
is evaluating; in this case, the subquery is a correlated subquery.

The kinds of subquery conditions are shown in the following sections with
their syntax.

IN
Subquery
p. 1-845

Condition
with

Subquery

ALL/ANY/SOME
Subquery
p. 1-846

EXISTS
Subquery
p. 1-846
1-844 Informix Guide to SQL: Syntax

Condition
A subquery can return a single value, no value, or a set of values depending
on the context in which it is used. If a subquery returns a value, it must select
only a single column. If the subquery simply checks whether a row (or rows)
exists, it can select any number of rows and columns. A subquery cannot
contain an ORDER BY clause. The full syntax of the SELECT statement is
described on page 1-593.

IN Subquery

An IN subquery condition is true if the value of the expression matches one
or more of the values that the subquery selects. The subquery must return
only one column, but it can return more than one row. The keyword IN is
equivalent to the =ANY sequence. The keywords NOT IN are equivalent to the
!=ALL sequence. See “ALL/ANY/SOME Subquery” on page 1-846.

The following example of an IN subquery finds the order numbers for orders
that do not include baseball gloves (stock_num = 1):

WHERE order_num NOT IN
(SELECT order_num FROM items WHERE stock_num = 1)

Because the IN subquery tests for the presence of rows, duplicate rows in the
subquery results do not affect the results of the main query. Therefore, you
can put the UNIQUE or DISTINCT keyword into the subquery with no effect
on the query results, although eliminating testing duplicates can reduce the
time needed for running the query.

Expression
p. 1-876

Condition
with

Subquery
p. 1-844

IN
Subquery

)(

NOT

IN
SQL Statements 1-845

Condition
EXISTS Subquery

An EXISTS subquery condition evaluates to true if the subquery returns a row.
With an EXISTS subquery, one or more columns can be returned. The
subquery always contains a reference to a column of the table in the main
query. If you use an aggregate function in an EXISTS subquery, at least one
row is always returned.

The following example of a SELECT statement with an EXISTS subquery
returns the stock number and manufacturer code for every item that has
never been ordered (and is therefore not listed in the items table). You can
appropriately use an EXISTS subquery in this SELECT statement because you
use the subquery to test both stock_num and manu_code in items.

SELECT stock_num, manu_code FROM stock
WHERE NOT EXISTS (SELECT stock_num, manu_code FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

The preceding example works equally well if you use SELECT * in the
subquery in place of the column names because the existence of the whole
row is tested; specific column values are not tested.

ALL/ANY/SOME Subquery

Condition
with

Subquery
p. 1-844

EXISTS
Subquery

EXISTS

NOT

)(

Expression
p. 1-876

Relational
Operator
p. 1-1014

ALL

ANY

SOME

Condition
with

Subquery
p. 1-844

ANY/ALL/SOME
Subquery

()
1-846 Informix Guide to SQL: Syntax

Condition
You use the ALL, ANY, and SOME keywords to specify what makes the search
condition true or false. A search condition that is true when the ANY keyword
is used might not be true when the ALL keyword is used, and vice versa.

In the following example of the ALL subquery, the first condition tests
whether each total_price is greater than the total price of every item in order
number 1023. The second condition uses the MAX aggregate function to
produce the same results.

total_price > ALL (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MAX(total_price) FROM items
WHERE order_num = 1023)

The following conditions are true when the total price is greater than the total
price of at least one of the items in order number 1023. The first condition
uses the ANY keyword; the second uses the MIN aggregate function.

total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)

total_price > (SELECT MIN(total_price) FROM items
WHERE order_num = 1023)

Keyword Meaning

ALL A keyword that denotes that the search condition is true if the
comparison is true for every value that the subquery returns.
If the subquery returns no value, the condition is true.

ANY A keyword that denotes that the search condition is true if the
comparison is true for at least one of the values that is
returned. If the subquery returns no value, the search
condition is false.

SOME An alias for ANY
SQL Statements 1-847

Condition
Using the NOT keyword with an ANY subquery tests whether an expression
is not true for any subquery value. The condition, which is found in the
following example of the NOT keyword with an ANY subquery, is true when
the expression total_price is not greater than any selected value. That is, it is
true when total_price is greater than none of the total prices in order number
1023.

NOT total_price > ANY (SELECT total_price FROM items
WHERE order_num = 1023)

Omitting ANY, ALL, or SOME Keywords

You can omit the keywords ANY, ALL, or SOME in a subquery if you know
that the subquery will return exactly one value. If you omit the ANY, ALL, or
SOME keywords, and the subquery returns more than one value, you receive
an error. The subquery in the following example returns only one row
because it uses an aggregate function:

SELECT order_num FROM items
WHERE stock_num = 9 AND quantity =

(SELECT MAX(quantity) FROM items WHERE stock_num = 9)

Conditions with AND or OR Operators
You can combine simple conditions with the logical operators AND or OR to
form complex conditions. The following SELECT statements contain
examples of complex conditions in their WHERE clauses:

SELECT customer_num, order_date FROM orders
WHERE paid_date > '1/1/93' OR paid_date IS NULL

SELECT order_num, total_price FROM items
WHERE total_price > 200.00 AND manu_code LIKE 'H%'

SELECT lname, customer_num FROM customer
WHERE zipcode BETWEEN '93500' AND '95700'
OR state NOT IN ('CA', 'WA', 'OR')
1-848 Informix Guide to SQL: Syntax

Condition
The following truth tables show the effect of the AND and OR operators.The
letter T represents a true condition, F represents a false condition, and the
question mark (?) represents an unknown value. Unknown values occur
when part of an expression that uses a logical operator is null.

If the Boolean expression evaluates to UNKNOWN, the condition is not satisfied.

Consider the following example within a WHERE clause:

WHERE ship_charge/ship_weight < 5
AND order_num = 1023

The row where order_num = 1023 is the row where ship_weight is null.
Because ship_weight is null, ship_charge/ship_weight is also null;
therefore, the truth value of ship_charge/ship_weight < 5 is UNKNOWN.
Because order_num = 1023 is TRUE, the AND table states that the truth value
of the entire condition is UNKNOWN. Consequently, that row is not chosen. If the
condition used an OR in place of the AND, the condition would be true.

References
In the Informix Guide to SQL: Tutorial, see the discussion of conditions in the
SELECT statement in Chapter 2 and Chapter 3.

In the Guide to GLS Functionality, see the discussion of the SELECT statement
for information on the GLS aspects of conditions.

AND

T

T

T

? ?

F F

?

?

?

F

F

F

F

F

OR

T

T

T

? T

F T

?

T

?

?

F

T

?

F

SQL Statements 1-849

1-850 Informix Guide to SQL: Syntax

Constraint Name
Constraint Name
The Constraint Name segment specifies the name of a constraint. Use the
Constraint Name segment whenever you see a reference to a constraint name
in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
database The name of the database where

the constraint resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the Universal

Server database server that is
home to database. The @ symbol
is a literal character that intro-
duces the database server name.

The database server that
dbservername specifies must
match the name of a database
server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner of
the constraint

If you are using an ANSI-
compliant database, you must
enter the owner. parameter for a
constraint that you do not own.
If you put quotation marks
around the name that you enter
in owner, the name is stored
exactly as typed. If you do not
put quotation marks around the
name that you enter in owner, the
name is stored as uppercase
letters.

The user name must
conform to the
conventions of your
operating system.

Identifier
p. 1-962

@dbservername

:

owner.

'owner'.database

Constraint Name
Usage
The actual name of the constraint is an SQL identifier.

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of constraints. For more information, see the Guide
to GLS Functionality. ♦

When you create a constraint, the name of the constraint must be unique
within the database if the database is not ANSI compliant.

When you create a constraint, the owner.name combination (the combination
of the owner name and constraint name) must be unique within a database.

The owner.name combination is case sensitive. In an ANSI-compliant database,
if you do not use quotes around the owner name, the name of the constraint
owner is stored as uppercase letters. For more information, see the discussion
of case sensitivity in ANSI-compliant databases on page 1-1045. ♦

References
See the CREATE TABLE statement in this manual for information on defining
constraints.

GLS

ANSI
SQL Statements 1-851

Database Name
Database Name
The Database Name segment specifies the name of a database. Use the
Database Name segment whenever you see a reference to a database name in
a syntax diagram.

Syntax

@ dbservername

' //dbservername/dbname '

variable nameESQL

dbname
1-852 Informix Guide to SQL: Syntax

Database Name
Usage
The simple database name is an SQL identifier, as described on page 1-962. If
you are creating a database, the name that you assign to the database can be
18 characters, inclusive. Database names are not case sensitive. You cannot
use delimited identifiers for a database name.

The maximum length of the database name, including dbservername, is
128 characters.

Element Purpose Restrictions Syntax
dbname The name of the database itself.

This simple name does not
include the pathname or the
database server name.

A database name must be
unique among the database
names on the same database
server. Database names are not
case sensitive. If you are using
Universal Server, the database
name can have a maximum of 18
characters.

Identifier, p. 1-962

dbservername The name of the database server
on which the database that is
named in dbname resides. The @
symbol is a literal character that
introduces the database server
name. Specifying a database
server name allows you to
choose a database on another
database server as your current
database. You can name the
current database server using
dbservername, although that is
extra information.

The database server that is
specified in dbservername must
match the name of a database
server in the sqlhosts file. You
can put a space between dbname
and the @ symbol, or you can
omit the space. You cannot put a
space between the @ symbol and
dbservername. For restrictions on
dbservername that are specific to
syntax formats that use
quotation marks and slash
symbols, see “//dbserv-
ername/dbname Option” on
page 1-854.

Identifier, p. 1-962

variable name The name of a host variable that
holds the database name

Contents must comply with
restrictions on dbservername

Name of the host
variable must
conform to
language-specific
rules for variable
names.
SQL Statements 1-853

Database Name
The following example shows a database specification:

empinfo@personnel

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of databases. For more information, see the Guide
to GLS Functionality. ♦

@dbservername Option
If you use a database server name, do not put any spaces between the name
and the @ symbol. For example, the following format is valid for the stores7
database on the training database server:

stores7@training

//dbservername/dbname Option
If you use the alternative naming method, do not put spaces between the
quotes, slashes, and names, as the following example shows:

'//training/stores7'

variable name Option
You can use a variable within an SQL API to hold the name of a database. ♦

References
See the CREATE DATABASE and RENAME DATABASE statements in this
manual for information on naming databases.

GLS

ESQL
1-854 Informix Guide to SQL: Syntax

Data Type
Data Type
The Data Type segment specifies the data type of a column or value. Use the
Data Type segment whenever you see a reference to a data type in a syntax
diagram.

Syntax

Usage
The following sections summarize each of the categories of data types that
the Universal Server supports. For more information, see the discussion of all
data types in the Informix Guide to SQL: Reference.

Built-In
Data Type
p. 1-856

User-Defined
Data Type
p. 1-867

Data Type

Complex
Data Type
p. 1-868

+

SQL Statements 1-855

Data Type
Built-In Data Type

Built-in data types are data types that are fundamental to the database server.
These data types are built into the database server in the sense that the
knowledge for how to interpret and transfer these data types is part of the
database server software.

Universal Server supports the following categories of built-in data types:

■ Character data types

■ Numeric data types

■ Large-object data types

■ Time data types

The following sections describe each of the data-type categories in more
detail.

In addition, Universal Server supports the BOOLEAN data type. For more
information on the BOOLEAN data type, see Chapter 2 of the Informix Guide
to SQL: Reference and Chapter 9 of the Informix Guide to SQL: Tutorial.

Built-In Data Type

Character
Data Type
p. 1-857

Numeric
Data Type
p. 1-859

Large-Object
Data Type
p. 1-864

Time
Data Type
p. 1-866

BOOLEAN
1-856 Informix Guide to SQL: Syntax

Data Type
Character Data Types

Element Purpose Restrictions Syntax
max Maximum size of a CHARACTER

VARYING or VARCHAR or
NVARCHAR column in bytes

You must specify an integer
value between 1 and 255 bytes
inclusive. If you place an index
on the column, the largest value
you can specify for max is 254
bytes.

Literal Number,
p. 1-997

size Number of bytes in the CHAR or
NCHAR column

You must specify an integer
value between 1 and 32,767
bytes inclusive.

Literal Number,
p. 1-997

reserve Amount of space in bytes
reserved for a CHARACTER
VARYING or VARCHAR or
NVARCHAR column even if the
actual number of bytes stored in
the column is less than reserve

You must specify an integer
value between 0 and 255 bytes.
However, the value you specify
for reserve must be less than the
value you specify for max.

Literal Number,
p. 1-997

Character Data Type

,

size

CHAR

CHARACTER

GLS
+

NCHAR

()
(1)

+ VARCHAR

GLS NVARCHAR

CHARACTER
VARYING

()max

reserve

, reserve

,0

)(max

LVARCHAR
SQL Statements 1-857

Data Type
The following table summarizes the character data types that Universal
Server supports.

The TEXT and CLOB data types also support character data. For more infor-
mation, see “Large-Object Data Types” on page 1-864.

For more information on individual data types, see the description of the
above data types in Chapter 2 of the Informix Guide to SQL: Reference.

Fixed- and Varying- Length Data Types

Universal Server supports storage of fixed-length and varying-length
character data. A fixed-length column requires the defined number of bytes
regardless of the actual size of the character data. The CHAR data type is a
fixed-length character data types. For example, a CHAR(25) column requires
25 bytes of storage for all its column values so the string “This is a text
string” uses 25 bytes of storage. Use the ANSI-compliant CHARACTER
VARYING data type to specify varying length character data.

Data Type Purpose

CHAR Stores single-byte or multibyte text strings of up to 32,767 bytes of
text data and supports code-set collation of text data.

CHARACTER Is an ANSI-compliant synonym for CHAR.

CHARACTER
VARYING

Is a synonym for VARCHAR that complies with ANSI standards.

LVARCHAR

NCHAR

Stores variable length strings that are potentially longer than 255
bytes.

Store single-byte or multibyte text strings of up to 32,767 bytes of
text data and supports localized collation of the text data

NVARCHAR Stores single-byte or multibyte text strings of varying length and
up to 255 bytes of text data; it supports localized collation of the
text data.

VARCHAR Stores single-byte or multibyte text strings of varying length and
up to 255 bytes of text data; it supports code-set collation of the text
data.
1-858 Informix Guide to SQL: Syntax

Data Type
A varying-length column requires only the number of bytes that its data uses.
The VARCHAR and LVARCHAR data types are varying-length character data
types. For example, a VARCHAR(25) column reserves up to 25 bytes of storage
for the column value, but the string “This is a text string” uses only 21
bytes of the reserved 25 bytes.

The VARCHAR data type can store up to 255 bytes of varying data while the
LVARCHAR data type can store up to 32 kilobytes of text data.

NCHAR and NVARCHAR Data Types

The character data types CHAR, LVARCHAR, and VARCHAR support code-set
collation of the text data. That is, the database server collates text data in
columns of these types by the order that their characters are defined in the
code set.

To accommodate locale-specific order of characters, use the NCHAR and
NVARCHAR data types. The NCHAR data type is the fixed-length character
data type the supports localized collation. The NVARCHAR data type is the
varying-length character data type that can store up to 255 bytes of text data
and supports localized collation.

For more information, see the Guide to GLS Functionality.

Numeric Data Types

Exact
Numeric

Data Type
p. 1-860

Approximate
Numeric

Data Type
p. 1-862

Numeric
Data Type
SQL Statements 1-859

Data Type
Numeric data types allow the database server to store numbers such as
integers and real numbers in a column. These data types fall into the
following two categories:

■ Exact numeric data types

■ Approximate numeric data types

Exact Numeric Data Types

16

(1)

SMALLINT

DECIMAL scaleprecision

DEC

NUMERIC

INTEGER

INT

MONEY

16

precision

,()

+

()

, 2

, scale

+

INT8

SERIAL

SERIAL8 start()

Exact Numeric
Data Type

0

1-860 Informix Guide to SQL: Syntax

Data Type
An exact numeric data type stores a numeric value with a specified precision
and scale. The precision of a number is the number of digits that the data type
stores. The scale is the number of digits to the right of the decimal separator.

The following table summarizes the exact numeric data types that Universal
Server supports.

Element Purpose Restrictions Syntax
precision Total number of significant

digits in a decimal or money
data type

You must specify an integer
between 1 and 32, inclusive.

Literal Number,
p. 1-997

scale Number of digits to the right of
the decimal point

You must specify an integer
between 1 and precision.

Literal Number,
p. 1-997

start Starting number for values in a
SERIAL or SERIAL8 column

For SERIAL columns you must
specify a number greater than 0
and less than 2,147,483,647.

For SERIAL8 columns you must
specify a number greater than 0
and less than
9,223,372,036,854,775,807.

Literal Number,
p. 1-997

Data Type Purpose

DEC(p,s) Is a synonym for DECIMAL(p,s).

DECIMAL(p,s) Stores fixed-point decimal (real) values in the range. The p
parameter indicates the precision of the decimal value and the s
parameter indicates the scale. If no precision is specified, the
system default of 16 is used. If no scale is specified, the system
default of 0 is used.

INT Is a synonym for INTEGER.

INTEGER Stores a 4-byte integer value. These values can be in the range
-((2**31)-1) to (2**31)-1 (the values -2,147,483,647 to 2,147,483,647).

INT8 Stores an 8-byte integer value. These values can be in the range -
((2**63)-1) to (2**63)-1 (the values -9,223,372,036,854,775,807 to
9,223,372,036,854,775,807).

MONEY(p,s) Stores fixed-point currency values. Has the same internal data type
as a fixed-point DECIMAL value.

 (1 of 2)
SQL Statements 1-861

Data Type
For more information, see the entries for these data types in Chapter 2 of the
Informix Guide to SQL: Reference.

Approximate Numeric Data Types

NUMERIC(p,s) Is an ANSI-compliant synonym for DECIMAL(p,s).

SERIAL Stores a 4-byte integer value that the database server generates.
These values can be in the range -((2**31)-1) to (2**31)-1 (the values
-2,147,483,647 to 2,147,483,647).

SERIAL8 Stores an 8-byte integer value that the database server generates.
These values can be in the range -((2**63)-1) to (2**63)-1 (the values
-9,223,372,036,854,775,807 to 9,223,372,036,854,775,807).

SMALLINT Stores a 2-byte integer value. These values can be in the range
-((2**15)-1) to (2**15)-1 (-32,767 to 32,767).

Data Type Purpose

 (2 of 2)

Element Purpose Restrictions Syntax
float precision The float precision is ignored. You must specify a positive

integer.
Literal Number,
p. 1-997

Approximate Numeric
Data Type

FLOAT

DOUBLE PRECISION

float
precision

()

+ SMALLFLOAT

REAL
1-862 Informix Guide to SQL: Syntax

Data Type
An approximate numeric data type represents numeric values approxi-
mately. Use them for very large and very small numbers that can tolerate
some degree of rounding during arithmetic operations.

The following table summarizes the approximate numeric data types that
Universal Server supports.

For more information, see the entries for these data types in Chapter 2 of the
Informix Guide to SQL: Reference.

Data Type Purpose

DOUBLE
PRECISION

Is an ANSI-compliant synonym for FLOAT.

FLOAT Stores double-precision floating-point numbers with up to 16
significant digits.

REAL Is an ANSI-compliant synonym for SMALLFLOAT.

SMALLFLOAT Stores single-precision floating-point numbers with approxi-
mately 8 significant digits.
SQL Statements 1-863

Data Type
Large-Object Data Types

Large-object data types allow the database server to store extremely large
column values such as images and documents independently of the column.
These data types fall into the following two categories:

■ Simple-large-object data types: TEXT and BYTE

■ Smart-large-object data types: CLOB and BLOB

Element Purpose Restrictions Syntax
blobspace Name of an existing blobspace The blobspace must exist. Identifier, p. 1-962
family name Quoted string constant that

specifies a family name or
variable name in the optical
family

The family name or variable
name must exist.

Quoted String,
p. 1-1010

For additional infor-
mation about optical
families, see the
INFORMIX-OnLine/
Optical User Manual.

INBYTE TABLE

blobspace

CLOB

OP

BLOB

family name

Large-Object
Data Type

+ TEXT
1-864 Informix Guide to SQL: Syntax

Data Type
Simple-Large-Object Data Types

A simple-large-object data type stores text or binary data in blobspaces or in
tables. (For information on how to create blobspaces, see the
INFORMIX-Universal Server Administrator’s Guide.) The database server can
access a simple-large-object value in one piece. These data types are not
recoverable.

The following table summarizes the simple-large-object data types that
Universal Server supports.

For more information, see the entries for these data types in Chapter 2 of the
Informix Guide to SQL: Reference.

Smart-Large-Object Data Types

A smart-large-object data type stores text or binary data in sbspaces. (For
information about how to create sbspaces, see the INFORMIX-Universal
Server Administrator’s Guide.) The database server can provide random access
to a smart-large-object value. That is, it can access any portion of the smart-
large-object value. These data types are recoverable.

The following table summarizes the smart-large-object data types that
Universal Server supports.

Data Type Purpose

TEXT Stores text data of up to 2**31 bytes.

BYTE Stores text data of up to 2**31 bytes.

Data Type Purpose

CLOB Stores text data of up to 4 terabytes (4*240 bytes).

BLOB Stores binary data of up to 4 terabytes (4*240 bytes).
SQL Statements 1-865

Data Type
For more information, see the entries for these data types in Chapter 2 of
Informix Guide to SQL: Reference. For information about the SQL functions you
use to import, export, and copy smart large objects, see “Smart-Large-Object
Functions” on page 1-920 in this manual and Chapter 9 of the Informix Guide
to SQL: Tutorial.

Time Data Types

The time data types allow the database server to store increments of time. The
following table summarizes the time data types that Universal Server
supports.

For more information, see the entries for these data types in Chapter 2 of the
Informix Guide to SQL: Reference.

+ DATE

DATETIME DATETIME
Field Qualifier

p. 1-874

INTERVAL
Field Qualifier

p. 1-982
INTERVAL

Data Type Purpose

DATE Stores a date value (mm/dd/yy) as a Julian date.

DATETIME Stores a date and time value (mm/dd/yy hh:mm:ss.fff) in an internal
format.

INTERVAL Stores a unit of time such as seconds, hours/minutes, or
year/month/day.
1-866 Informix Guide to SQL: Syntax

Data Type
User-Defined Data Type

A user-defined data type is a data type that a user defines for the database
server. Universal Server supports the following categories of user-defined
data types:

■ Opaque data types

■ Distinct data types

The following sections describe the user-defined data types in greater detail.

Element Purpose Restrictions Syntax
opaque data
type

The name of the opaque data
type

The name must be different from
all other data types in the
database.

Identifier, p. 1-962

distinct data
type

The name of a distinct data type
that has the same structure as an
existing data type

The name must be different from
all other data types in the
database.

Identifier, p. 1-962

owner The user name of the owner of
the data type

If you are using an ANSI
compliant database, you must
enter the owner.type name to use
a user-defined data type that
you do not own. If you put
quotation marks around the
name you enter in owner, the
named is stored exactly as typed.
If you do not put quotation
marks around the name that you
enter in owner, the name is stored
as uppercase letters.

The user name must
conform to the
conventions of your
operating system.

opaque data type

distinct data type

User-Defined
Data Type

owner .

owner .''
SQL Statements 1-867

Data Type
Opaque Data Types

An opaque data type is a user-defined data type that can be used in the same
way as a built-in data type. To create an opaque type, you must use the
CREATE OPAQUE TYPE statement. Because an opaque type is encapsulated,
you create functions to access the individual components of an opaque type.
The internal storage details of the type are hidden, or opaque.

For more information, see the CREATE OPAQUE TYPE statement. For
complete information about how to create an opaque type and its support
functions, see the Extending INFORMIX-Universal Server: Data Types manual.

Distinct Data Types

A distinct data type is user-defined data type that is based on an existing
built-in type, opaque type, named row type, or distinct type. To create a
distinct type, you must use the CREATE DISTINCT TYPE statement. For more
information, see the CREATE DISTINCT TYPE statement.

Complex Data Type

named row type name

Complex
Data Type

owner .

owner .''

Unnamed Row Types
p. 1-870

Collection Data Types
p. 1-871
1-868 Informix Guide to SQL: Syntax

Data Type
Complex data types are data types that you create from built-in types,
opaque types, distinct types, or other complex types. When you create a
complex type, you define the components of the complex type. However,
unlike an opaque type, a complex type is not encapsulated. You can use SQL
to access the individual components of a complex data type.

Universal Server supports the following categories of complex data types:

■ Row types

❑ Named row types

❑ Unnamed row types

■ Collection data types

❑ SET

❑ MULTISET

❑ LIST

For a full discussion of complex data types, see Chapter 10 of the Informix
Guide to SQL: Tutorial.

Element Purpose Restrictions Syntax
named row type
name

The name of the named row type The name must be different from
all other data types in the
database.

Identifier, p. 1-962

Data type, p. 1-855

owner The user name of the owner of
the data type

If you are using an ANSI-
compliant database, you must
enter the owner.type name to use
a named row type that you do
not own. If you put quotation
marks around the name you
enter in owner, the named is
stored exactly as typed. If you do
not put quotation marks around
the name that you enter in owner,
the name is stored as uppercase
letters.

The user name must
conform to the
conventions of your
operating system.
SQL Statements 1-869

Data Type
Named Row Types

You can assign a named row type to a table or a column. To use a named row
type to create a typed table or define a column, the named row type must
already exist. To create a named row type, you use the CREATE ROW TYPE
statement. For a description of the CREATE ROW TYPE statement, see
page 1-194.

For a complete description of named row types, see Chapter 10 of the
Informix Guide to SQL: Tutorial and Chapter 2 of the Informix Guide to SQL:
Reference.

Unnamed Row Types

An unnamed row type is a group of fields that you create with the ROW
constructor. You can use an unnamed row type to define a column. The
syntax that you use to define a column as an unnamed row type is shown in
the following diagram.

An unnamed row type is identified by its structure. For additional infor-
mation about unnamed row types and how to create them, see Chapter 10 of
the Informix Guide to SQL: Tutorial and Chapter 2 in the Informix Guide to SQL:
Reference.

For the syntax you use to specify row values for an unnamed row type, see
“Expression” on page 1-876.

ROW)(,

Unnamed Row
Type

Field
Definition
p. 1-871
1-870 Informix Guide to SQL: Syntax

Data Type
Field Definition

The syntax you use to define the fields of an unnamed row type is shown in
the following diagram.

Collection Data Types

The syntax you use to define a column as a collection type is shown in the
following diagram.

Element Purpose Restrictions Syntax
field name The name of a field in the row. The name must be unique

within the row type.
Identifier, p. 1-962

data type The data type of the field. The field can be any data type
except TEXT, BYTE, SERIAL, or
SERIAL8.

Data Type, p. 1-855

field name data type

Field
Definition

Element Purpose Restrictions Syntax
element type Specifies the data type of the

elements of the collection.
The element type can be any
data type except TEXT, BYTE,
SERIAL, or SERIAL8.

Data Type, p. 1-855

 element type()SET NOT NULL

MULTISET

LIST

Column as
Collection
SQL Statements 1-871

Data Type
A collection type contains elements that can be of a built-in type, an opaque
type, a distinct type, or a row type. A collection type can also contain another
collection type within it. You can use a collection type to define a column. The
element type of a collection specifies the type of data that the collection can
contain. For example, if the element type of a collection type is INTEGER,
every element in the collection must be of type INTEGER. If the element type
of a collection type is a row type, every element in the collection must be of
the row type.

To create a collection data type, you must specify the following:

■ A type constructor that establishes whether the collection is a SET,
MULTISET, or LIST

■ An element type that specifies the type of data that the collection can
contain

Privileges on a collection type are those of the column. You cannot specify
privileges on specific elements of a collection.

For the syntax you use to specify collection values for a collection data type,
see the “Literal DATETIME” on page 1-991.

SET Collection Types

A SET is an unordered collection of elements in which each element is unique.
You define a column as a SET collection type when you want to store collec-
tions whose elements contain no duplicate values and no specific order
associated with them.

MULTISET Collection Types

A MULTISET is an unordered collection of elements in which elements can
have duplicate values. You define a column as a MULTISET collection type
when you want to store collections whose elements might not be unique and
have no specific order associated with them.
1-872 Informix Guide to SQL: Syntax

Data Type
LIST Collection Types

A LIST is an ordered collection of elements that allows duplicate elements. A
LIST differs from a MULTISET in that each element in a LIST collection has an
ordinal position in the collection. You define a column as a LIST collection
type when you want to store collections whose elements might not be unique
but have a specific order associated with them.

References
See the CREATE TABLE statement in this manual.

In the Informix Guide to SQL: Tutorial, see the discussion of complex data types
in Chapter 10.

In the Informix Guide to SQL: Reference, see the discussions of individual data
types in Chapter 2.

In the Guide to GLS Functionality, see the discussion of the NCHAR and
NVARCHAR data types and the GLS aspects of other character data types.
SQL Statements 1-873

DATETIME Field Qualifier
DATETIME Field Qualifier
A DATETIME field qualifier specifies the largest and smallest unit of time in a
DATETIME column or value. Use the DATETIME Field Qualifier segment
whenever you see a reference to a DATETIME field qualifier in a syntax
diagram.

Syntax

Element Purpose Restrictions Syntax
digit A single integer that specifies the

precision of a decimal fraction of
a second. The default precision is
3 digits (a thousandth of a
second).

You must specify an integer
between 1 and 5, inclusive.

Literal Number,
p. 1-997

(3)

YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

FRACTION

SECOND

MINUTE

HOUR

DAY

MONTH TO YEAR

(digit)
1-874 Informix Guide to SQL: Syntax

DATETIME Field Qualifier
Usage
Specify the largest unit for the first DATETIME value; after the word TO,
specify the smallest unit for the value. The keywords imply that the
following values are used in the DATETIME object.

The following examples show DATETIME qualifiers:

DAY TO MINUTE

YEAR TO MINUTE

DAY TO FRACTION(4)

MONTH TO MONTH

References
In the Informix Guide to SQL: Reference, see the DATETIME data type in
Chapter 2 for an explanation of the DATETIME field qualifier.

Unit of Time Meaning

YEAR Specifies a year, numbered from A.D. 1 to 9999

MONTH Specifies a month, numbered from 1 to 12

DAY Specifies a day, numbered from 1 to 31, as appropriate to the
month in question

HOUR Specifies an hour, numbered from 0 (midnight) to 23

MINUTE Specifies a minute, numbered from 0 to 59

SECOND Specifies a second, numbered from 0 to 59

FRACTION Specifies a fraction of a second, with up to five decimal places.
The default scale is three digits (thousandth of a second).
SQL Statements 1-875

1-876 Informix Guide to SQL: Syntax

Expression
Expression
An expression is one or more pieces of data that is contained in or derived
from the database or database server. Use the Expression segment whenever
you see a reference to an expression in a syntax diagram.

Syntax

-

+

*
/
| |

-
+

variable name

SPL variable nameSPL

Constant Expressions
p. 1-887

Function Expressions
p. 1-898

Cast Expressions
p. 1-879

Column Expressions
p. 1-881

Expression()

Constructor Expressions
p. 1-895

Aggregate Expressions
p. 1-941

Expression
Usage
An expression comprises many basic items. Each item is described in the
following list.

Element Purpose Restrictions Syntax
SPL variable
name

The name of a variable that is
stored in an SPL routine. The
value stored in the variable is
one of the expression types that
is shown in the syntax diagram.

The expression that is stored in
SPL variable name must conform
to the rules for expressions of
that type.

Identifier, p. 1-962

variable name The name of a program variable
or host variable. The value
stored in the variable is one of
the expression types shown in
the syntax diagram.

The expression that is stored in
variable name must conform to
the rules for expressions of that
type.

Identifier, p. 1-962

Expression Item Purpose

Concatenation operator Provides the ability to concatenate two string values

Cast operators Provide the ability to explicit cast from one data type to
another

Column expressions Provide the ability to qualify a column name

Constant expressions Provide the ability to specify a literal value or a built-in
function that returns a built-in value for many data
types

Constructor expressions Provide the ability to dynamically create values for
complex data types

Function expressions Provide the ability to call the built-in functions or user-
defined functions

 (1 of 2)
SQL Statements 1-877

Expression
The following sections describe the syntax of each of these expression items.
You can also use SPL variables or host variables in an expression.

Concatenating Expressions
You can use the concatenation operator (||) to concatenate two expressions.
The following examples are some possible concatenated-expression
combinations. The first example concatenates the zipcode column to the first
three letters of the lname column. The second example concatenates the
suffix .dbg to the contents of a host variable called file_variable. The third
example concatenates the value returned by the TODAY function to the string
Date.

lname[1,3] || zipcode

:file_variable || '.dbg'

'Date:' || TODAY

User-defined functions Provide the ability to define statement-local variables
with a user-defined function

Aggregate functions Provide the ability to call the built-in aggregate
functions

Arithmetic operators Provide support for arithmetic operations on two items
(binary operators) or one item (unary operators) of an
expression

Expression Item Purpose

 (2 of 2)
1-878 Informix Guide to SQL: Syntax

Expression
You cannot use the concatenation operator in an embedded-language-only
statement. The SQL API-only statements appear in the following list.

♦

The concatenation operator (||) has an associated operator function called
concat(). You can define a concat() function to handle your own string-based
user-defined data types. For more information, see the Extending
INFORMIX-Universal Server: Data Types manual.

Cast Expressions

ESQL

ALLOCATE COLLECTION EXECUTE
ALLOCATE DESCRIPTOR EXECUTE IMMEDIATE
ALLOCATE ROW FETCH
CLOSE FLUSH
CONNECT FREE
DEALLOCATE COLLECTION GET DESCRIPTOR
DEALLOCATE DESCRIPTOR OPEN
DEALLOCATE ROW PREPARE
DECLARE PUT
DESCRIBE SET CONNECTION
DISCONNECT SET DESCRIPTOR

CAST Expression
p. 1-876

AS

Expression
p. 1-876

::

target
data type

:: target
data type

)(

target
data type
SQL Statements 1-879

Expression
You can use the CAST AS keywords or the double-colon cast operator (::) to
cast an expression to another data type. Both the operator and the keywords
invoke a cast from the data type of the expression to the target data type. To
invoke an explicit cast you must use either the cast operator or the CAST AS
keywords. If you use the cast operator or CAST AS keywords, but no explicit
or implicit cast has been defined to perform the conversion between two data
types, the statement returns an error.

The following examples show two different ways to convert the sum of x and
y to a user-defined data type, user_type. The two methods produce identical
results. Both require the existence of an explicit or implicit cast from the type
returned by x + y to the user-defined type.

CAST (x + y) AS user_type
(x + y)::user_type

The following examples show two different ways of finding the integer
equivalent of the expression expr. Both require the existence of an implicit or
explicit cast from the data type of expr to the INTEGER data type.

CAST expr AS INTEGER
expr::INTEGER

Element Purpose Restrictions Syntax
target data type The data type that results after

the cast is applied.
The target data type must be
either a built-in type, a user-
defined type, or a named row
type in the database. The target
type cannot be an unnamed row
type or collection data type. An
explicit or implicit cast must
exist that can convert the data
type of the expression to the
target data type.

Data type, p. 1-855
1-880 Informix Guide to SQL: Syntax

Expression
Column Expressions
 The possible syntax for column expressions is shown in the following
diagram.

Element Purpose Restrictions Syntax
alias A temporary alternative name

for a table or view within the
scope of a SELECT statement.
This alternative name is estab-
lished in the FROM clause of the
SELECT statement.

The restrictions depend on the
clause of the SELECT statement
in which alias occurs.

Identifier, p. 1-962

column name The name of the column that you
are specifying

The restrictions depend on the
statement in which column name
occurs. Smart large objects
cannot be used in many types of
expressions. See “Using Smart
Large Objects” on page 1-885 for
more information.

Identifier, p. 1-962

field name The name of the row field that
you are accessing in the row
column

The field must be a member of
the row that row-column name or
field name (for nested rows)
specifies

Identifier, p. 1-962

 (1 of 2)

[first, last]

Table
Name

p. 1-1044

View
Name

p. 1-1047

+

Synonym
Name

p. 1-1042

.

.

.

alias
ROWID

column
name

.

row-column
name

field name.3

+

SQL Statements 1-881

Expression
The following examples show column expressions:

company

items.price

cat_advert [1,15]

Use a table or alias name whenever it is necessary to distinguish between
columns that have the same name but are in different tables. The SELECT
statements that the following example shows use customer_num from the
customer and orders tables. The first example precedes the column names
with table names. The second example precedes the column names with table
aliases.

SELECT * FROM customer, orders
WHERE customer.customer_num = orders.customer_num

SELECT * FROM customer c, orders o
WHERE c.customer_num = o.customer_num

first The position of the first character
in the portion of the column that
you are selecting

The column must be one of the
following types: BYTE, CHAR,
NCHAR, NVARCHAR, TEXT, or
VARCHAR.

Literal Number,
p. 1-997

last The position of the last character
in the portion of the column that
you are selecting

The column must be one of the
following types: BYTE, CHAR,
NCHAR, NVARCHAR, TEXT, or
VARCHAR.

Literal Number,
p. 1-997

row-column
name

The name of the row column
that you specify

The data type of the column
must be a named row type or an
unnamed row type.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
1-882 Informix Guide to SQL: Syntax

Expression
Using Dot Notation

Dot notation allows you to qualify an SQL identifier with another SQL
identifier. You separate the identifiers with the period (.) symbol. For
example, you can qualify a column name with any of the following SQL
identifiers:

■ Table name: table_name.column_name

■ View name: view_name.column_name

■ Synonym name: syn_name.column_name

The previous forms of dot notation are called column projections.

You can also use dot notation to directly access the fields of a row column, as
follows:

row_name.field_name

This use of dot notation is called a field projection. For example, suppose you
have a column called rect with the following definition:

CREATE TABLE rectangles
(

area float,
rect ROW(x int, y int, length float, width float)

)

The following SELECT statement accesses field length of the rect column:

SELECT rect.length FROM rectangles
WHERE area = 64

If the row definitions are nested, you can specify multiple levels of field
names. For example, consider the following two tables:

CREATE TABLE tab_b (c ROW(d INTEGER, e CHAR(2));
CREATE TABLE tab_c (d INTEGER);

The following SELECT statement references field d of row column c in table b.

SELECT *
FROM tab_b,tab_c
WHERE tab_b.c.d = 10
SQL Statements 1-883

Expression
When the meaning of a particular identifier is ambiguous, Universal Server
uses the following precedence rules to determine which database object the
identifier specifies in a dot notation of name1.name2.name3.name4:

1. schema name1.table name2.column name3.field name4

2. table name1.column name2.field name3.field name4

3. column name1.field name2.field name3.field name4

For more information about precedence rules and how to use dot notation
with row columns, see Chapter 12 of the Informix Guide to SQL: Tutorial.

Using Subscripts on Character Columns

You can use subscripts on CHAR, VARCHAR, BYTE, and TEXT columns. The
subscripts indicate the starting and ending character positions that are
contained in the expression. Together the column subscripts define a column
substring. The column substring is the portion of the column that is
contained in the expression.

For example, if a value in the lname column of the customer table is
Greenburg, the following expression evaluates to burg:

lname[6,9]

Column subscripting also works on NCHAR and NVARCHAR columns. For
information on the GLS aspects of column subscripts and substrings, see the
Guide to GLS Functionality. ♦

Using Rowids

You can use the rowid column that is associated with a table row as a
property of the row. The rowid column is essentially a hidden column in
nonfragmented tables and in fragmented tables that were created with the
WITH ROWIDS clause. The rowid column is unique for each row, but it is not
necessarily sequential. Informix recommends, however, that you utilize
primary keys as an access method rather than exploiting the rowid column.

GLS
1-884 Informix Guide to SQL: Syntax

Expression
The following examples show possible uses of the ROWID keyword in a
SELECT statement:

SELECT *, ROWID FROM customer

SELECT fname, ROWID FROM customer
ORDER BY ROWID

SELECT HEX(rowid) FROM customer
WHERE customer_num = 106

In Universal Server only, the last SELECT statement example shows how to
get the page number (the first six digits after 0x) and the slot number (the last
two digits) of the location of your row.

You cannot use ROWID keyword in the select list of a query that contains an
aggregate function.

Using Smart Large Objects

The SELECT, UPDATE, and INSERT statements do not manipulate the values
of smart large objects directly. Instead, they use a handle value, which is a type
of pointer, to access the BLOB or CLOB value, as follows:

■ The SELECT statement returns a handle value to the BLOB or CLOB
value that the select list specifies.

SELECT does not return the actual data for the BLOB or CLOB column
that the select list specifies. Instead, it returns a handle value to the
column data.

■ The INSERT and UPDATE statements accept a handle value for a BLOB
or CLOB to be inserted or updated.

INSERT and UPDATE do not send the actual data for the BLOB or
CLOB column to the database server. Instead, they accept a handle
value to this data as the column value.
SQL Statements 1-885

Expression
To access the data of a smart-large-object column, you must use one of the
following application programming interfaces (APIs):

■ From within an INFORMIX-ESQL/C program, use the ESQL/C library
functions that access smart large objects.

For more information, see the INFORMIX-ESQL/C Programmer’s
Manual.

■ From within a C program such as a DataBlade module, use the Client
and Server API.

For more information, see your Datablade Developer Kit User’s Guide.

You cannot use the name of a smart-large-object column in expressions that
involve arithmetic operators. For example, operations such as addition or
subtraction on the smart-large-object handle value have no meaning.

When you select a smart-large-object column, you can assign the handle
value to any number of columns: all columns with the same handle value
share the CLOB or BLOB value across several columns. This storage
arrangement reduces the amount of disk space that the CLOB or BLOB data
takes. However, when several columns share the same smart-large-object
value, the following conditions result:

■ The chance of lock contention on a CLOB or BLOB column increases.

If two columns share the same smart-large-object value, the data
might be locked by either column that needs to access it.

■ The CLOB or BLOB value can be updated from a number of points

To remove these constraints, you can create separate copies of the BLOB or
CLOB data for each column that needs to access it. You can use the LOCOPY
function to create a copy of an existing smart large object. You can also use
the SQL functions LOTOFILE, FILETOCLOB, and FILETOBLOB to access smart-
large-object values. For more information on these functions, see “Smart-
Large-Object Functions” on page 1-920. For more information on the BLOB
and CLOB data types, see Chapter 2 of the Informix Guide to SQL: Reference.
1-886 Informix Guide to SQL: Syntax

Expression
Constant Expressions
The following diagram shows the possible syntax for constant expressions.

+

SITENAME

DBSERVERNAME

TODAY

CURRENT

Literal DATETIME
p. 1-991

Literal INTERVAL
p. 1-994

USER

UNITS datetime
unit

n

DATETIME
Field Qualifier

p. 1-874

Literal
Number
p. 1-997

Literal Collection
p.1-985

Quoted
String

p. 1-1010

Literal Row
p. 1-999

literal opaque type

literal BOOLEAN
SQL Statements 1-887

Expression
The following examples show constant expressions:

DBSERVERNAME

TODAY

'His first name is'

CURRENT YEAR TO DAY

INTERVAL (4 10:05) DAY TO MINUTE

DATETIME (4 10:05) DAY TO MINUTE

5 UNITS YEAR

{2, 3, 4}

Element Purpose Restrictions Syntax
datetime unit One of the units that is used to

specify an interval precision;
that is, YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, or
FRACTION. If the unit is YEAR,
the expression is a year-month
interval; otherwise, the
expression is a day-time interval.

The datetime unit must be one of
the keywords that is listed in the
Purpose column. You can enter
the keyword in uppercase or
lowercase letters. You cannot put
quotation marks around the
keyword.

See the Restrictions
column.

n A literal number that you use to
specify the number of datetime
units. See “The UNITS
Keyword” on page 1-894 for
more information on this
parameter.

If n is not an integer, it is
rounded down to the nearest
whole number when it is used.
The value that you specify for n
must be appropriate for the
datetime unit that you choose.

Literal Number,
p. 1-997,

literal opaque
type

The literal representation for an
opaque data type

The literal must be recognized
by the input support function of
the associated opaque type.

Defined by the
developer of the
opaque type.

literal
BOOLEAN

The literal representation of a
BOOLEAN value

A literal BOOLEAN can be only 't'
(TRUE) or 'f'(FALSE).

Quoted string,
p. 1-1010.
1-888 Informix Guide to SQL: Syntax

Expression
The following list provides references for further information:

■ For quoted strings as expressions, see “Quoted String as an
Expression”.

■ For the USER function in an expression, see “USER Function” on
page 1-890.

■ For the SITENAME and DBSERVERNAME functions in an expression,
refer to “SITENAME and DBSERVERNAME Functions” on
page 1-890.

■ For literal numbers as expressions, see “Literal Number as an
Expression” on page 1-891.

■ For the TODAY function in an expression, see “TODAY Function” on
page 1-891.

■ For the CURRENT function in an expression, see “CURRENT
Function” on page 1-892.

■ For literal DATETIME as an expression, see “Literal DATETIME as an
Expression” on page 1-893.

■ For literal INTERVAL as an expression, see “Literal INTERVAL as an
Expression” on page 1-893.

■ For the UNITS keyword in an expression, see “The UNITS Keyword”
on page 1-894.

■ For literal collections as expressions, see “Literal Collection as an
Expression” on page 1-894.

Quoted String as an Expression

 The following examples show quoted strings as expressions:

SELECT 'The first name is ', fname FROM customer

INSERT INTO manufact VALUES ('SPS', 'SuperSport')

UPDATE cust_calls SET res_dtime = '1993-1-1 10:45'
WHERE customer_num = 120 AND call_code = 'B'
SQL Statements 1-889

Expression
USER Function

The USER function returns a string that contains the login name of the current
user (that is, the person running the process). The following statements show
how you might use the USER function:

INSERT INTO cust_calls VALUES
 (221,CURRENT,USER,'B','Decimal point off', NULL, NULL)

SELECT * FROM cust_calls WHERE user_id = USER

UPDATE cust_calls SET user_id = USER WHERE customer_num = 220

The USER function does not change the case of a user ID. If you use USER in
an expression and the present user is Robertm, the USER function returns
Robertm, not robertm. If you specify user as the default value for a column,
the column must be CHAR, VARCHAR, NCHAR, or NVARCHAR data type, and
it must be at least eight characters long.

In an ANSI-compliant database, if you do not use quotes around the owner
name, the name of the table owner is stored as uppercase letters. If you use
the USER keyword as part of a condition, you must be sure that the way the
user name is stored agrees with the values that the USER function returns,
with respect to case. ♦

SITENAME and DBSERVERNAME Functions

The SITENAME and DBSERVERNAME functions return the database server
name, as defined in the ONCONFIG file for the Universal Server installation
where the current database resides or as specified in the INFORMIXSERVER
environment variable. The two function names, SITENAME and DBSERV-
ERNAME, are synonymous.

You can use the DBSERVERNAME function to determine the location of a
table, to put information into a table, or to extract information from a table.
You can insert DBSERVERNAME into a simple character field or use it as a
default value for a column. If you specify DBSERVERNAME as a default value
for a column, the column must be CHAR, VARCHAR, NCHAR, or NVARCHAR
data type and must be at least 18 characters long.

ANSI
1-890 Informix Guide to SQL: Syntax

Expression
In the following example, the first statement returns the name of the database
server where the customer table resides. Because the query is not restricted
with a WHERE clause, it returns DBSERVERNAME for every row in the table.
If you add the DISTINCT keyword to the SELECT clause, the query returns
DBSERVERNAME once. The second statement adds a row that contains the
current site name to a table. The third statement returns all the rows that have
the site name of the current system in site_col. The last statement changes the
company name in the customer table to the current system name.

SELECT DBSERVERNAME FROM customer

INSERT INTO host_tab VALUES ('1', DBSERVERNAME)

SELECT * FROM host_tab WHERE site_col = DBSERVERNAME

UPDATE customer SET company = DBSERVERNAME
 WHERE customer_num = 120

Literal Number as an Expression

The following examples show literal numbers as expressions:

INSERT INTO items VALUES (4, 35, 52, 'HRO', 12, 4.00)

INSERT INTO acreage VALUES (4, 5.2e4)

SELECT unit_price + 5 FROM stock

SELECT -1 * balance FROM accounts

TODAY Function

Use the TODAY function to return the system date as a DATE data type. If you
specify TODAY as a default value for a column, it must be a DATE column. The
following examples show how you might use the TODAY function in an
INSERT, UPDATE, or SELECT statement:

UPDATE orders (order_date) SET order_date = TODAY
 WHERE order_num = 1005

INSERT INTO orders VALUES
(0, TODAY, 120, NULL, N, '1AUE217', NULL, NULL, NULL, NULL)

SELECT * FROM orders WHERE ship_date = TODAY
SQL Statements 1-891

Expression
CURRENT Function

The CURRENT function returns a DATETIME value with the date and time of
day, showing the current instant.

If you do not specify a datetime qualifier, the default qualifiers are YEAR TO
FRACTION(3). You can use the CURRENT function in any context in which you
can use a literal DATETIME (see page 1-991). If you specify CURRENT as the
default value for a column, it must be a DATETIME column and the qualifier
of CURRENT must match the column qualifier, as the following example
shows:

CREATE TABLE new_acct (col1 int, col2 DATETIME YEAR TO DAY
DEFAULT CURRENT YEAR TO DAY)

If you use the CURRENT keyword in more than one place in a single
statement, identical values can be returned at each point of the call. You
cannot rely on the CURRENT function to provide distinct values each time it
executes.

The returned value comes from the system clock and is fixed when any SQL
statement starts. For example, any calls to CURRENT from an EXECUTE
PROCEDURE statement return the value when the stored procedure starts.

The CURRENT function is always evaluated in the database server where the
current database is located. If the current database is in a remote database
server, the returned value is from the remote host.

The CURRENT function might not execute in the physical order in which it
appears in a statement. You should not use the CURRENT function to mark
the start, end, or a specific point in the execution of a statement.

If your platform does not provide a system call that returns the current time
with subsecond precision, the CURRENT function returns a zero for the
FRACTION field.
1-892 Informix Guide to SQL: Syntax

Expression
In the following example, the first statement uses the CURRENT function in a
WHERE condition. The second statement uses the CURRENT function as the
input for the DAY function. The last query selects rows whose call_dtime
value is within a range from the beginning of 1993 to the current instant.

DELETE FROM cust_calls WHERE
res_dtime < CURRENT YEAR TO MINUTE

SELECT * FROM orders WHERE DAY(ord_date) < DAY(CURRENT)

SELECT * FROM cust_calls WHERE call_dtime
BETWEEN '1993-1-1 00:00:00' AND CURRENT

Literal DATETIME as an Expression

The following examples show literal DATETIME as an expression:

SELECT DATETIME (1993-12-6) YEAR TO DAY FROM customer

UPDATE cust_calls SET res_dtime = DATETIME (1992-07-07 10:40)
YEAR TO MINUTE

WHERE customer_num = 110
AND call_dtime = DATETIME (1992-07-07 10:24) YEAR TO MINUTE

SELECT * FROM cust_calls
WHERE call_dtime
= DATETIME (1995-12-25 00:00:00) YEAR TO SECOND

Literal INTERVAL as an Expression

The following examples show literal INTERVAL as an expression:

INSERT INTO manufact VALUES ('CAT', 'Catwalk Sports',
INTERVAL (16) DAY TO DAY)

SELECT lead_time + INTERVAL (5) DAY TO DAY FROM manufact

The second statement in the preceding example adds five days to each value
of lead_time selected from the manufact table.
SQL Statements 1-893

Expression
The UNITS Keyword

The UNITS keyword enables you to display a simple interval or increase or
decrease a specific interval or datetime value.

If n is not an integer, it is rounded down to the nearest whole number when
it is used.

In the following example, the first SELECT statement uses the UNITS keyword
to select all the manufacturer lead times, increased by five days. The second
SELECT statement finds all the calls that were placed more than 30 days ago.
If the expression in the WHERE clause returns a value greater than 99
(maximum number of days), the query fails. The last statement increases the
lead time for the ANZA manufacturer by two days.

SELECT lead_time + 5 UNITS DAY FROM manufact

SELECT * FROM cust_calls
WHERE (TODAY - call_dtime) > 30 UNITS DAY

UPDATE manufact SET lead_time = 2 UNITS DAY + lead_time
WHERE manu_code = 'ANZ'

Literal Collection as an Expression

The following examples show literal collections as expressions:

INSERT INTO tab_a (set_col) VALUES ("SET{6, 9, 3, 12, 4}")

INSERT INTO TABLE(a_set) VALUES (9765)

UPDATE table1 SET set_col = "LIST{3}"

SELECT set_col FROM table1
WHERE SET{17} IN (set_col)

For more information, see “Literal DATETIME” on page 1-991.
1-894 Informix Guide to SQL: Syntax

Expression
Literal Row as an Expression

The following examples show literal collections as expressions:

INSERT INTO employee VALUES
(ROW('103 Baker St', 'San Francisco',

'CA', 94500))

UPDATE rectangles
SET rect = ROW(8, 3, 7, 20)
WHERE area = 140

EXEC SQL update table(:a_row)
set x=0, y=0, length=10, width=20;

SELECT row_col FROM tab_b
WHERE ROW(17, 'abc') IN (row_col)

For more information, see “Literal Row” on page 1-999.

Constructor Expressions
A constructor is a function that the database server uses to create an instance
of a particular data type. Universal Server supports a ROW constructor. The
syntax for expressions that use a ROW constructor is shown in the following
diagram.

You can use any kind of expression with a ROW constructor, including
literals, functions, and variables. The following examples show row expres-
sions:

ROW(5, 6.77, 'HMO')

ROW(col1.lname, 45000)

ROW('john davis', TODAY)

ROW(USER, SITENAME)

,

()ROW Expression
p. 1-876
SQL Statements 1-895

Expression
Using ROW Constructors

Suppose you create the following named row type and a table that contains
the named row type row_t and an unnamed row type:

CREATE ROW TYPE row_t (x INT, y INT);
CREATE TABLE new_tab
(
col1 row_t,
col2 ROW(a CHAR(2), b INT
)

When you define a column as a named row type or unnamed row type, you
must use a ROW constructor to generate values for the row column.To create
a value for either a named row type or unnamed row type, you must do the
following:

■ Begin the expression with the ROW keyword.

■ Specify a value for each field of the row type.

■ Enclosed the field values within parentheses.

The format of the value for each field must be compatible with the data type
of the row field to which it is assigned.

The following statement uses ROW constructors to insert values into col1 and
col2 of the new_tab table:

INSERT INTO new_tab
VALUES
(
ROW(32, 65)::row_t,
ROW('CA', 34)
)

1-896 Informix Guide to SQL: Syntax

Expression
When you use a ROW constructor to generate values for a named row type,
you must explicitly cast the row value to the appropriate named row type.
The cast is necessary to generate a value of the named row type. To cast the
row value as a named row type, you can use the cast operator (::) or the CAST
AS keywords, as shown in the following examples:

ROW(4,5)::row_t
CAST (ROW(3,4) AS row_t)

Use a ROW constructor anytime you want to generate a row type value. In the
following example, a ROW constructor specifies a row type value that is cast
as type person_t:

SELECT *
FROM person_tab
WHERE col1 = ROW('charlie','hunter')::person_t

See the INSERT, UPDATE, and SELECT statements in this manual. See the
CREATE ROW TYPE statement for information on named row types.

In the Informix Guide to SQL: Reference, see the ROW data type in Chapter 2 for
information on unnamed row types. In the Informix Guide to SQL: Tutorial, see
Chapter 10 for information on named row types and unnamed row types.
SQL Statements 1-897

Expression
Function Expressions
A function expression can call built-in functions or user-defined functions, as
the following diagram shows.

+ Algebraic Functions
p. 1-900

DBINFO Function
p. 1-907

TRIM Function
p. 1-935

Time Functions
p. 1-927

Length Functions
p. 1-915

HEX Function
p. 1-914

Exponential and
Logarithmic Functions

p. 1-913

Trigonometric Functions
p. 1-932

User-Defined Functions
p. 1-937

CARDINALITY Function
p. 1-907

Smart-Large-Object Functions
p. 1-920

Shared-Library Functions
p. 1-917
1-898 Informix Guide to SQL: Syntax

Expression
The following examples show function expressions:

EXTEND (call_dtime, YEAR TO SECOND)

MDY (12, 7, 1900 + cur_yr)

DATE (365/2)

LENGTH ('abc') + LENGTH (pvar)

HEX (customer_num)

HEX (LENGTH(123))

TAN (radians)

ABS (-32)

EXP (4,3)

MOD (10,3)
SQL Statements 1-899

Expression
Algebraic Functions

An algebraic function takes one or more arguments, as the following diagram
shows.

Expression
p. 1-876

ABS

base, exponent

sqrt_radicand

num_expression

Algebraic
Functions

ROUND

, rounding factor

dividend, divisor

POW

MOD

ROOT radicand

Expression
p. 1-876

TRUNC

, truncating factor

SQRT

, index

)(

)

)

(

(

()

)(

()

)(

, 2

, 0

, 0
1-900 Informix Guide to SQL: Syntax

Expression
Element Purpose Restrictions Syntax
base A value to be raised to the power

that is specified in exponent. The
base value is the first argument
that is supplied to the POW()
function. See “POW() Function”
on page 1-904 for further
information on base.

You can enter in base any real
number or any expression that
evaluates to a real number.

Expression, p. 1-876

dividend A value to be divided by the
value in divisor. The dividend
value is the first argument
supplied to the MOD() function.
See “MOD() Function” on
page 1-903 for further
information on dividend.

You can enter in dividend any real
number or any expression that
evaluates to a real number.

Expression, p. 1-876

divisor The value by which the value in
dividend is to be divided. The
divisor value is the second
argument that is supplied to the
MOD() function. See “MOD()
Function” on page 1-903 for
further information on divisor

You can enter in divisor any real
number except zero or any
expression that evaluates to a
real number other than zero.

Expression, p. 1-876

exponent The power to which the value
that is specified in base is to be
raised. The exponent value is the
second argument that is
supplied to the POW() function.
See “POW() Function” on
page 1-904 for further
information on exponent.

You can enter in exponent any
real number or any expression
that evaluates to a real number.

Expression, p. 1-876

index The type of root to be returned,
where 2 represents square root, 3
represents cube root, and so on.
The index value is the second
argument that is supplied to the
ROOT() function. The default
value of index is 2. See “ROOT()
Function” on page 1-904 for
further information on index.

You can enter in index any real
number except zero or any
expression that evaluates to a
real number other than zero.

Expression, p. 1-876

 (1 of 3)
SQL Statements 1-901

Expression
num_expression A numeric expression for which
an absolute value is to be
returned. The expression serves
as the argument for the ABS()
function. See “ABS() Function”
on page 1-903 for further
information on num_expression.

The value of num_expression can
be any real number.

Expression, p. 1-876

radicand An expression whose root value
is to be returned. The radicand
value is the first argument that is
supplied to the ROOT() function.
See “ROOT() Function” on
page 1-904 for further
information on radicand.

You can enter in radicand any real
number or any expression that
evaluates to a real number.

Expression, p. 1-876

rounding factor The number of digits to which a
numeric expression is to be
rounded. The rounding factor
value is the second argument
that is supplied to the ROUND()
function. The default value of
rounding factor is zero. This
default means that the numeric
expression is rounded to zero
digits or the ones place. See
“ROUND() Function” on
page 1-904 for further
information on rounding factor.

The value you specify in
rounding factor must be an
integer between +32 and -32,
inclusive. See “ROUND()
Function” on page 1-904 for
further information on this
restriction.

Literal Number,
p. 1-997

sqrt_radicand An expression whose square
root value is to be returned. The
sqrt_radicand value is the
argument that is supplied to the
SQRT() function. See “SQRT()
Function” on page 1-905 for
further information on
sqrt_radicand.

You can enter in sqrt_radicand
any real number or any
expression that evaluates to a
real number.

Expression, p. 1-876

Element Purpose Restrictions Syntax

 (2 of 3)
1-902 Informix Guide to SQL: Syntax

Expression
ABS() Function

The ABS() function gives the absolute value for a given expression. The
function requires a single numeric argument. The value returned is the same
as the argument type. The following example shows all orders of more than
$20 paid in cash (+) or store credit (-). The stores7 database does not contain
any negative balances; however, you might have negative balances in your
application.

SELECT order_num, customer_num, ship_charge
 FROM orders WHERE ABS(ship_charge) > 20

MOD() Function

The MOD() function returns the modulus or remainder value for two numeric
expressions. You provide integer expressions for the dividend and divisor.
The divisor cannot be 0.

In earlier Informix products, the MOD() function returned an INT value.
However, in Universal Server, the MOD() function returns an INT8 value.

The following example uses a 30-day billing cycle to determine how far today
is into the billing cycle:

SELECT MOD(today - MDY(1,1,year(today)),30) FROM orders

truncating
factor

The position to which a numeric
expression is to be truncated.
The truncating factor value is the
second argument that is
supplied to the TRUNC()
function.The default value of
truncating factor is zero. This
default means that the numeric
expression is truncated to zero
digits or the ones place. See
“TRUNC() Function” on
page 1-906 for further
information on truncating factor.

The value you specify in
truncating factor must be an
integer between +32 and -32,
inclusive. See “TRUNC()
Function” on page 1-906 for
further information on this
restriction.

Literal Number,
p. 1-997

Element Purpose Restrictions Syntax

 (3 of 3)
SQL Statements 1-903

Expression
POW() Function

The POW() function raises the base to the exponent. This function requires two
numeric arguments. The return type is FLOAT. The following example
returns all the information for circles whose areas (π r2) are less than
1,000 square units:

SELECT * FROM circles WHERE (3.1417 * POW(radius,2)) < 1000

ROOT() Function

The ROOT() function returns the root value of a numeric expression. This
function requires at least one numeric argument (the radicand argument) and
allows no more than two (the radicand and index arguments). If only the
radicand argument is supplied, the value 2 is used as a default value for the
index argument. The value 0 cannot be used as the value of index. The value
that the ROOT() function returns is FLOAT. The first SELECT statement in the
following example takes the square root of the expression. The second
SELECT statement takes the cube root of the expression.

SELECT ROOT(9) FROM angles -- square root of 9

SELECT ROOT(64,3) FROM angles -- cube root of 64

The SQRT() function uses the form SQRT(x)=ROOT(x) if no index is given.

ROUND() Function

The ROUND() function returns the rounded value of an expression. The
expression must be numeric or must be converted to numeric.

If you omit the digit indication, the value is rounded to zero digits or to the
ones place. The digit limitation of 32 (+ and -) refers to the entire decimal
value.
1-904 Informix Guide to SQL: Syntax

Expression
Positive-digit values indicate rounding to the right of the decimal point;
negative-digit values indicate rounding to the left of the decimal point, as
Figure 1-3 shows.

The following example shows how you can use the ROUND() function with a
column expression in a SELECT statement. This statement displays the order
number and rounded total price (to zero places) of items whose rounded total
price (to zero places) is equal to 124.00.

SELECT order_num , ROUND(total_price) FROM items
WHERE ROUND(total_price) = 124.00

If you use a MONEY data type as the argument for the ROUND() function and
you round to zero places, the value displays with .00. The SELECT statement
in the following example rounds an INTEGER value and a MONEY value. It
displays 125 and a rounded price in the form xxx.00 for each row in items.

SELECT ROUND(125.46), ROUND(total_price) FROM items

SQRT() Function

The SQRT() function returns the square root of a numeric expression.

The following example returns the square root of 9 for each row of the angles
table:

SELECT SQRT(9) FROM angles

Figure 1-3
ROUND() Function

2

Expression:

ROUND (24,536.8746, -2) = 24,500.00

ROUND (24,536.8746, 0) = 24,537.00

ROUND (24,536.8746, 2) = 24,536.87
-2

2 4 5 3 6 . 8 7 4 6

0

SQL Statements 1-905

Expression
TRUNC() Function

The TRUNC() function returns the truncated value of a numeric expression.

The expression must be numeric or a form that can be converted to a numeric
expression. If you omit the digit indication, the value is truncated to zero
digits or to the one’s place. The digit limitation of 32 (+ and -) refers to the
entire decimal value.

Positive digit values indicate truncating to the right of the decimal point;
negative digit values indicate truncating to the left of the decimal point, as
Figure 1-4 shows.

If you use a MONEY data type as the argument for the TRUNC() function and
you truncate to zero places, the .00 places are removed. For example, the
following SELECT statement truncates a MONEY value and an INTEGER
value. It displays 125 and a truncated price in integer format for each row in
items.

SELECT TRUNC(125.46), TRUNC(total_price) FROM items

Figure 1-4
TRUNC() Function

Expression:

TRUNC (24536.8746, -2) =24500

TRUNC (24536.8746, 0) = 24536

TRUNC (24536.8746, 2) = 24536.87

2 4 5 3 6 . 8 7 4 6

2-2 0
1-906 Informix Guide to SQL: Syntax

Expression
CARDINALITY() Function

The CARDINALITY() function returns the number of elements in a collection
column (SET, MULTISET, LIST). Suppose that the set_col SET column contains
the following value:

{3, 7, 9, 16, 0}

The following SELECT statement returns 5 as the number of elements in the
set_col column:

SELECT CARDINALITY(set_col)
FROM table1

If the collection contains duplicate elements, CARDINALITY() counts each
individual element.

DBINFO() Function

Use the DBINFO() function for any of the following purposes:

■ To locate the name of a dbspace corresponding to a tblspace number
or expression

■ To find out the last SERIAL value inserted in a table

■ To find out the number of rows processed by selects, inserts, deletes,
updates, and execute procedure statements

■ To find out the session ID of the current session

■ To find out the last SERIAL8 value inserted in a table

Element Purpose Restrictions Syntax
collection
column name

The name of an existing
collection column

You must specify an integer or
an expression that evaluates to
an integer.

Expression, p. 1-876

CARDINALITY Function

CARDINALITY (collection column
name)
SQL Statements 1-907

Expression
You can use the DBINFO() function anywhere within SQL statements and
within routines.

Element Purpose Restrictions Syntax
expression An expression that evaluates to

tblspace num
The expression can contain
procedure variables, host
variables, column names, or
subqueries, but it must evaluate
to a numeric value.

Expression, p. 1-876

tblspace num The tblspace number (partition
number) of a table. The DBSPACE
option of the DBINFO() function
returns the name of the dbspace
that corresponds to the specified
tblspace number.

The specified tblspace number
must exist. That is, it must occur
in the partnum column of the
systables table for the database.

Literal Number,
p. 1-997

DBINFO Function

DBINFO 'DBSPACE' ,

'sqlca.sqlerrd1'

'sqlca.sqlerrd2'

tblspace num()
expression

'sessionid'

+

'serial8'
1-908 Informix Guide to SQL: Syntax

Expression
Using the 'DBSPACE' Option

The 'DBSPACE' option returns a character string that contains the name of the
dbspace corresponding to a tblspace number. You must supply an additional
parameter, either tblspace num or an expression that evaluates to tblspace num.
The following example uses the 'DBSPACE' option. First, it queries the
systables system catalog table to determine the tblspace num for the table
customer, then it executes the function to determine the dbspace name.

SELECT tabname, partnum FROM systables;

If the statement returns a partition number of 16777289, you insert that value
into the second argument to find which dbspace contains the customer table,
as shown in the following example:

SELECT DBINFO ('DBSPACE', 16777289) FROM systables;

Using the 'sqlca.sqlerrd1' Option

The 'sqlca.sqlerrd1' option returns a single integer that provides the last
SERIAL value that is inserted into a table. To ensure valid results, use this
option immediately following an INSERT statement that inserts a SERIAL
value.

Tip: To obtain the value of the last SERIAL8 value that is inserted into a table, use the
'serial8' option of DBINFO(). For more information, see page 1-907.

The following example uses the 'sqlca.sqlerrd1' option:

.

.
EXEC SQL create table fst_tab (ordernum serial, partnum int);
EXEC SQL create table sec_tab (ordernum serial);

EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);

EXEC SQL insert into sec_tab values (dbinfo('sqlca.sqlerrd1'));
.
.

This example inserts a row that contains a primary-key SERIAL value into the
fst_tab table, and then uses the DBINFO() function to insert the same SERIAL
value into the sec_tab table. The value that the DBINFO() function returns is
the SERIAL value of the last row that is inserted into fst_tab.
SQL Statements 1-909

Expression
Using the 'sqlca.sqlerrd2' Option

The 'sqlca.sqlerrd2' option returns a single integer that provides the number
of rows that SELECT, INSERT, DELETE, UPDATE, EXECUTE FUNCTION and
EXECUTE PROCEDURE statements processed. To ensure valid results, use this
option after SELECT and EXECUTE PROCEDURE statements have completed
executing. In addition, if you use this option within cursors, make sure that
all rows are fetched before the cursors are closed to ensure valid results.

The following example shows a stored procedure that uses the
'sqlca.sqlerrd2' option to determine the number of rows that are deleted from
a table:

CREATE PROCEDURE del_rows (pnumb int)
RETURNING int;

DEFINE nrows int;

DELETE FROM sec_tab WHERE partnum=pnumb;
LET nrows = DBINFO('sqlca.sqlerrd2');
RETURN nrows;

END PROCEDURE

Using the 'sessionid' Option

The 'sessionid' option of the DBINFO() function returns the session ID of your
current session.

When a client application makes a connection to Universal Server, the
database server starts a session with the client and assigns a session ID for the
client. The session ID serves as a unique identifier for a given connection
between a client and a database server. The database server stores the value
of the session ID in a data structure in shared memory that is called the
session control block. The session control block for a given session also
includes the user ID, the process ID of the client, the name of the host
computer, and a variety of status flags.
1-910 Informix Guide to SQL: Syntax

Expression
When you specify the 'sessionid' option, the database server retrieves the
session ID of your current session from the session control block and returns
this value to you as an integer. Some of the System-Monitoring Interface
(SMI) tables in the sysmaster database include a column for session IDs, so
you can use the session ID that the DBINFO() function obtained to extract
information about your own session from these SMI tables. For further infor-
mation on the session control block, the sysmaster database, and the SMI
tables, see the INFORMIX-Universal Server Administrator’s Guide.

In the following example, the user specifies the DBINFO() function in a
SELECT statement to obtain the value of the current session ID. The user poses
this query against the systables system catalog table and uses a WHERE
clause to limit the query result to a single row.

SELECT DBINFO('sessionid') AS my_sessionid
FROM systables
WHERE tabname = 'systables'

The following table shows the result of this query.

In the preceding example, the SELECT statement queries against the systables
system catalog table. However, you can obtain the session ID of the current
session by querying against any system catalog table or user table in the
database. For example, you can enter the following query to obtain the
session ID of your current session:

SELECT DBINFO('sessionid') AS user_sessionid
FROM customer
where customer_num = 101

The following table shows the result of this query.

my_sessionid

14

user_sessionid

14
SQL Statements 1-911

Expression
You can use the DBINFO() function not only in SQL statements but also in
stored procedures. The following example shows a stored procedure that
returns the value of the current session ID to the calling program or
procedure:

CREATE PROCEDURE get_sess()
RETURNING INT;
RETURN DBINFO('sessionid');
END PROCEDURE;

Using the 'serial8' Option

The 'serial8' option returns a single integer that provides the last SERIAL8
value that is inserted into a table. To ensure valid results, use this option
immediately following an INSERT statement that inserts a SERIAL8 value.

Tip: To obtain the value of the last SERIAL value that is inserted into a table, use the
'sqlca.sqlerrd1' option of DBINFO(). For more information, see page 1-907.

The following example uses the 'serial8' option:

.

.
EXEC SQL create table fst_tab

(ordernum serial8, partnum int);
EXEC SQL create table sec_tab (ordernum serial8);

EXEC SQL insert into fst_tab VALUES (0,1);
EXEC SQL insert into fst_tab VALUES (0,4);
EXEC SQL insert into fst_tab VALUES (0,6);

EXEC SQL insert into sec_tab
select dbinfo('serial8')
from sec_tab where partnum = 6;

This example inserts a row that contains a primary-key SERIAL8 value into
the fst_tab table, and then uses the DBINFO() function to insert the same
SERIAL8 value into the sec_tab table. The value that the DBINFO() function
returns is the SERIAL8 value of the last row that is inserted into fst_tab. The
subquery in the last line contains a WHERE clause so that a single value is
returned.
1-912 Informix Guide to SQL: Syntax

Expression
Exponential and Logarithmic Functions

Exponential and logarithmic functions take at least one argument. The return
type is FLOAT. The following example shows exponential and logarithmic
functions.

EXP() Function

The EXP() function returns the exponential value of two numeric expressions.
You provide a constant and float expression in the form e(n)=en. The
following example returns the exponent of 3 for each row of the angles table:

SELECT EXP(3) FROM angles

Element Purpose Restrictions Syntax
float expression An expression that serves as an

argument to the EXP(), LOGN(),
or LOG10() functions. For infor-
mation on the meaning of float
expression in these functions, see
the individual heading for each
function on the following pages.

The domain of the expression is
the set of real numbers, and the
range of the expression is the set
of positive real numbers.

Expression, p. 1-876

LOG10

float expressionLOGN

Exponential and Logarithmic Functions

EXP float expression

float expression

)

)

)

(

(

(

SQL Statements 1-913

Expression
LOGN() Function

The LOGN() function returns the natural log of a numeric expression. The
logarithmic value is the inverse of the exponential value. The following
SELECT statement returns the natural log of population for each row of the
history table:

SELECT LOGN(population) FROM history WHERE country='US'
ORDER BY date

LOG10() Function

The LOG10() function returns the log of a value to the base 10. The following
example returns the log base 10 of distance for each row of the travel table:

SELECT LOG10(distance) + 1 digits FROM travel

HEX() Function

The HEX() function returns the hexadecimal encoding of an integer
expression. The following example displays the data type and column length
of the columns of the orders table in hexadecimal format. For MONEY and
DECIMAL columns, you can then determine the precision and scale from the
lowest and next-to-the-lowest bytes. For VARCHAR and NVARCHAR
columns, you can determine the minimum space and maximum space from
the lowest and next to the lowest bytes. (See Chapter 1 of the Informix Guide
to SQL: Reference for more information about encoded information.)

SELECT colname, coltype, HEX(collength)
FROM syscolumns C, systables T
WHERE C.tabid = T.tabid AND T.tabname = 'orders'

Element Purpose Restrictions Syntax
integer
expression

A numeric expression for which
you want to know the
hexadecimal equivalent

You must specify an integer or
an expression that evaluates to
an integer.

Expression, p. 1-876

HEX Function

HEX (integer
expression)
1-914 Informix Guide to SQL: Syntax

Expression
The following example lists the names of all the tables in the current database
and their corresponding tblspace number in hexadecimal format. This
example is particularly useful because the two most significant bytes in the
hexadecimal number constitute the dbspace number. They are used to
identify the table in oncheck output.

SELECT tabname, HEX(partnum) FROM systables

The HEX() function can operate on an expression, as the following example
shows:

SELECT HEX(order_num + 1) FROM orders

Length Functions

You can use length functions to determine the length of a column, string, or
variable. The length functions are LENGTH(), OCTET_LENGTH(), and
CHAR_LENGTH(). Each of these functions has a distinct purpose.

Element Purpose Restrictions Syntax
column name The name of a column in the

specified table.
The column must have a
character data type.

Identifier, p. 1-962

variable name A host variable or procedure
variable that contains a character
string.

The host variable or procedure
variable must have a character
data type.

The name of the host
variable must
conform to
language-specific
rules for variable
names. .

LENGTH
Functions

variable
name

column
name

SPL
ESQL

+
Quoted
String

p. 1-1010
LENGTH)(

CHAR_LENGTH

CHARACTER_LENGTH

OCTET_LENGTH

.
Table
Name

p. 1-1044
SQL Statements 1-915

Expression
LENGTH() Function

The LENGTH() function returns the number of bytes in a character column,
not including any trailing spaces. With TEXT or BYTE columns, the LENGTH()
function returns the full number of bytes in the column, including trailing
spaces.

The following example illustrates the use of the LENGTH() function:

SELECT customer_num, LENGTH(fname) + LENGTH(lname),
LENGTH('How many bytes is this?')
FROM customer WHERE LENGTH(company) > 10

You can use the LENGTH() function to return the length of a character
variable. ♦

For information on GLS aspects of the LENGTH function, see the Guide to GLS
Functionality.

OCTET_LENGTH() Function

The OCTET_LENGTH() function returns the number of bytes in a character
column, including any trailing spaces. See the Guide to GLS Functionality for
a discussion of the OCTET_LENGTH() function.

CHAR_LENGTH() Function

The CHAR_LENGTH() function returns the number of characters (not bytes)
in a character column. See the Guide to GLS Functionality for a discussion of
the CHAR_LENGTH() function. ♦

ESQL

GLS
1-916 Informix Guide to SQL: Syntax

Expression
Shared-Library Functions

To execute an external routine, the database server loads the shared library
that contains this function into shared memory. A shared-library function
allows you to update the copy of a shared library that the database server has
loaded into memory.

Element Purpose Restrictions Syntax
language A character string that specifies

the language of the user-defined
routines in the module pathname
shared library.

Must be either “c” (for external
routines) or “spl” (for SPL
routines).

Quoted String,
p. 1-1010

module
pathname

The full pathname of the shared
library that you want to reload.

The shared library must exist
with the specified pathname.

Quoted String,
p. 1-1010

new module
pathname

The full pathname of the new
shared library to replace the
shared library that old module
pathname specifies.

The shared library must exist
with the specified pathname.

Quoted String,
p. 1-1010

old module
pathname

The full pathname of the shared
library to replace with the
shared library that new module
path specifies.

The shared library must exist
with the specified pathname.

Quoted String,
p. 1-1010

Shared-Library Functions

+ IFX_RELOAD_MODULE module
pathname

)(, language

IFX_REPLACE_MODULE (old module
pathname

, new module
pathname

, language)
SQL Statements 1-917

Expression
IFX_RELOAD_MODULE Function

The IFX_RELOAD_MODULE function reloads a loaded shared library into the
shared memory for the database server. This function replaces the existing
version with a new version that has the same name and location. The
function returns an integer value to indicate the status of the update, as
follows:

■ Zero (0) to indicate success

■ A negative integer to indicate an error

For example, to reload a new version of the circle.so shared library that
resides in the /usr/app/opaque_types directory, you can use the EXECUTE
FUNCTION statement to execute the IFX_RELOAD_MODULE function, as
follows:

EXECUTE FUNCTION ifx_reload_module("/usr/apps/opaque_types/circle.so",
"c")

To execute the IFX_RELOAD_MODULE function in an INFORMIX-ESQL/C
application, you must associate the function with a cursor. ♦

For more information on how to use IFX_RELOAD_MODULE to update a
shared library, see the chapter on how to design a user-defined routine in the
Extending INFORMIX-Universal Server: User-Defined Routines manual.

E/C
1-918 Informix Guide to SQL: Syntax

Expression
IFX_REPLACE_MODULE Function

The IFX_REPLACE_MODULE function replaces a loaded shared library with a
new version that has a different name or location. The function returns an
integer value to indicate the status of the update, as follows:

■ Zero (0) to indicate success

■ A negative integer to indicate an error

For example, to replace the circle.so shared library that resides in the
/usr/app/opaque_types directory with one that resides in the
/usr/app/shared_libs directory, you can use the following EXECUTE
FUNCTION statement to execute the IFX_REPLACE_MODULE:

EXECUTE FUNCTION ifx_replace_module("/usr/apps/opaque_types/circle.so",
"/usr/apps/shared_libs/circle.so", "c")

To execute the IFX_REPLACE_MODULE function in an INFORMIX-ESQL/C
appliation, you must associate the function with a cursor. ♦

For more information on how to use IFX_REPLACE_MODULE to update a
shared library, see the chapter on how to design a user-defined routine in the
Extending INFORMIX-Universal Server: User-Defined Routines manual.

E/C
SQL Statements 1-919

Expression
Smart-Large-Object Functions

Element Purpose Restrictions Syntax
BLOB column The name of a column of type

BLOB
If you specify the table name and
column name, a BLOB column
must exist in that table.

Identifier, p. 1-962

CLOB column The name of a column of type
CLOB

If you specify the table name and
column name, a CLOB column
must exist in that table.

Identifier, p. 1-962

column name The name of a column within
table name whose storage charac-
teristics are used for the copy of
the BLOB or CLOB value

This column must have CLOB or
BLOB as its data type.

Identifier, p. 1-962

 (1 of 2)

Smart-Large-Object Functions

+ FILETOBLOB pathname

BLOB column

)(

()

FILETOCLOB

, file destination

, table
name ,

column
name

LOTOFILE

CLOB column

,pathname file
destination

,

LOTOCOPY (BLOB column

CLOB column , table
name , column

name

)

1-920 Informix Guide to SQL: Syntax

Expression
FILETOBLOB and FILETOCLOB Functions

The FILETOBLOB function creates a BLOB value for data that is stored in a
specified operating-system file. Similarly, the FILETOCLOB function creates a
CLOB value for data that is stored in an operating-system file. These functions
determine the operating-system file to use from the following parameters:

■ The pathname parameter identifies the directory path and name of the
source file.

■ The file destination parameter identifies the computer, client or server,
on which this file resides:

❑ Set file destination to “client” to identify the client computer as
the location of the source file. The pathname can be either a full
pathname or relative to the current directory.

❑ Set file destination to “server” to identify the server computer as
the location of the source file. The pathname must be a full
pathname.

file destination The string “server” or “client”
to indicate the computer on
which to put or get the smart
large object

The only valid values are the
strings “server” or “client”.

Quoted String,
p. 1-1010

pathname The directory path and filename
to locate the smart large object.
See the example on page 1-923.

The pathname must exist on the
computer designated by file
destination.

Quoted String,
p. 1-1010

table name The name of the table that
contains column name, whose
storage characteristics are used
for the copy of the BLOB or CLOB
value

The table must exist in the
database and it must contain a
CLOB or BLOB column.

Identifier, p. 1-962

Element Purpose Restrictions Syntax

 (2 of 2)
SQL Statements 1-921

Expression
The table name and column name parameters are optional:

■ If you omit table name and column name, FILETOBLOB creates a BLOB
value with the system-specified storage defaults and FILETOCLOB
function creates a CLOB value with the system-specified storage
defaults.

These functions obtain the system-specific storage characteristics
from either the ONCONFIG file or the sbspace. For more information
on system-specified storage defaults, see the INFORMIX-Universal
Server Administrator’s Guide.

■ If you specify a table name and column name, the FILETOBLOB and
FILETOCLOB functions use the storage characteristics from the
specified column for the BLOB or CLOB value that they create.

The FILETOBLOB function returns a handle value (a pointer) to the new BLOB
value. Similarly, the FILETOCLOB function returns a handle value to the new
CLOB value. Neither of these functions actually store the smart-large-object
value into a column in the database. You must assign the BLOB or CLOB value
to the appropriate column.

The FILETOCLOB function performs any code-set conversion that might be
required when it copies the file from the client or server computer to the
database. ♦

The following INSERT statement uses the FILETOCLOB function to create a
CLOB value from the value in the haven.rsm file:

INSERT INTO candidate (cand_num, cand_lname, resume)
VALUES (0, 'Haven', FILETOCLOB('haven.rsm', 'client'))

In the preceding example, the FILETOCLOB function reads the haven.rsm file
in the current directory on the client computer and returns a handle value to
a CLOB value that contains the data in this file. Because the FILETOCLOB
function does not specify a table and column name, this new CLOB value has
the system-specified storage characteristics. The INSERT statement then
assigns this CLOB value to the resume column in the candidate table.

GLS
1-922 Informix Guide to SQL: Syntax

Expression
LOTOFILE Function

The LOTOFILE function copies a smart large object to an operating-system
file. The first parameter specifies the BLOB or CLOB column to copy. The
function determines the operating-system file to create from the following
parameters:

■ The pathname parameter identifies the directory path and name of the
source file.

■ The file destination parameter identifies the computer, client or server,
on which this file resides:

❑ Set file destination to 'client' to identify the client computer as the
location of the source file. The pathname can be either a full
pathname or relative to the current directory.

❑ Set file destination to 'server' to identify the server computer as the
location of the source file. The pathname must be a full
pathname.

By default, the LOTOFILE function generates a filename of the form:

file.hex_id

In this format, file is the filename you specify in pathname and hex_id is the
unique hexadecimal smart-large-object identifier. The maximum number of
digits for a smart-large-object identifier is 17; however must smart large
objects would have an identifier with significantly fewer digits.

For example, suppose you specify a pathname value as follows:

'/tmp/resume'

If the CLOB column has an identifier of 203b2, the LOTOFILE function would
create the file:

/tmp/resume.203b2
SQL Statements 1-923

Expression
To change this default filename, you can specify the following wildcards in
the filename of the pathname:

■ One or more contiguous question mark (?) characters in the filename
can generate a unique filename.

The LOTOFILE function replaces each question mark with a
hexadecimal digit from the identifier of the BLOB or CLOB column.
For example, suppose you specify a pathname value as follows:
'/tmp/resume??.txt'

The LOTOFILE function puts 2 digits of the hexadecimal identifier
into the name. If the CLOB column has an identifier of 203b2, the
LOTOFILE function would create the file:
/tmp/resume20.txt

If you specify more than 17 question marks, the LOTOFILE function
ignores them.

■ An exclamation point (!) at the end of the filename indicates that the
filename does not need to be unique.

For example, suppose you specify a pathname value as follows:
'/tmp/resume.txt!'

The LOTOFILE function does not use the smart-large-object identifier
in the filename so it generates the following file:
/tmp/resume.txt

If the filename you specify already exists, LOTOFILE returns an error.
1-924 Informix Guide to SQL: Syntax

Expression
The LOTOFILE function performs any code-set conversion that might be
required when it copies a CLOB value from the database to a file on the client
or server computer. ♦

LOCOPY Function

The LOCOPY function creates a copy of a smart large object. The first
parameter specifies the BLOB or CLOB column to copy. The table name and
column name parameters are optional:

■ If you omit table name and column name, the LOCOPY function creates
a smart large object with system-specified storage defaults and
copies the data in the BLOB or CLOB column into it.

It obtains the system-specific storage defaults from either the
ONCONFIG file or the sbspace. For more information on system-
specified storage defaults, see the INFORMIX-Universal Server
Administrator’s Guide.

■ When you specify a table name and column name, the LOCOPY
function uses the storage characteristics from the specified column
name for the BLOB or CLOB value that it creates.

The LOCOPY function returns a handle value (a pointer) to the new BLOB or
CLOB value. This function does not actually store the new smart-large-object
value into a column in the database. You must assign the BLOB or CLOB value
to the appropriate column.

GLS
SQL Statements 1-925

Expression
The following ESQL/C code fragment copies the CLOB value in the resume
column of the candidate table to the resume column of the interview table:

/* Insert a new row in the interview table and get the
* resulting SERIAL value (from sqlca.sqlerrd[1])
*/

EXEC SQL insert into interviews (intrv_num, intrv_time)
values (0, '09:30');

intrv_num = sqlca.sqlerrd[1];

/* Update this interview row with the candidate number
* and resume from the candidate table. Use LOCOPY to
* create a copy of the CLOB value in the resume column
* of the candidate table.
*/

EXEC SQL update interviews
SET (cand_num, resume) =

(SELECT cand_num,
LOCOPY(resume, 'candidate', 'resume')

FROM candidate
WHERE cand_lname = 'Haven')

WHERE intrv_num = :intrv_num;

In the preceding example, the LOCOPY function returns a handle value for
the copy of the CLOB resume column in the candidate table. Because the
LOCOPY function specifies a table and column name, this new CLOB value
has the storage characteristics of this resume column. If you omit the table
('candidate') and column ('resume') names, the LOCOPY function uses the
system-defined storage defaults for the new CLOB value. The UPDATE
statement then assigns this new CLOB value to the resume column in the
interviews table.
1-926 Informix Guide to SQL: Syntax

Expression
Time Functions

Element Purpose Restrictions Syntax
date/datetime
expression

An expression that serves as an
argument in the following
functions: DAY(), MONTH(),
WEEKDAY(), YEAR(), and
EXTEND()

The expression must evaluate to
a DATE or DATETIME value.

Expression, p. 1-876

day integer
expression

An expression that represents
the number of the day of the
month

The expression must evaluate to
an integer not greater than the
number of days in the specified
month.

Expression, p. 1-876

first A qualifier that specifies the first
field in the result. If you do not
specify first and last qualifiers,
the default value of first is YEAR.

The qualifier can be any
DATETIME qualifier, as long as it
is larger than last.

DATETIME Field
Qualifier, p. 1-874

 (1 of 2)

+

Time Functions

DATE

DAY
date/datetime

expression

MONTH

WEEKDAY

YEAR

EXTEND

MDY

non-date
expression

date/datetime
expression

first TO last,

,,
month
integer

expression

day
integer

expression

year
integer

expression

)(

)(

()

)(
SQL Statements 1-927

Expression
DATE() Function

The DATE() function returns a DATE type value that corresponds to the
non-date expression with which you call it. The argument can be any
expression that can be converted to a DATE value, usually a CHAR,
DATETIME, or INTEGER value. The following WHERE clause specifies a CHAR
value for the non-date expression:

WHERE order_date < DATE('12/31/93')

When the DATE() function interprets a CHAR non-date expression, it expects
this expression to conform to any DATE format that the DBDATE environment
specifies. For example, suppose DBDATE is set to Y2MD/ when you execute
the following query:

SELECT DISTINCT DATE('02/01/1995') FROM ship_info

last A qualifier that specifies the last
field in the result. If you do not
specify first and last qualifiers,
the default value of last is
FRACTION(3).

The qualifier can be any
DATETIME qualifier, as long as it
is smaller than first.

DATETIME Field
Qualifier, p. 1-874

month integer
expression

An expression that represents
the number of the month

The expression must evaluate to
an integer between 1 and 12,
inclusive.

Expression, p. 1-876

non-date
expression

An expression whose value is to
be converted to a DATE data type

You can specify any expression
that can be converted to a DATE
data type. Usually you specify
an expression that evaluates to a
CHAR, DATETIME, or INTEGER
value.

Expression, p. 1-876

year integer
expression

An expression that represents
the year

The expression must evaluate to
a four-digit integer. You cannot
use a two-digit abbreviation.

Expression, p. 1-876

Element Purpose Restrictions Syntax

 (2 of 2)
1-928 Informix Guide to SQL: Syntax

Expression
This SELECT statement generates an error because the DATE function cannot
convert this non-date expression. The DATE() function interprets the first part
of the date string (02) as the year and the second part (01) as the month. For
the third part (1995), the DATE() function encounters four digits when it
expects a two-digit day (valid day values must be between 01 and 31). It
therefore cannot convert the value. For the SELECT statement to execute
successfully with the Y2MD/ value for DBDATE, the non-date expression
would need to be '95/02/01'. For information on the format of DBDATE, see
Chapter 3 of the Informix Guide to SQL: Reference.

When you specify a positive INTEGER value for the non-date expression, the
DATE function interprets the value as the number of days after the default
date of December 31, 1899. If the integer value is negative, the DATE()
function interprets the value as the number of days before December 31, 1899.
The following WHERE clause specifies an INTEGER value for the non-date
expression:

WHERE order_date < DATE(365)

The database server searches for rows with an order_date value less than
December 31, 1900 (12/31/1899 plus 365 days).

DAY() Function

The DAY function returns an integer that represents the day of the month. The
following example uses the DAY function with the CURRENT() function to
compare column values to the current day of the month:

WHERE DAY(order_date) > DAY(CURRENT)

MONTH() Function

The MONTH() function returns an integer that corresponds to the month
portion of its type DATE or DATETIME argument. The following example
returns a number from 1 through 12 to indicate the month when the order
was placed:

SELECT order_num, MONTH(order_date) FROM orders
SQL Statements 1-929

Expression
WEEKDAY() Function

The WEEKDAY() function returns an integer that represents the day of the
week; zero represents Sunday, one represents Monday, and so on. The
following lists all the orders that were paid on the same day of the week,
which is the current day:

SELECT * FROM orders
WHERE WEEKDAY(paid_date) = WEEKDAY(CURRENT)

YEAR() Function

The YEAR() function returns a four-digit integer that represents the year. The
following example lists orders in which the ship_date is earlier than the
beginning of the current year:

SELECT order_num, customer_num FROM orders
WHERE year(ship_date) < YEAR(TODAY)

Similarly, because a DATE value is a simple calendar date, you cannot add or
subtract a DATE value with an INTERVAL value whose last qualifier is smaller
than DAY. In this case, convert the DATE value to a DATETIME value.

EXTEND() Function

The EXTEND() function adjusts the precision of a DATETIME or DATE value.
The expression cannot be a quoted string representation of a DATE value.

If you do not specify first and last qualifiers, the default qualifiers are YEAR
TO FRACTION(3).

If the expression contains fields that are not specified by the qualifiers, the
unwanted fields are discarded.

If the first qualifier specifies a larger (that is, more significant) field than what
exists in the expression, the new fields are filled in with values returned by
the CURRENT function. If the last qualifier specifies a smaller field (that is, less
significant) than what exists in the expression, the new fields are filled in with
constant values. A missing MONTH or DAY field is filled in with 1, and the
missing HOUR to FRACTION fields are filled in with 0.
1-930 Informix Guide to SQL: Syntax

Expression
In the following example, the first EXTEND call evaluates to the call_dtime
column value of YEAR TO SECOND. The second statement expands a literal
DATETIME so that an interval can be subtracted from it. You must use the
EXTEND function with a DATETIME value if you want to add it to or subtract
it from an INTERVAL value that does not have all the same qualifiers. The
third example updates only a portion of the datetime value, the hour
position. The EXTEND function yields just the hh:mm part of the datetime.
Subtracting 11:00 from the hours/minutes of the datetime yields an
INTERVAL value of the difference, plus or minus, and subtracting that from
the original value forces the value to 11:00.

EXTEND (call_dtime, YEAR TO SECOND)

EXTEND (DATETIME (1989-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

UPDATE cust_calls SET call_dtime = call_dtime -
(EXTEND(call_dtime, HOUR TO MINUTE) - DATETIME (11:00) HOUR
TO MINUTE) WHERE customer_num = 106

MDY() Function

The MDY() function returns a type DATE value with three expressions that
evaluate to integers representing the month, day, and year. The first
expression must evaluate to an integer representing the number of the month
(1 to 12).

The second expression must evaluate to an integer that represents the
number of the day of the month (1 to 28, 29, 30, or 31, as appropriate for the
month.)

The third expression must evaluate to a four-digit integer that represents the
year. You cannot use a two-digit abbreviation for the third expression. The
following example sets the paid_date associated with the order number 8052
equal to the first day of the present month:

UPDATE orders SET paid_date = MDY(MONTH(TODAY), 1, YEAR(TODAY))
WHERE po_num = '8052'
SQL Statements 1-931

Expression
Trigonometric Functions

A trigonometric function takes an argument, as the following diagram
shows.

Element Purpose Restrictions Syntax
numeric
expression

A numeric expression that
serves as an argument to the
ASIN(), ACOS(), or ATAN()
functions

The expression must evaluate to
a value between -1 and 1,
inclusive.

Expression, p. 1-876

radian
expression

An expression that evaluates to
the number of radians. See
“Formulas for Radian Expres-
sions” on page 1-933 for further
information on radian expression.

The expression must evaluate to
a numeric value.

Expression, p. 1-876

x An expression that represents
the x coordinate of the rectan-
gular coordinate pair (x, y)

The expression must evaluate to
a numeric value.

Expression, p. 1-876

y An expression that represents
the y coordinate of the rectan-
gular coordinate pair (x, y)

The expression must evaluate to
a numeric value.

Expression, p. 1-876

TAN

SIN

Trigonometric
Functions

COS

ATAN2 y, x

numeric
expression

radian
expression

)(

)

)

(

(

ACOS

ASIN

ATAN
1-932 Informix Guide to SQL: Syntax

Expression
Formulas for Radian Expressions

The COS(), SIN(), and TAN() functions take the number of radians (radian
expression) as an argument.

If you are using degrees and want to convert degrees to radians, use the
following formula:

degrees * p/180= # radians

If you are using radians and want to convert radians to degrees, use the
following formula:

radians * 180/p = # degrees

COS() Function

The COS() function returns the cosine of a radian expression. The following
example returns the cosine of the values of the degrees column in the
anglestbl table. The expression passed to the COS function in this example
converts degrees to radians.

SELECT COS(degrees*180/3.1417) FROM anglestbl

SIN() Function

The SIN() function returns the sine of a radian expression. The following
example returns the sine of the values in the radians column of the anglestbl
table:

SELECT SIN(radians) FROM anglestbl

TAN() Function

The TAN() function returns the tangent of a radian expression. The following
example returns the tangent of the values in the radians column of the
anglestbl table:

SELECT TAN(radians) FROM anglestbl
SQL Statements 1-933

Expression
ACOS() Function

The ACOS() function returns the arc cosine of a numeric expression. The
following example returns the arc cosine of the value (-0.73) in radians:

SELECT ACOS(-0.73) FROM anglestbl

ASIN() Function

The ASIN() function returns the arc sine of a numeric expression. The
following example returns the arc sine of the value (-0.73) in radians:

SELECT ASIN(-0.73) FROM anglestbl

ATAN() Function

The ATAN() function returns the arc tangent of a numeric expression. The
following example returns the arc tangent of the value (-0.73) in radians:

SELECT ATAN(-0.73) FROM anglestbl

ATAN2() Function

The ATAN2() function computes the angular component of the polar
coordinates (r, θ) associated with (x, y). The following example compares
angles to θ for the rectangular coordinates (4, 5):

WHERE angles > ATAN2(4,5) --determines θ for (4,5) and
 compares to angles

You can determine the length of the radial coordinate r using the expression
shown in the following example:

SQRT(POW(x,2) + POW(y,2)) --determines r for (x,y)

You can determine the length of the radial coordinate r for the rectangular
coordinates (4,5) using the expression shown in the following example:

SQRT(POW(4,2) + POW(5,2)) --determines r for (4,5)
1-934 Informix Guide to SQL: Syntax

Expression
TRIM() Function

Use the TRIM() function to remove leading or trailing (or both) pad characters
from a string. The TRIM() function returns a VARCHAR string that is identical
to the character string passed to it, except that any leading or trailing pad
characters, if specified, are removed. If no trim specification (LEADING,
TRAILING, or BOTH) is specified, then BOTH is assumed. If no trim character
value expression is used, a single space is assumed. If either the trim character
value expression or the source character value expression evaluates to null, the
result of the trim function is null. The maximum length of the resultant string
must be 255 or less, because the VARCHAR data type supports only
255 characters.

Element Purpose Restrictions Syntax
trim character
value expression

An expression that evaluates to a
single character or null

This expression must be a
character expression.

Quoted String,
p. 1-1010

source
character value
expression

An arbitrary character string
expression, including a column
or another TRIM() function

This expression cannot be a host
variable.

Quoted String,
p. 1-1010

TRIM
Function

TRIM)(
source

character
value

expression

LEADING

TRAILING

BOTH

FROM

trim
character

value
expression

FROM

trim
character

value
expression
SQL Statements 1-935

Expression
Some generic uses for the TRIM() function are shown in the following
example:

SELECT TRIM (c1) FROM tab;
SELECT TRIM (TRAILING '#' FROM c1) FROM tab;
SELECT TRIM (LEADING FROM c1) FROM tab;
UPDATE c1='xyz' FROM tab WHERE LENGTH(TRIM(c1))=5;
SELECT c1, TRIM(LEADING '#' FROM TRIM(TRAILING '%' FROM

'###abc%%%')) FROM tab;

When you use the DESCRIBE statement with a SELECT statement that uses the
TRIM() function in the select list, the described character type of the trimmed
column depends on the database server you are using and the data type of
the source character value expression. See the Guide to GLS Functionality for
further information on the GLS aspects of the TRIM() function in ESQL/C. ♦

Fixed Character Columns

The TRIM() function can be specified on fixed-length character columns. If the
length of the string is not completely filled, the unused characters are padded
with blank space. Figure 1-5 shows this concept for the column entry
'##A2T##', where the column is defined as CHAR(10).

If you want to trim the trim character value expression '#' from the column, you
need to consider the blank padded spaces as well as the actual characters. For
example, if you specify the trim specification BOTH, the result from the trim
operation is A2T##, because the TRIM() function does not match the blank
padded space that follows the string. In this case, the only '#' trimmed are
those that precede the other characters. The SELECT statement is shown,
followed by Figure 1-6 on page 1-937, which presents the result.

SELECT TRIM(BOTH '#' FROM col1) FROM taba

GLS

Figure 1-5
Column Entry in a

Fixed-Length
Character Column2 T #A## #

Blank paddedCharacters

21 3 4 5 6 7 8 9 10
1-936 Informix Guide to SQL: Syntax

Expression
The following SELECT statement removes all occurrences of '#':

SELECT TRIM(LEADING '#' FROM TRIM(TRAILING ' ' FROM col1)) FROM taba

User-Defined Functions

A user-defined function is a function that you write in SPL or in a language
external to the database, such as the C language. User-defined functions
contrast with functions that are built in to the database server. Unlike built-
in functions, user-defined functions can only be used by the creator of the
function, the DBA, and users who have been granted the Execute privilege on
the function.

Figure 1-6
Result of TRIM()

Operation
#T2A

Blank paddedCharacters

21 3 4 5 6 7 8 9 10

Element Purpose Restrictions Syntax
parameter name The name of a parameter for

which you supply an argument
to the function.

If you use the parameter name =
option for any argument in the
called function, you must use it
for all arguments.

Identifier, p. 1-962

Expression
p. 1-876

parameter
name =

)(

,
Statement

Local Variable
Declaration

p. 1-938

,
Function

Name
p. 1-959
SQL Statements 1-937

Expression
The database server identifies a function by the function name, the number
of arguments the function accepts, the data type of each argument, and the
order in which the arguments are listed. Because Universal Server allows
function overloading, you can define more than one function of the same
name, provided that the parameters differ in data type or order.

The following examples show some user-defined function expressions. The
first example omits the parameter name option, and the second example uses
the parameter name option:

read_address('Miller')
read_address(lastname = 'Miller')

If the function has an OUT parameter defined with the CREATE FUNCTION
statement, you can declare a Statement Local Variable in the function
expression, as described in the following sections.

Statement Local Variable Declaration

Element Purpose Restrictions Syntax
slv name The name of a statement local

variable you are defining.
The slv name exists only for the
life of the statement.

The slv name must be unique
within the statement.

Identifier, p. 1-962

opaque data
type

The name of an opaque data
type.

The opaque data type must
already exist in the database.

Identifier, p. 1-962

distinct data
type

The name of a distinct data type. The distinct data type must
already exist in the database.

Identifier, p. 1-962

Built-In
Data Type
p. 1-856

slv name #

opaque data type

distinct data type

Complex
Data Type
p. 1-868
1-938 Informix Guide to SQL: Syntax

Expression
The Statement Local Variable Declaration declares a Statement Local Variable
in a function expression in an SQL statement. You can then use the value the
function returns through the Statement Local Variable elsewhere in the
statement, as described in the section “Using Statement Local Variables.”

Statement Local Variable Expression

Using Statement Local Variables

A Statement Local Variable transmits a value from a function call in a
statement to another part of the SQL statement. You can use a Statement Local
Variable in any WHERE clause.

To use a Statement Local Variable with a call to a user-defined function, you
must take three steps:

■ Declare an OUT parameter when you register the function with
CREATE FUNCTION.

■ Declare the Statement Local Variable in a function expression in the
WHERE clause, using the syntax of the Statement Local Variable
Declaration.

■ Use the Statement Local Variable in the WHERE clause, with the
syntax of the Statement Local Variable Expression.

Element Purpose Restrictions Syntax
slv name The name of a statement local

variable that has been defined.
The slv name exists only for the
life of the statement.

The slv name must be unique
within the statement.

Identifier, p. 1-962

slv name
Relational
Operator
p. 1-1014

Expression
p. 1-876
SQL Statements 1-939

Expression
For example, if you register a function with the following CREATE FUNCTION
statement, you can use its y parameter as a Statement Local Variable in a
WHERE clause:

CREATE FUNCTION find_location(a FLOAT, b FLOAT, OUT y INT)
RETURNING VARCHAR(20
EXTERNAL NAME "/usr/lib/local/find.so"
LANGUAGE C
END FUNCTION;

In this example, find_location() accepts two FLOAT values that represent a
latitude and a longitude and returns the name of the nearest city, along with
an extra value of type INT that represents the population rank of the city.

You can now call find_location in a WHERE clause:

SELECT zip_code_t FROM address
WHERE address.city = find_location(32.1, 35.7, rank # INT)
AND rank < 101;

The function expression passes two FLOAT values to find_location and
declares a Statement Local Variable named rank of type INT. In this case,
find_location will return the name of the city nearest latitude 32.1 and
longitude 35.7 (which may be a heavily populated area) whose population
rank is between 1 and 100. The statement will then return the zip code that
corresponds to that city.

In the example, rank # INT is the Statement Local Variable Declaration and
rank < 101 is the Statement Local Variable Expression.

The data type you use when you declare the Statement Local Variable in a
statement must be the same as the data type of the OUT parameter in the
CREATE FUNCTION statement. If you use different but compatible data types,
such as INTEGER and FLOAT, the database server automatically performs the
cast between the data types.
1-940 Informix Guide to SQL: Syntax

Expression
Each function can have only one OUT parameter and one Statement Local
Variable. However, you can use more than one Statement Local Variable in a
WHERE clause, if they are produced by different functions.

Important: A Statement Local Variable is valid only for the life of a single SQL
statement.

For more information on OUT parameters and Statement Local Variables, see
the Extending INFORMIX-Universal Server: User-Defined Routines manual.

Aggregate Expressions
An aggregate expression uses an aggregate function to summarize selected
database data.

You cannot use an aggregate expression in a condition that is part of a WHERE
clause unless the aggregate expression is used within a subquery.

The following diagram shows the syntax of aggregate function expressions.

()column
name

AVG

MAX

MIN

SUM

COUNT

DISTINCT

AVG

MAX

MIN

SUM

(

ALL

Expression
(Subset)
p. 1-943

)

.

COUNT (*)

.

.

(

UNIQUE

DISTINCT

UNIQUE

STDEV

VARIANCE

RANGE

COUNT (

ALL

+

Table
Name

p. 1-1044

Synonym
Name

p. 1-1042

View
Name

p. 1-1047
SQL Statements 1-941

Expression
An aggregate function returns one value for a set of queried rows. The
following examples show aggregate functions in SELECT statements:

SELECT SUM(total_price) FROM items WHERE order_num = 1013

SELECT COUNT(*) FROM orders WHERE order_num = 1001

SELECT MAX(LENGTH(fname) + LENGTH(lname)) FROM customer

If you use an aggregate function and one or more columns in the select list,
you must put all the column names that are not used as part of an aggregate
or time expression in the GROUP BY clause.

Element Purpose Restrictions Syntax
column name The name of the column to

which the specified aggregate
function is applied

If you specify an aggregate
expression and one or more
columns in the SELECT clause of
a SELECT statement, you must
put all the column names that
are not used within the
aggregate expression or a time
expression in the GROUP BY
clause. You cannot apply an
aggregate function to a BYTE or
TEXT column. See “Subset of
Expressions Allowed in an
Aggregate Expression” on
page 1-943 for other general
restrictions. For restrictions that
depend on the keywords that
precede column name, see the
headings for individual
keywords on the following
pages.

Identifier, p. 1-962
1-942 Informix Guide to SQL: Syntax

Expression
Subset of Expressions Allowed in an Aggregate Expression

The argument of an aggregate function cannot itself contain an aggregate
function. You cannot use the aggregate functions found in the following list:

■ MAX(AVG(order_num))

■ An aggregate function in a WHERE clause unless it is contained in a
subquery or if the aggregate is on a correlated column originating
from a parent query and the WHERE clause is within a subquery that
is within a HAVING clause

■ An aggregate function on a BYTE or TEXT column

You cannot use a collection column as an argument to the following
aggregate functions:

■ AVG

■ SUM

■ MIN

■ MAX

For the full syntax of expressions, see page 1-876.

Including or Excluding Duplicates in the Row Set

The DISTINCT keyword causes the function to be applied to only unique
values from the named column. The UNIQUE keyword is a synonym for the
DISTINCT keyword.

The ALL keyword is the opposite of the DISTINCT keyword. If you specify the
ALL keyword, all the values that are selected from the named column or
expression, including any duplicate values, are used in the calculation.
SQL Statements 1-943

Expression
COUNT Functions

You can use the different forms of the COUNT function to retrieve different
types of information about a table. The following table summarizes the
meaning of each form of the COUNT function.

Some examples can help to show the differences among the different forms
of the COUNT function. The following examples pose queries against the
orders table in the demonstration database. Most of the examples query
against the ship_instruct column in this table. For information on the
structure of the orders table and the data in the ship_instruct column, see the
description of the demonstration database in the Informix Guide to SQL:
Reference.

COUNT(*) Function

The COUNT (*) function returns the number of rows that satisfy the WHERE
clause of a SELECT statement. The following example finds how many rows
in the stock table have the value HRO in the manu_code column:

SELECT COUNT(*) FROM stock WHERE manu_code = 'HRO'

If the SELECT statement does not have a WHERE clause, the COUNT (*)
keyword returns the total number of rows in the table. The following
example finds how many rows are in the stock table:

SELECT COUNT(*) FROM stock

COUNT Option Description

COUNT (*) This option returns the number of rows that
satisfy the query. If you do not specify a WHERE
clause, this option returns the total number of
rows in the table.

COUNT DISTINCT or
COUNT UNIQUE

This option returns the number of unique
non-null values in the specified column.

COUNT (column name) or
COUNT (ALL column name)

This option returns the total number of non-null
values in the specified column.
1-944 Informix Guide to SQL: Syntax

Expression
If the SELECT statement contains a GROUP BY clause, the COUNT(*) keyword
reflects the number of values in each group. The following example is
grouped by the first name; the rows are selected if the database server finds
more than one occurrence of the same name:

SELECT fname, COUNT(*) FROM customer
GROUP BY fname
HAVING COUNT(*) > 1

If the value of one or more rows is null, the COUNT(*) keyword includes the
null columns in the count unless the WHERE clause explicitly omits them.

In the following example, the user wants to know the total number of rows
in the orders table. So the user uses the COUNT(*) function in a SELECT
statement without a WHERE clause.

SELECT COUNT(*) AS total_rows FROM orders

The following table shows the result of this query.

In the following example, the user wants to know how many rows in the
orders table have a null value in the ship_instruct column. So the user uses
the COUNT(*) function in a SELECT statement with a WHERE clause, and
specifies the IS NULL condition in the WHERE clause.

SELECT COUNT (*) AS no_ship_instruct
FROM orders
WHERE ship_instruct IS NULL

The following table shows the result of this query.

total_rows

23

no_ship_instruct

 2
SQL Statements 1-945

Expression
In the following example, the user wants to know how many rows in the
orders table have the value express in the ship_instruct column. So the user
specifies the COUNT (*) function in the select list and the equals (=) relational
operator in the WHERE clause.

SELECT COUNT (*) AS ship_express
FROM ORDERS
WHERE ship_instruct = 'express'

The following table shows the result of this query.

COUNT DISTINCT and UNIQUE Keywords

The COUNT DISTINCT keywords return the number of unique values in the
column or expression, as the following example shows. If the COUNT
function encounters nulls, it ignores them.

SELECT COUNT (DISTINCT item_num) FROM items

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the COUNT keyword returns a zero for that column.

The UNIQUE keyword has exactly the same meaning as the DISTINCT
keyword when the UNIQUE keyword is used within the COUNT function.
The UNIQUE keyword returns the number of unique non-null values in the
column or expression.

The following example uses the UNIQUE keyword, but it is equivalent to the
preceding example that uses the DISTINCT keyword:

SELECT COUNT (UNIQUE item_num) FROM items

In the following example, the user wants to know how many unique non-null
values are in the ship_instruct column of the orders table. So the user enters
the COUNT DISTINCT function in the select list of the SELECT statement.

SELECT COUNT(DISTINCT ship_instruct) AS unique_notnulls
FROM orders

ship_express

 6
1-946 Informix Guide to SQL: Syntax

Expression
The following table shows the result of this query.

COUNT column name Option

The COUNT column name option returns the total number of non-null values
in the column or expression, as the following example shows:

SELECT COUNT (item_num) FROM items

You can include the ALL keyword before the specified column name for
clarity, but the query result is the same whether you include the ALL keyword
or omit it.

The following example shows how to include the ALL keyword in the
COUNT column name option:

SELECT COUNT (ALL item_num) FROM items

In the following example the user wants to know how many non-null values
are in the ship_instruct column of the orders table. So the user enters the
COUNT column name function in the select list of the SELECT statement.

SELECT COUNT(ship_instruct) AS total_notnulls
FROM orders

The following table shows the result of this query.

The user can also find out how many non-null values are in the ship_instruct
column by including the ALL keyword in the parentheses that follow the
COUNT keyword.

SELECT COUNT (ALL ship_instruct) AS all_notnulls
FROM orders

unique_notnulls

 16

total_notnulls

 21
SQL Statements 1-947

Expression
The following table shows that the query result is the same whether you
include or omit the ALL keyword.

AVG() Function

The AVG() function returns the average of all values in the specified column
or expression. You can apply the AVG() function only to number columns. If
you use the DISTINCT keyword, the average (mean) is greater than only the
distinct values in the specified column or expression. The query in the
following example finds the average price of a helmet:

SELECT AVG(unit_price) FROM stock WHERE stock_num = 110

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the AVG function returns a null for that column.

MAX() Function

The MAX() function returns the largest value in the specified column or
expression. Using the DISTINCT keyword does not change the results. The
query in the following example finds the most expensive item that is in stock
but has not been ordered:

SELECT MAX(unit_price) FROM stock
WHERE NOT EXISTS (SELECT * FROM items

WHERE stock.stock_num = items.stock_num AND
stock.manu_code = items.manu_code)

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the MAX function returns a null for that column.

all_notnulls

 21
1-948 Informix Guide to SQL: Syntax

Expression
MIN() Function

The MIN() function returns the lowest value in the column or expression.
Using the DISTINCT keyword does not change the results. The following
example finds the least expensive item in the stock table:

SELECT MIN(unit_price) FROM stock

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the MIN function returns a null for that column.

SUM() Function

The SUM() function returns the sum of all the values in the specified column
or expression, as shown in the following example. If you use the DISTINCT
keyword, the sum is for only distinct values in the column or expression.

SELECT SUM(total_price) FROM items WHERE order_num = 1013

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the SUM() function returns a null for that column.

You cannot use the SUM() function with a character column.

RANGE() Function

The RANGE() function computes the range for a sample of a population. It
computes the difference between the maximum and the minimum values, as
follows:

range(expr) = max(expr) - min(expr)

You can apply the RANGE() function only to numeric columns. The following
query finds the range of ages for a population:

SELECT RANGE(age) FROM u_pop
SQL Statements 1-949

Expression
As with other aggregates, the RANGE() function applies to the rows of a
group when the query includes a GROUP BY clause, as shown in the following
example:

SELECT RANGE(age) FROM u_pop
GROUP BY birth

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the RANGE() function returns a null for that column.

Important: All computations for the RANGE function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data values
have 16 or more digits of precision.

STDEV() Function

The STDEV() function computes the standard deviation for a sample of a
population. It is the square root of the VARIANCE() function.

You can apply the STDEV() function only to numeric columns. The following
query finds the standard deviation on a population:

SELECT STDEV(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the STDEV function applies to the rows of a
group when the query includes a GROUP BY clause, as shown in the following
example:

SELECT STDEV(age) FROM u_pop
GROUP BY birth
WHERE STDEV(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the STDEV() function returns a null for that column.

Important: All computations for the STDEV() function are performed in 32-digit
precision, which should be sufficient for many sets of input data. The computation,
however, loses precision or returns incorrect results when all of the input data values
have 16 or more digits of precision.
1-950 Informix Guide to SQL: Syntax

Expression
VARIANCE() Function

The VARIANCE() keyword returns the variance for a sample of values as an
unbiased estimate of the variance of the population. It computes the
following value:

(SUM(Xi**2) - (SUM(Xi)**2)/N)/(N-1)

In this example, Xi is each value in the column and N is the total number of
values in the column. You can apply the VARIANCE() function only to
numeric columns. The following query finds the variance on a population:

SELECT VARIANCE(age) FROM u_pop WHERE u_pop.age > 0

As with the other aggregates, the VARIANCE() function applies to the rows of
a group when the query includes a GROUP BY clause, as shown in the
following example:

SELECT VARIANCE(age) FROM u_pop
GROUP BY birth
WHERE VARIANCE(age) > 0

Nulls are ignored unless every value in the specified column is null. If every
column value is null, the VARIANCE() function returns a null for that column.

Important: All computations for the VARIANCE() function are performed in 32-
digit precision, which should be sufficient for many sets of input data. The compu-
tation, however, loses precision or returns incorrect results when all of the input data
values have 16 or more digits of precision.

Summary of Aggregate Function Behavior

An example can help to summarize the behavior of the aggregate functions.
Assume that the testtable table has a single INTEGER column that is named
a_number. The contents of this table are as follows.

a_number

2

2

2

 (1 of 2)
SQL Statements 1-951

Expression
You can use aggregate functions to obtain different types of information
about the a_number column and the testtable table. In the following
example, the user specifies the AVG function to obtain the average of all the
non-null values in the a_number column:

SELECT AVG(a_number) AS average_number
FROM testtable

The following table shows the result of this query.

You can use the other aggregate functions in SELECT statements that are
similar to the one shown in the preceding example. If you enter a series of
SELECT statements that have different aggregate functions in the select list
and do not have a WHERE clause, you receive the results that the following
table shows.

3

3

4

(null)

average_number

 2.66666666666667

Function Results

COUNT(*) 7

AVG 2.66666666666667

AVG (DISTINCT) 3.00000000000000

MAX 4

MAX(DISTINCT) 4

 (1 of 2)

a_number

 (2 of 2)
1-952 Informix Guide to SQL: Syntax

Expression
Error Checking with Aggregate Functions

Aggregate functions always return one row; if no rows are selected, the
function returns a null. You can use the COUNT (*) keyword to determine
whether any rows were selected, and you can use an indicator variable to
determine whether any selected rows were empty. Fetching a row with a
cursor associated with an aggregate function always returns one row; hence,
100 for end of data is never returned into the SQLCODE variable for a first
fetch attempt.

You can also use the GET DIAGNOSTICS statement for error checking. See the
GET DIAGNOSTICS statement in this manual. ♦

MIN 2

MIN(DISTINCT) 2

SUM 16

SUM(DISTINCT) 9

COUNT(DISTINCT) 3

COUNT(ALL) 6

RANGE 2

STDEV 0.81649658092773

VARIANCE 0.66666666666667

Function Results

 (2 of 2)

ESQL
SQL Statements 1-953

Expression
Using Arithmetic Operators with Expressions
You can combine expressions with arithmetic operators to make complex
expressions. To combine expressions, connect them with the following binary
arithmetic operators.

The following examples use binary arithmetic operators:

quantity * total_price

price * 2

COUNT(*) + 2

If you combine a DATETIME value with one or more INTERVAL values, all the
fields of the INTERVAL value must be present in the DATETIME value; no
implicit EXTEND function is performed. In addition, you cannot use YEAR to
MONTH intervals with DAY to SECOND intervals.

The binary arithmetic operators have associated operator functions, as the
preceding table shows. Connecting two expressions with a binary operator is
equivalent to invoking the associated operator function on the expressions.
For example, the following two statements both select the product of the
total_price column and 2. In the first statement, the * operator implicitly
invokes the times() function.

SELECT (total_price * 2) FROM items
WHERE order_num = 1001

SELECT times(total_price, 2) FROM items
WHERE order_num = 1001

You cannot combine expressions that use aggregate functions with column
expressions.

Arithmetic Operation Arithmetic Operator Operator Function

Addition + plus()

Subtraction - minus()

Multiplication * times()

Division / divide()
1-954 Informix Guide to SQL: Syntax

Expression
The database server provides the operator functions associated with the
relational operators for all built-in data types.You can define new versions of
these binary arithmetic operator functions to handle your own user-defined
data types. For more information, see the Extending INFORMIX-Universal
Server: Data Types manual.

Informix also provides the following unary arithmetic operators:

The unary arithmetic operators have the associated operator functions that
the preceding table shows. You can define new versions of these arithmetic
operator functions to handle your own user-defined data types. For more
information on how to write versions of operator functions, see the Extending
INFORMIX-Universal Server: Data Types manual.

If any value that participates in an arithmetic expression is null, the value of
the entire expression is null, as shown in the following example:

SELECT order_num, ship_charge/ship_weight FROM orders
WHERE order_num = 1023

If either ship_charge or ship_weight is null, the value returned for the
expression ship_charge/ship_weight is also null. If the expression
ship_charge/ship_weight is used in a condition, its truth value is unknown.

References
In the Informix Guide to SQL: Tutorial, see Chapter 2 for a discussion of expres-
sions in the SELECT statement.

In the Guide to GLS Functionality, see the discussions of column expressions,
the discussion of length functions, and the discussion of the TRIM() function.

Arithmetic Operation Arithmetic Operator Operator Function

Positive + positive()

Negative - negate()
SQL Statements 1-955

1-956 Informix Guide to SQL: Syntax

External Routine Reference
External Routine Reference
Use an External Routine Reference when you write an external routine.

Syntax

Usage
The External Routine Reference applies only to external functions and
provides the following information about an external routine:

■ The pathname to the executable object code, stored in a shared
library

■ The name of the language in which the routine is written

■ The parameter style of the routine

■ The VARIANT or NOT VARIANT option, if you specify one

Element Purpose Restrictions Syntax
language name The name of the language

used to write the external
routine

The language name must be the
name of a supported external
language. (The name of the
language must be C.)

Identifier, p.1-962

External Routine
Reference

EXTERNAL NAME LANGUAGE language name

INFORMIXPARAMETER STYLE

NOT

VARIANT

Quoted
Pathname
p. 1-1007

External Routine Reference
Parameter Style

By default, the parameter style is INFORMIX. If you specify an OUT
parameter, the OUT argument is passed by reference.

VARIANT or NOT VARIANT

The VARIANT and NOT VARIANT options apply only to functions. You cannot
use VARIANT or NOT VARIANT with procedures.

A variant function does not always return the same value for the same
arguments. For example, a function that returns the current date and time or
a set of rows from a table is a variant function. In INFORMIX-Universal
Server,external functions are variant by default.

A non-variant function always returns the same value when passed the same
arguments. To register a non-variant function, add the NOT VARIANT option
in the External Routine Reference or in the Routine Modifier clause that is
discussed on page 1-1022. If you specify the option in both places, you must
use the same option in each.

Example

The following example registers an external function named equal() that
takes two values of point data type as arguments. In this example, point is an
opaque type that specifies the x and y coordinates of a two-dimensional
point.

CREATE FUNCTION equal(a point, b point)
RETURNING BOOLEAN;
EXTERNAL NAME
"/usr/lib/point/lib/libbtype1.so(point1_equal)"
LANGUAGE C
END FUNCTION;

The function returns a single value of type BOOLEAN. The external name
specifies the path to the C shared library where the object code of the function
is stored. The external name indicates that the library contains another
function, point1_equal, which is invoked while equal(point, point) is
executing.
SQL Statements 1-957

External Routine Reference
References
In this manual, see the CREATE FUNCTION and CREATE PROCEDURE state-
ments.

For information about how to create and register external routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual.
1-958 Informix Guide to SQL: Syntax

Function Name
Function Name
The Function Name segment specifies the name of a function.

Syntax

Usage
In a statement that calls for a Function Name, you can enter an identifier with
an optional owner name, database name, and server name. The database and
server names allow you to use a function stored on a remote database. A
function name with a database name, server name, and owner name is called
a fully qualified function name.

The actual name of the function is an SQL identifier.

Element Purpose Restrictions Syntax
database The name of the database

where the function resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the server that

is home to database. The @
symbol is a literal character
that introduces the database
server name.

The database server that is specified in
dbservername must match the name of a
database server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner
of the function

If you are using an ANSI-compliant
database, you must specify an owner if
you do not own the function.

If you do not specify an owner, the
default owner is the current user.

 Must conform to the
conventions of your
operating system.

@ dbservername

database

+

Identifier
p. 1-962

:

owner .
.'owner '
SQL Statements 1-959

Function Name
The owner name is case sensitive. In an ANSI database, if you type quotation
marks around the name, it is stored as you type it. If you do not use quotation
marks, the name is stored as uppercase letters. For more information, see the
discussion of case sensitivity in ANSI-compliant databases on page 1-1045. ♦

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of functions. For more information, see the Guide
to GLS Functionality. ♦

Routine Overloading

Due to routine overloading, a function name does not need to be unique in
INFORMIX-Universal Server. You can define more than one function with the
same name and different parameter lists.

Functions are uniquely identified by their signature. A function’s signature
includes the following items:

■ The routine type (FUNCTION or PROCEDURE)

■ The routine name

■ The number, data type, and order of the function’s parameters

If a function name is not unique, Universal Server uses routine resolution to
identify the instance of the function to execute. For information about routine
resolution, see the Extending INFORMIX-Universal Server: User-Defined
Routines manual.

Qualified Function Name

When you add the database name and server name options, you use a fully
qualified function name to specify a remote function. You can use those
options under the following conditions:

■ All arguments passed to the function have built-in data types.

■ The instance of the function that is invoked has built-in data types for
all of its parameters.

■ Any values the function returns have built-in data types.

ANSI

GLS
1-960 Informix Guide to SQL: Syntax

Function Name
References
In this manual, see the CALL, CREATE FUNCTION, DROP FUNCTION, DROP
ROUTINE, and EXECUTE FUNCTION statements.

For information about how to create and use external routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual. In the
Informix Guide to SQL: Tutorial, see Chapter 14 for information about how to
create and use SPL routines.
SQL Statements 1-961

1-962 Informix Guide to SQL: Syntax

Identifier
Identifier
An identifier specifies the simple name of a database object, such as a column,
table, index, or view. Use the Identifier segment whenever you see a reference
to an identifier in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
digit An integer that forms part of the

identifier
You must specify a number
between 0 and 9, inclusive.

Literal Number,
p. 1-997

letter A letter that forms part of the
identifier

If you are using the default
locale, a letter must be an
uppercase or lowercase
character in the range a to z (in
the ASCII code set). If you are
using a nondefault locale, letter
must be an alphabetic character
that the locale supports. See
“Support for Non-ASCII
Characters in Identifiers” on
page 1-965 for further
information.

Letters are literal
values that you enter
from the keyboard.

underscore An underscore character that
forms part of the identifier

You cannot substitute a space
character, dash, hyphen, or any
other nonalphanumeric
character for the underscore
character.

The underscore
character (_) is a
literal value that you
enter from the
keyboard.

letter

underscore

letter

digit

underscore

Delimited
Identifier
p. 1-965

Identifier
Usage
An identifier can contain up to 18 bytes, inclusive.

Use of Reserved Words as Identifiers

Although you can use almost any word as an identifier, syntactic ambiguities
can result from using reserved words as identifiers in SQL statements. The
statement might fail or might not produce the expected results. See “Potential
Ambiguities and Syntax Errors” on page 1-968 for a discussion of the
syntactic ambiguities that can result from using reserved words as identifiers
and an explanation of workarounds for these problems.

Delimited identifiers provide the easiest and safest way to use a reserved
word as an identifier without causing syntactic ambiguities. No
workarounds are necessary when you use a reserved word as a delimited
identifier. See “Delimited Identifiers” on page 1-965 for the syntax and usage
of delimited identifiers.

Tip: If you receive an error message that seems unrelated to the statement that
caused the error, check to determine whether the statement uses a reserved word as
an undelimited identifier.

ANSI-Reserved Words

 The following list specifies all the ANSI-reserved words (that is, reserved
words in the ANSI SQL standard).

ADA execute order
all exists pascal
and fetch pli
any float precision
as for primary
asc fortran procedure
authorization found privileges
avg from public
begin go real
between goto rollback
by group schema

 (1 of 2)
SQL Statements 1-963

Identifier
You can flag identifiers as ANSI-reserved words by taking the following
steps:

■ Set the DBANSIWARN environment variable or use the -ansi flag at
compile time to receive compile-time warnings.

■ Set the DBANSIWARN environment variable at runtime to receive
warning flags set in the SQLWARN array of sqlca.

char having section
character in select
check indicator set
close insert smallint
cobol int some
commit integer sql
continue into sqlcode
count is sqlerror
create language sum
current like table
cursor max to
dec min union
decimal module unique
declare not update
delete null user
desc numeric values
distinct of view
double on whenever
end open where
escape option with
exec or work

 (2 of 2)
1-964 Informix Guide to SQL: Syntax

Identifier
Support for Non-ASCII Characters in Identifiers

If you are using a nondefault locale, you can use any alphabetic character that
your locale recognizes as a letter in an SQL identifier name. You can use a non-
ASCII character as a letter as long as your locale supports it. This feature
enables you to use non-ASCII characters in the names of database objects such
as indexes, tables, and views. For a list of SQL identifiers that support non-
ASCII characters, see the Guide to GLS Functionality. ♦

Delimited Identifiers

GLS

Delimited
Identifier

letter

digit

underscore

nonalphanumeric character

double quotedouble quote
SQL Statements 1-965

Identifier
Delimited identifiers allow you to specify names for database objects that are
otherwise identical to SQL reserved keywords, such as TABLE, WHERE,
DECLARE, and so on. The only database object for which you cannot use
delimited identifiers is database name.

Delimited identifiers are case sensitive.

Delimited identifiers are compliant with the ANSI standard.

Element Purpose Restrictions Syntax
digit An integer that forms part of the

delimited identifier
You must specify a number
between 0 and 9, inclusive.

Literal Number,
p. 1-997

double quote The double-quote character that
marks a string as a delimited
identifier

If the DELIMIDENT environment
variable is not set, values within
double quotes are treated as
quoted strings by the database
server.

The double quote
character (") is a
literal value that you
enter from the
keyboard.

letter A letter that forms part of the
delimited identifier

Letters in delimited identifiers
are case-sensitive. If you are
using the default locale, a letter
must be an uppercase or
lowercase character in the range
a-z (in the ASCII code set). If you
are using a nondefault locale,
letter must be an alphabetic
character that the locale
supports. See “Support for Non-
ASCII Characters in Delimited
Identifiers” on page 1-967 for
further information.

Letters are literal
values that you enter
from the keyboard.

nonalpha-
numeric
character

A nonalphanumeric character,
such as # or $ or space, that
forms part of the delimited
identifier

If you are using the ASCII code
set, you can specify any ASCII
nonalphanumeric character.

Nonalphanumeric
characters are literal
values that you enter
from the keyboard.

underscore An underscore (_) that forms
part of the delimited identifier

You can use a dash, hyphen, or
any other appropriate character
in place of the underscore
character.

The underscore (_) is
a literal value that
you enter from the
keyboard.
1-966 Informix Guide to SQL: Syntax

Identifier
Support for Nonalphanumeric Characters

You can use delimited identifiers to specify nonalphanumeric characters in
the names of database objects. However, you cannot use delimited identifiers
to specify nonalpha characters in the names of storage objects such as
dbspaces and blobspaces.

Support for Non-ASCII Characters in Delimited Identifiers

When you are using a nondefault locale whose code set supports non-ASCII
characters, you can specify non-ASCII characters in most delimited identi-
fiers. The rule is that if you can specify non-ASCII characters in the
undelimited form of the identifier, you can also specify non-ASCII characters
in the delimited form of the same identifier. See the Guide to GLS Functionality
for a list of identifiers that support non-ASCII characters and for information
on non-ASCII characters in delimited identifiers. ♦

Effect of DELIMIDENT Environment Variable

To use delimited identifiers, you must set the DELIMIDENT environment
variable. When you set the DELIMIDENT environment variable, database
objects in double quotes (") are treated as identifiers and database objects in
single quotes (') are treated as strings. If the DELIMIDENT environment
variable is not set, values within double quotes are also treated as strings.

If the DELIMIDENT variable is set, the SELECT statement in the following
example must be in single quotes in order to be treated as a quoted string:

PREPARE ... FROM 'SELECT * FROM customer'

Examples of Delimited Identifiers

The following example shows how to create a table with a case-sensitive table
name:

CREATE TABLE "Power_Ranger" (...)

GLS
SQL Statements 1-967

Identifier
The following example shows how to create a table whose name includes a
space character. If the table name were not in double quotes ("), you could not
use a space character or any other nonalpha character except an underscore
(_) in the name.

CREATE TABLE "My Customers" (...)

The following example shows how to create a table that uses a keyword as
the table name:

CREATE TABLE "TABLE" (...)

Using Double Quotes Within a Delimited Identifier

If you want to include a double-quote (") within a delimited identifier, you
must precede the double-quote (") with another double-quote ("), as shown
in the following example:

CREATE TABLE "My""Good""Data" (...)

Potential Ambiguities and Syntax Errors
Although you can use almost any word as an SQL identifier, syntactic
ambiguities can occur. An ambiguous statement might not produce the
desired results. The following sections outline some potential pitfalls and
workarounds.

Using Functions as Column Names
The following two examples show a workaround for using a function as a
column name in a SELECT statement. This workaround applies to the
aggregate functions (AVG, COUNT, MAX, MIN, SUM) as well as the function
expressions (algebraic, exponential and logarithmic, time, hex, length,
dbinfo, trigonometric, and trim functions).

Using avg as a column name causes the following example to fail because the
database server interprets avg as an aggregate function rather than as a
column name:

SELECT avg FROM mytab -- fails
1-968 Informix Guide to SQL: Syntax

Identifier
If the DELIMIDENT environment variable is set, you could use avg as a
column name as shown in the following example:

SELECT "avg" from mytab -- successful

The workaround in following example removes ambiguity by including a
table name with the column name:

SELECT mytab.avg FROM mytab

If you use the keyword TODAY, CURRENT, or USER as a column name,
ambiguity can occur, as shown in the following example:

CREATE TABLE mytab (user char(10),
CURRENT DATETIME HOUR TO SECOND,TODAY DATE)

INSERT INTO mytab VALUES('josh','11:30:30','1/22/89')

SELECT user,current,today FROM mytab

The database server interprets user, current, and today in the SELECT
statement as the SQL functions USER, CURRENT, and TODAY. Thus, instead of
returning josh, 11:30:30,1/22/89, the SELECT statement returns the current
user name, the current time, and the current date.

If you want to select the actual columns of the table, you must write the
SELECT statement in one of the following ways:

SELECT mytab.user, mytab.current, mytab.today FROM mytab;

EXEC SQL select * from mytab;

Using Keywords as Column Names
Specific workarounds exist for using a keyword as a column name in a
SELECT statement or other SQL statement. In some cases, there might be more
than one suitable workaround.
SQL Statements 1-969

Identifier
Using ALL, DISTINCT, or UNIQUE as a Column Name

If you want to use the ALL, DISTINCT, or UNIQUE keywords as column names
in a SELECT statement, you can take advantage of a workaround.

First, consider what happens when you try to use one of these keywords
without a workaround. In the following example, using all as a column name
causes the SELECT statement to fail because the database server interprets all
as a keyword rather than as a column name:

SELECT all FROM mytab -- fails

You need to use a workaround to make this SELECT statement execute
successfully. If the DELIMIDENT environment variable is set, you can use all
as a column name by enclosing all in double quotes. In the following
example, the SELECT statement executes successfully because the database
server interprets all as a column name:

SELECT "all" from mytab -- successful

The workaround in the following example uses the keyword ALL with the
column name all:

SELECT ALL all FROM mytab

The rest of the examples in this section show workarounds for using the
keywords UNIQUE or DISTINCT as a column name in a CREATE TABLE
statement.

Using unique as a column name causes the following example to fail because
the database server interprets unique as a keyword rather than as a column
name:

CREATE TABLE mytab (unique INTEGER) -- fails

The workaround shown in the following example uses two SQL statements.
The first statement creates the column mycol; the second renames the column
mycol to unique.

CREATE TABLE mytab (mycol INTEGER)

RENAME COLUMN mytab.mycol TO unique
1-970 Informix Guide to SQL: Syntax

Identifier
The workaround in the following example also uses two SQL statements. The
first statement creates the column mycol; the second alters the table, adds the
column unique, and drops the column mycol.

CREATE TABLE mytab (mycol INTEGER)

ALTER TABLE mytab
ADD (unique integer)
DROP (mycol)

Using INTERVAL or DATETIME as a Column Name

The examples in this section show workarounds for using the keyword
INTERVAL (or DATETIME) as a column name in a SELECT statement.

Using interval as a column name causes the following example to fail
because the database server interprets interval as a keyword and expects it
to be followed by an INTERVAL qualifier:

SELECT interval FROM mytab -- fails

If the DELIMIDENT environment variable is set, you could use interval as a
column name, as shown in the following example:

SELECT "interval" from mytab -- successful

The workaround in the following example removes ambiguity by specifying
a table name with the column name:

SELECT mytab.interval FROM mytab;

The workaround in the following example includes an owner name with the
table name:

SELECT josh.mytab.interval FROM josh.mytab;
SQL Statements 1-971

Identifier
Using rowid as a Column Name

Every nonfragmented table has a virtual column named rowid. To avoid
ambiguity, you cannot use rowid as a column name. Performing the
following actions causes an error:

■ Creating a table or view with a column named rowid

■ Altering a table by adding a column named rowid

■ Renaming a column to rowid

You can, however, use the term rowid as a table name.

CREATE TABLE rowid (column INTEGER,
date DATE, char CHAR(20))

Important: Informix recommends that you use primary keys as an access method
rather than exploiting the rowid column.

Using Keywords as Table Names
The examples in this section show workarounds that involve owner naming
when you use the keyword STATISTICS or OUTER as a table name. This
workaround also applies to the use of STATISTICS or OUTER as a view name
or synonym.

Using statistics as a table name causes the following example to fail because
the database server interprets it as part of the UPDATE STATISTICS syntax
rather than as a table name in an UPDATE statement:

UPDATE statistics SET mycol = 10

The workaround in the following example specifies an owner name with the
table name, to avoid ambiguity:

UPDATE josh.statistics SET mycol = 10
1-972 Informix Guide to SQL: Syntax

Identifier
Using outer as a table name causes the following example to fail because the
database server interprets outer as a keyword for performing an outer join:

SELECT mycol FROM outer -- fails

The workaround in the following example uses owner naming to avoid
ambiguity:

SELECT mycol FROM josh.outer

Workarounds That Use the Keyword AS
In some cases, although a statement is not ambiguous and the syntax is
correct, the database server returns a syntax error. The preceding pages show
existing syntactic workarounds for several situations. You can use the AS
keyword to provide a workaround for the exceptions.

You can use the AS keyword in front of column labels or table aliases.

The following example uses the AS keyword with a column label:

SELECT column-name AS display-label FROM table-name

The following example uses the AS keyword with a table alias:

SELECT select-list FROM table-name AS table-alias

Using AS with Column Labels

The examples in this section show workarounds that use the AS keyword
with a column label. The first two examples show how you can use the
keyword UNITS (or YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, or
FRACTION) as a column label.

Using units as a column label causes the following example to fail because
the database server interprets it as a DATETIME qualifier for the column
named mycol:

SELECT mycol units FROM mytab
SQL Statements 1-973

Identifier
The workaround in the following example includes the AS keyword:

SELECT mycol AS units FROM mytab;

The following examples show how the AS or FROM keyword can be used as
a column label.

Using as as a column label causes the following example to fail because the
database server interprets as as identifying from as a column label and thus
finds no required FROM clause:

SELECT mycol as from mytab -- fails

The following example repeats the AS keyword:

SELECT mycol AS as from mytab

Using from as a column label causes the following example to fail because
the database server expects a table name to follow the first from:

SELECT mycol from FROM mytab -- fails

The following example uses the AS keyword to identify the first from as a
column label:

SELECT mycol AS from FROM mytab

Using AS with Table Aliases

The examples in this section show workarounds that use the AS keyword
with a table alias. The first pair shows how to use the ORDER, FOR, GROUP,
HAVING, INTO, UNION, WITH, CREATE, GRANT, or WHERE keyword as a
table alias.

Using order as a table alias causes the following example to fail because the
database server interprets order as part of an ORDER BY clause:

SELECT * FROM mytab order -- fails

The workaround in the following example uses the keyword AS to identify
order as a table alias:

SELECT * FROM mytab AS order;

The following two examples show how to use the keyword WITH as a table
alias.
1-974 Informix Guide to SQL: Syntax

Identifier
Using with as a table alias causes the following example to fail because the
database server interprets the keyword as part of the WITH CHECK OPTION
syntax:

EXEC SQL select * from mytab with; -- fails

The workaround in the following example uses the keyword AS to identify
with as a table alias:

EXEC SQL select * from mytab as with;

The following two examples show how to use the keyword CREATE (or
GRANT) as a table alias.

Using create as a table alias causes the following example to fail because the
database server interprets the keyword as part of the syntax to create an
entity such as a table, synonym, or view:

EXEC SQL select * from mytab create; -- fails

The workaround in the following example uses the keyword AS to identify
create as a table alias:

EXEC SQL select * from mytab as create;

Fetching Keywords as Cursor Names
In a few situations, no workaround exists for the syntactic ambiguity that
occurs when a keyword is used as an identifier in an SQL program.

In the following example, the FETCH statement specifies a cursor named
next. The FETCH statement generates a syntax error because the preprocessor
interprets next as a keyword, signifying the next row in the active set and
expects a cursor name to follow next. This error occurs whenever the
keyword NEXT, PREVIOUS, PRIOR, FIRST, LAST, CURRENT, RELATIVE, or
ABSOLUTE is used as a cursor name.

/* This code fragment fails */
EXEC SQL declare next cursor for

select customer_num, lname from customer;

EXEC SQL open next;
EXEC SQL fetch next into :cnum, :lname;
SQL Statements 1-975

Identifier
Using Keywords as Variable Names
If you use any of the following keywords as identifiers for variables in a
routine, you can create ambiguous syntax.

Using CURRENT, DATETIME, INTERVAL, and NULL in INSERT

A routine cannot insert a variable using the CURRENT, DATETIME, INTERVAL,
or NULL keyword as the name.

For example, if you define a variable called null, when you try to insert the
value null into a column, you receive a syntax error, as shown in the
following example:

CREATE PROCEDURE problem()
.
.
.
DEFINE null INT;
LET null = 3;
INSERT INTO tab VALUES (null); -- error, inserts NULL, not 3

Using NULL and SELECT in a Condition

If you define a variable with the name null or select, using it in a condition that
uses the IN keyword is ambiguous. The following example shows three
conditions that cause problems: in an IF statement, in a WHERE clause of a
SELECT statement, and in a WHILE condition:

CREATE PROCEDURE problem()
.
.
.
DEFINE x,y,select, null, INT;
DEFINE pfname CHAR[15];
LET x = 3; LET select = 300;
LET null = 1;
IF x IN (select, 10, 12) THEN LET y = 1; -- problem if

IF x IN (1, 2, 4) THEN

CURRENT OFF
DATETIME ON
GLOBAL PROCEDURE
INTERVAL SELECT
NULL
1-976 Informix Guide to SQL: Syntax

Identifier
SELECT customer_num, fname INTO y, pfname FROM customer
WHERE customer IN (select , 301 , 302, 303); -- problem in

WHILE x IN (null, 2) -- problem while
.
.
.
END WHILE;

You can use the variable select in an IN list if you ensure it is not the first
element in the list. The workaround in the following example corrects the IF
statement shown in the preceding example:

 IF x IN (10, select, 12) THEN LET y = 1; -- problem if

No workaround exists to using null as a variable name and attempting to use
it in an IN condition.

Using ON, OFF, or PROCEDURE with TRACE

If you define a procedure variable called on, off, or procedure, and you attempt
to use it in a TRACE statement, the value of the variable does not trace.
Instead, the TRACE ON, TRACE OFF, or TRACE PROCEDURE statements
execute. You can trace the value of the variable by making the variable into a
more complex expression. The following example shows the ambiguous
syntax and the workaround:

DEFINE on, off, procedure INT;

TRACE on; --ambiguous
TRACE 0+ on; --ok
TRACE off; --ambiguous
TRACE ''||off; --ok

TRACE procedure;--ambiguous
TRACE 0+procedure;--ok
SQL Statements 1-977

Identifier
Using GLOBAL as a Variable Name

If you attempt to define a variable with the name global, the define operation
fails. The syntax shown in the following example conflicts with the syntax for
defining global variables:

DEFINE global INT; -- fails;

If the DELIMIDENT environment variable is set, you could use global as a
variable name, as shown in the following example:

DEFINE "global" INT; -- successful

Using EXECUTE, SELECT, or WITH as Cursor Names
Do not use an EXECUTE, SELECT, or WITH keyword as the name of a cursor.
If you try to use one of these keywords as the name of a cursor in a FOREACH
statement, the cursor name is interpreted as a keyword in the FOREACH
statement. No workaround exists.

The following example does not work:

DEFINE execute INT;
FOREACH execute FOR SELECT col1 -- error, looks like

-- FOREACH EXECUTE PROCEDURE
 INTO var1 FROM tab1; --

SELECT Statements in WHILE and FOR Statements
If you use a SELECT statement in a WHILE or FOR loop, and if you need to
enclose it in parentheses, enclose the entire SELECT statement in a
BEGIN...END block. The SELECT statement in the first WHILE statement in the
following example is interpreted as a call to the procedure var1; the second
WHILE statement is interpreted correctly:

DEFINE var1, var2 INT;
WHILE var2 = var1

SELECT col1 INTO var3 FROM TAB -- error, seen as call var1()
UNION
SELECT co2 FROM tab2;

END WHILE

WHILE var2 = var1
1-978 Informix Guide to SQL: Syntax

Identifier
BEGIN
SELECT col1 INTO var3 FROM TAB -- ok syntax
UNION
SELECT co2 FROM tab2;

END
END WHILE

The SET Keyword in the ON EXCEPTION Statement
If you use a statement that begins with the keyword SET inside the statement
ON EXCEPTION, you must enclose it in a BEGIN...END block. The following
list shows some of the SQL statements that begin with the keyword SET.

The following examples show incorrect and correct use of a SET LOCK MODE
statement inside an ON EXCEPTION statement.

The following ON EXCEPTION statement returns an error because the SET
LOCK MODE statement is not enclosed in a BEGIN...END block:

ON EXCEPTION IN (-107)
SET LOCK MODE TO WAIT; -- error, value expected, not 'lock'

END EXCEPTION

The following ON EXCEPTION statement executes successfully because the
SET LOCK MODE statement is enclosed in a BEGIN...END block:

ON EXCEPTION IN (-107)
BEGIN
SET LOCK MODE TO WAIT; -- ok
END

END EXCEPTION

References
In the INFORMIX-Universal Server Administrator’s Guide, see the owner-
naming discussion.

In the Guide to GLS Functionality, see the discussion of identifiers that support
non-ASCII characters and the discussion of non-ASCII characters in delimited
identifiers.

SET SET LOCK MODE

SET DEBUG FILE SET LOG

SET EXPLAIN SET OPTIMIZATION

SET ISOLATION SET PDQPRIORITY
SQL Statements 1-979

Index Name
Index Name
The Index Name segment specifies the name of an index. Use the Index
Name segment whenever you see a reference to an index name in a syntax
diagram.

Syntax

Element Purpose Restrictions Syntax
database The name of the database where

the index resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the Universal

Server database server that is
home to database. The @ symbol
is a literal character that intro-
duces the database server name.

The database server that is
specified in dbservername must
match the name of a database
server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner of
the index

If you are using an ANSI-
compliant database, you must
specify the owner for an index
that you do not own. If you put
quotation marks around the
name that you enter in owner, the
name is stored exactly as typed.
If you do not put quotation
marks around the name you
enter in owner, the name is stored
as uppercase letters.

The user name must
conform to the
conventions of your
operating system.

@ dbservername

database

Identifier
p. 1-962

: 'owner'.

owner.
1-980 Informix Guide to SQL: Syntax

Index Name
Usage
The actual name of the index is an SQL identifier.

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of indexes. For more information, see the Guide to
GLS Functionality. ♦

If you are creating an index, the name must be unique within a database.

The owner.name combination is case sensitive. In an ANSI-compliant database,
if you do not use quotes around the owner name, the name of the table owner
is stored as uppercase letters. For more information, see the discussion of case
sensitivity in ANSI-compliant databases on page 1-1045. ♦

References
See the CREATE INDEX statement in this manual for information on defining
indexes.

GLS

ANSI
SQL Statements 1-981

INTERVAL Field Qualifier
INTERVAL Field Qualifier
The INTERVAL field qualifier specifies the units for an INTERVAL value. Use
the INTERVAL Field Qualifier segment whenever you see a reference to an
INTERVAL field qualifier in a syntax diagram.

Syntax

YEAR

MONTH

DAY

MINUTE

SECOND

FRACTION

TO YEAR

TO MONTH

TO DAY

TO HOUR

TO MINUTE

TO SECOND

TO FRACTION

HOUR

(precision)

(precision)

(precision)

(precision)

(y-precision)

(precision)

 (f-precision)

(2)

(4)

(2)

(2)

(2)

(2)

(3)
1-982 Informix Guide to SQL: Syntax

INTERVAL Field Qualifier
Usage
The next two examples show INTERVAL data types of the YEAR TO MONTH
type. The first example can hold an interval of up to 999 years and 11 months,
because it gives 3 as the precision of the year field. The second example uses
the default precision on the year field, so it can hold an interval of up to 9,999
years and 11 months.

YEAR (3) TO MONTH

YEAR TO MONTH

When you want a value to contain only one field, the first and last qualifiers
are the same. For example, an interval of whole years is qualified as YEAR TO
YEAR or YEAR (5) TO YEAR, for an interval of up to 99,999 years.

The following examples show several forms of INTERVAL qualifiers:

YEAR(5) TO MONTH

DAY (5) TO FRACTION(2)

DAY TO DAY

FRACTION TO FRACTION (4)

Element Purpose Restrictions Syntax
f-precision The maximum number of digits

used in the fraction field. The
default value of f-precision is 3.

The maximum value that you
can specify in f-precision is 5.

Literal Number,
p. 1-997

precision The number of digits in the
largest number of months, days,
hours, or minutes that the
interval can hold. The default
value of precision is 2.

The maximum value that you
can specify in precision is 9.

Literal Number,
p. 1-997

y-precision The number of digits in the
largest number of years that the
interval can hold. The default
value of y-precision is 4.

The maximum value that you
can specify in y-precision is 9.

Literal Number,
p. 1-997
SQL Statements 1-983

INTERVAL Field Qualifier
References
In the Informix Guide to SQL: Reference, see the INTERVAL data type in
Chapter 2 for information about specifying INTERVAL field qualifiers and
using INTERVAL data in arithmetic and relational operations.
1-984 Informix Guide to SQL: Syntax

Literal Collection
Literal Collection
The Literal Collection segment specifies the syntax for values of the collection
data types: SET, LIST, and MULTISET.

Syntax

Usage
You can specify literal collection values for each of the collection data types:
SET, MULTISET, or LIST. The entire literal collection value must be enclosed in
quotes; each literal within the literal collection must also be enclosed in
quotes, following the rule explained on page 1-988.

To specify a single literal-collection value, specify the collection type and the
literal values. The following SQL statement inserts four integer values into
the set_col column that is declared as SET(INT NOT NULL):

INSERT INTO table1 (set_col) VALUES ("SET{6, 9, 9, 4}")

You specify an empty collection with a set of empty braces ({}). The following
INSERT statement inserts an empty list into a collection column list_col that
is declared as LIST(INT NOT NULL):

INSERT INTO table2 (list_col) VALUES ("LIST{}")

LIST

"

,

{ }

Literal
Collection

Non-Collection
Element Literals,

p.1-986

Nested Open
Quotation

Marks
p. 1-988

Nested Closing
Quotation

Marks
p. 1-988

MULTISET

SET "
SQL Statements 1-985

Literal Collection
If the collection is a nested collection, you must include the collection-
constructor syntax for each level of collection type. Suppose you define the
following column:

nest_col SET(MULTISET (INT NOT NULL) NOT NULL)

The following statement inserts three elements into the nest_col column:

INSERT INTO tabx (nest_col)
VALUES ("SET{'MULTISET{1, 2, 3}'}")

To learn how to use quotes in INSERT statements, see “Nested Quotation
Marks” on page 1-988.

Non-Collection Element Literal

Non-Collection
Element
Literal

Quoted String
p. 1-1010

Literal Number
p. 1-997

Literal DATETIME
p. 1-991

Literal INTERVAL
p. 1-994

Literal Row
p. 1-999

literal opaque type

literal BOOLEAN
1-986 Informix Guide to SQL: Syntax

Literal Collection
Elements of a collection can be literal values for the following built-in data
types:

■ The CHAR, LVARCHAR, and VARCHAR data types have literal values
specified as quoted strings.

The NCHAR and NVARCHAR data types also use quoted strings for
literal values. ♦
For more information, see “Quoted String” on page 1-1010.

■ The DECIMAL, FLOAT, INT8, INTEGER, MONEY, SMALLFLOAT and
SMALLINT data types have literal values specified by the Literal
Number syntax.

For more information, see “Literal Number” on page 1-997.

■ The DATE data type has a literal value specified as a quoted string.

For more information, see “Quoted String” on page 1-1010.

■ The DATETIME data type has literal values specified by the Literal
DATETIME syntax.

For more information, see “Literal DATETIME” on page 1-991.

■ The INTERVAL data type has literal values specified by the Literal
INTERVAL syntax.

For more information, see “Literal INTERVAL” on page 1-994.

■ The BOOLEAN data type has the literal values of 't' and 'f'.

For more information, see the description of the BOOLEAN data type
in the Informix Guide to SQL: Reference.

Important: You cannot specify the simple-large-object data types (BYTE and TEXT)
as the element type for a collection.

Element Purpose Restrictions Syntax
literal opaque
type

The literal representation for an
opaque data type

Must be a literal that is recog-
nized by the input support
function for the associated
opaque type.

Defined by the
developer of the
opaque type.

literal
BOOLEAN

The literal representation of a
BOOLEAN value

A literal BOOLEAN value can
only be 't' (TRUE) or 'f' (FALSE)
and must be specified as a
quoted string.

Quoted String,
p. 1-1010

GLS
SQL Statements 1-987

Literal Collection
Collection elements can also be literal values for the following user-defined
data types:

■ An opaque data type has a literal value that corresponds to the string
representation for the opaque data type. The input support function
of the opaque type defines this string representation.

■ A row type, named or unnamed, has a literal value specified as field
values enclosed with parentheses.

When the collection element type is a named row type, you do not
have to cast the values that you insert to the named row type.

For more information, see “Literal Row” on page 1-999

■ Another collection type (SET, MULTISET, or LIST) has a literal value
whose specification depends on the context its use.

A collection whose element type is another collection is called a
nested collection. For information on literal collection value as a
column value or as a collection-variable value, see “Example of
Nested Quotation Marks” on page 1-989.

Nested Quotation Marks

Whenever you nest collection literals, you use nested quotation marks. In
these cases, you must follow the rule for nesting quotation marks. Otherwise,
the server cannot correctly parse the strings.

The general rule is that you must double the number of quotes for each new
level of nesting. For example, if you use double quotes for the first level, you
must use two double quotes for the second level, four double quotes for the
third level, eight for the fourth level, sixteen for the fifth level, and so on.
Likewise, if you use single quotes for the first level, you must use two single
quotes for the second level and four single quotes for the third level.

There is no limit to the number of levels you can nest, as long as you follow
this rule.
1-988 Informix Guide to SQL: Syntax

Literal Collection
Example of Nested Quotation Marks

The following example illustrates the case for two levels of nested collection
literals, using double quotes. Table tab5 is a one-column table whose column,
set_col, is a nested collection type.

The following statement creates the tab5 table:

CREATE TABLE tab5 (set_col SET(SET(INT NOT NULL) NOT NULL));

The following statement inserts values into the table tab5:

INSERT INTO tab5 VALUES (
"SET{""SET{34, 56, 23, 33}""}"
)

For any individual literal value, the opening quotation marks and the closing
quotation marks must match. In other words, if you open a literal with two
double quotes, you must close that literal with two double quotes
(""a literal value"").

The rules for nested quotation marks apply to all literals—collection literals
and non-collection literals—that are nested in a single collection value.

To specify nested quotes within an SQL statement in an ESQL/C program,
you use the C escape character for every double quote inside a single-quote
string. Otherwise, the ESQL/C preprocessor cannot correctly interpret the
literal collection value. For example, the preceding INSERT statement on the
tab5 table would appear in an ESQL/C program as follows:

EXEC SQL insert into tab5
values ('set{\"set{34, 56, 23, 33}\"}');

For more information, see the chapter on complex data types in the
INFORMIX-ESQL/C Programmer’s Manual. ♦

E/C
SQL Statements 1-989

Literal Collection
References
See the INSERT, UPDATE, and SELECT statements in this manual. See also the
Row Literal segment.

In the Informix Guide to SQL: Tutorial, see Chapter 10 and Chapter 12 for infor-
mation about how to create and use collection data types.

In the Informix Guide to SQL: Reference, see the SET, MULTISET, and LIST data
types in Chapter 2.

In the Guide to GLS Functionality, see the discussion of customizing NCHAR
and NVARCHAR data types.
1-990 Informix Guide to SQL: Syntax

Literal DATETIME
Literal DATETIME
The Literal DATETIME segment specifies a literal DATETIME value. Use the
Literal DATETIME segment whenever you see a reference to a literal
DATETIME in a syntax diagram.

Syntax

DATETIME

yyyy

mo

dd

space

hh

mi

ss

f

Numeric Date

DATETIME
Field Qualifier

p. 1-874

Numeric
Date

-

:

:

.

)(

-

SQL Statements 1-991

Literal DATETIME
Usage
You must specify both a numeric date and a DATETIME field qualifier for this
date in the Literal DATETIME segment. The DATETIME field qualifier must
correspond to the numeric date you specify. For example, if you specify a
numeric date that includes a year as the largest unit and a minute as the
smallest unit, you must specify YEAR TO MINUTE as the DATETIME field
qualifier.

Element Purpose Restrictions Syntax
dd The day expressed in digits You can specify up to 2 digits. Literal Number,

p. 1-997
f The decimal fraction of a second

expressed in digits
You can specify up to 5 digits. Literal Number,

p. 1-997
hh The hour expressed in digits You can specify up to 2 digits. Literal Number,

p. 1-997
mi The minute expressed in digits You can specify up to 2 digits. Literal Number,

p. 1-997
mo The month expressed in digits You can specify up to 2 digits. Literal Number,

p. 1-997
space A space character You cannot specify more than 1

space character.
The space character
is a literal value that
you enter by
pressing the space
bar on the keyboard.

ss The second expressed in digits You can specify up to 2 digits. Literal Number,
p. 1-997

yyyy The year expressed in digits You can specify up to 4 digits. If
you specify 2 digits, the database
server uses the setting of the
DBCENTURY environment
variable to extend the year
value. If the DBCENTURY
environment variable is not set,
the database server uses the
current century to extend the
year value.

Literal Number,
p. 1-997
1-992 Informix Guide to SQL: Syntax

Literal DATETIME
The following examples show literal DATETIME values:

DATETIME (93-3-6) YEAR TO DAY

DATETIME (09:55:30.825) HOUR TO FRACTION

DATETIME (93-5) YEAR TO MONTH

The following example shows a literal DATETIME value used with the
EXTEND function:

EXTEND (DATETIME (1993-8-1) YEAR TO DAY, YEAR TO MINUTE)
- INTERVAL (720) MINUTE (3) TO MINUTE

References
In the Informix Guide to SQL: Reference, see the DATETIME data type in
Chapter 2 and the DBCENTURY environment variable in Chapter 3.

In the Guide to GLS Functionality, see the discussion of customizing DATETIME
values for a locale.
SQL Statements 1-993

Literal INTERVAL
Literal INTERVAL
The Literal INTERVAL segment specifies a literal INTERVAL value. Use the
Literal INTERVAL segment whenever you see a reference to a literal
INTERVAL in a syntax diagram.

Syntax

INTERVAL

yyyy

mo

dd

space

hh

mi

ss

f

INTERVAL
Field Qualifier

p. 1-982
Numeric Date

Numeric Date

-

:

:

.

)(
1-994 Informix Guide to SQL: Syntax

Literal INTERVAL
Element Purpose Restrictions Syntax
dd The number of days The maximum number of digits

allowed is 2, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997

f The decimal fraction of a second You can specify up to 5 digits,
depending on the precision
given to the fractional portion in
the INTERVAL field qualifier.

Literal Number,
p. 1-997

hh The number of hours The maximum number of digits
allowed is 2, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997

mi The number of minutes The maximum number of digits
allowed is 2, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997

mo The number of months The maximum number of digits
allowed is 2, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997

space A space character You cannot use any other
character in place of the space
character.

The space character
is a literal value that
you enter by
pressing the space
bar on the keyboard.

ss The number of seconds The maximum number of digits
allowed is 2, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997

yyyy The number of years The maximum number of digits
allowed is 4, unless this is the
first field and the precision is
specified differently by the
INTERVAL field qualifier.

Literal Number,
p. 1-997
SQL Statements 1-995

Literal INTERVAL
Usage
The following examples show literal INTERVAL values:

INTERVAL (3-6) YEAR TO MONTH
INTERVAL (09:55:30.825) HOUR TO FRACTION
INTERVAL (40 5) DAY TO HOUR

References
In the Informix Guide to SQL: Reference, see the INTERVAL data type in
Chapter 2 for information about using INTERVAL data in arithmetic and
relational operations.
1-996 Informix Guide to SQL: Syntax

Literal Number
Literal Number
A literal number is an integer or noninteger (floating) constant. Use the
Literal Number segment whenever you see a reference to a literal number in
a syntax diagram.

Syntax

Usage
Literal numbers do not contain embedded commas; you cannot use a comma
to indicate a decimal point. You can precede literal numbers with a plus or a
minus sign.

Element Purpose Restrictions Syntax
digit A digit that forms part of the

literal number. See “Floating and
Decimal Numbers” on
page 1-998 for the significance of
digits that follow the decimal
point or the E symbol.

You must specify a value
between 0 and 9, inclusive.

Digits are literal
values that you enter
from the keyboard.

digit

digitEdigit

digit

+
-

.

.+
-

SQL Statements 1-997

Literal Number
Integers

Integers do not contain decimal points. The following examples show some
integers:

10 -27 25567

Floating and Decimal Numbers

Floating and decimal numbers contain a decimal point and/or exponential
notation. The following examples show floating and decimal numbers:

123.456 1.23456E2 123456.0E-3

The digits to the right of the decimal point in these examples are the decimal
portions of the numbers.

The E that occurs in two of the examples is the symbol for exponential
notation. The digit that follows E is the value of the exponent. For example,
the number 3E5 (or 3E+5) means 3 multiplied by 10 to the fifth power, and
the number 3E-5 means 3 multiplied by 10 to the minus fifth power.

Literal Numbers and the MONEY Data Type

When you use a literal number as a MONEY value, do not precede it with a
money symbol or include commas.

References
See the discussions of numeric data types, such as DECIMAL, FLOAT,
INTEGER, and MONEY, in Chapter 2 of the Informix Guide to SQL: Reference.
1-998 Informix Guide to SQL: Syntax

Literal Row
Literal Row
The Literal Row segment specifies the syntax for literal values of named row
types and unnamed row types.

Syntax

Usage
You can specify literal values for named row types and unnamed row types.
The literal row value is introduced with a ROW constructor. The entire literal
row value must be enclosed in quotes.

The format of the value for each field of the row type must be compatible
with the data type of the corresponding field.

" "

,

()

Literal
Row

Non-Row
Literal, p.1-1000

ROW
SQL Statements 1-999

Literal Row
Non-Row Literal Values

Element Purpose Restrictions Syntax
literal opaque
type

The literal representation for an
opaque data type

Must be a literal that is recog-
nized by the input support
function for the associated
opaque type.

Defined by the
developer of the
opaque type.

literal
BOOLEAN

The literal representation of a
BOOLEAN value

A literal BOOLEAN value can
only be 't' (TRUE) or 'f' (FALSE)
and must be specified as a
quoted string.

Quoted String,
p. 1-1010

Non-Row
Literal

Quoted String
p. 1-1010

Literal Number
p. 1-997

Literal Collection
p. 1-985

literal BOOLEAN

Literal DATETIME
p. 1-991

Literal INTERVAL
p. 1-994

literal opaque type

USER
p. 1-890
1-1000 Informix Guide to SQL: Syntax

Literal Row
Literals of an Unnamed Row Type

To specify a literal value for an unnamed row type, introduce the literal row
with the ROW constructor and enclose the values in parentheses. For
example, suppose you define the rectangles table, as follows:

CREATE TABLE rectangles
(

area FLOAT,
rect ROW(x INTEGER, y INTEGER, length FLOAT, width FLOAT),

)

The following INSERT statement inserts values into the rect column of the
rectangles table:

INSERT INTO rectangles (rect)
VALUES ("ROW(7, 3, 6.0, 2.0)")

LIterals of a Named Row Type

To specify a literal value for a named row, type, introduce the literal row with
the ROW type constructor and enclose the literal values for each field in
parentheses. In addition, you can cast the row literal to the appropriate
named row type to ensure that the row value is generated as a named row
type. The following statements create the named row type address_t and the
employee table:

CREATE ROW TYPE address_t
(
street CHAR(20),
city CHAR(15),
state CHAR(2),
zipcode CHAR(9)
);

CREATE TABLE employee
(

name CHAR(30),
address address_t

);

The following INSERT statement inserts values into the address column of the
employee table:

INSERT INTO employee (address)
VALUES (
"ROW('103 Baker St', 'Tracy','CA', 94060)"::address_t)
SQL Statements 1-1001

Literal Row
Literals for Nested Rows

If the literal value is for a nested row, specify the ROW type constructor for
each row level. However only the outermost row is enclosed in quotes. For
example, suppose you create the following emp_tab table:

CREATE TABLE emp_tab
(

emp_name CHAR(10),
emp_info ROW(stats ROW(x INT, y INT, x FLOAT))

);

The following INSERT statement adds a row to the emp_tab table:

INSERT INTO emp_tab
VALUES ('joe boyd', "ROW(ROW(8,1,12.0))")

Field-Level Literal Values

Fields of a row can be literal values for the following built-in data types:

■ The CHAR, LVARCHAR, and VARCHAR data types have literal values
specified as quoted strings.

The NCHAR and NVARCHAR data types also use quoted strings for
literal values. ♦
For more information, see “Quoted String” on page 1-1010.

■ The DECIMAL, FLOAT, INT8, INTEGER, MONEY, SMALLFLOAT and
SMALLINT data types have literal values specified by the Literal
Number syntax.

For more information, see “Literal Number” on page 1-997.

■ The DATE data type has a literal value specified as a quoted string.

For more information, see “Quoted String” on page 1-1010.

■ The DATETIME data type has literal values specified by the Literal
DATETIME syntax.

For more information, see “Literal DATETIME” on page 1-991.

GLS
1-1002 Informix Guide to SQL: Syntax

Literal Row
■ The INTERVAL data type has literal values specified by the Literal
INTERVAL syntax.

For more information, see “Literal INTERVAL” on page 1-994.

■ The BOOLEAN data type has the literal values of 't' and 'f'.

For more information, see the description of the BOOLEAN data type
in Chapter 2 of the Informix Guide to SQL: Reference.

Important: You cannot specify the simple-large-object data types (BYTE and TEXT)
as the field type for a row.

Field values can also be literal values for the following user-defined data
types:

■ An opaque data type has a literal value that corresponds to the string
representation for the opaque data type. The input support function
of the opaque type defines this string representation

■ A collection type (SET, MULTISET, or LIST) has a literal value whose
specification depends on the context its use.

For information on literal collection value as a column value or as a
collection-variable value, see “Example of Nested Quotation Marks”
on page 1-989.

■ Another row type, named or unnamed, has a literal value specified
as field values enclosed with parentheses.

A row with a field whose data type is another row is called a nested
row.

References
See the INSERT, UPDATE, and SELECT statements in this manual. See the
CREATE ROW TYPE statement for information on named row types. See
“Constructor Expressions” on page 1-895 of the Expression segment for
information on ROW constructors. See also the Collection Literal segment.
SQL Statements 1-1003

Procedure Name
Procedure Name
The Procedure Name segment specifies the name of a procedure.

Syntax

Usage
In a statement that calls for a Procedure Name, you can enter an identifier
with an optional owner name, database name, and server name. The
database and server names allow you to use a procedure stored on a remote
database. A Procedure Name with a database name, server name, and owner
name is called a fully qualified procedure name.

The actual name of the procedure is an SQL identifier.

Element Purpose Restrictions Syntax
database The name of the database

where the procedure resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the server that

is home to database. The @
symbol is a literal character
that introduces the database
server name.

The database server that is specified in
dbservername must match the name of a
database server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner
of the procedure

If you are using an ANSI-compliant
database, you must specify an owner
for a procedure you do not own. If you
do not specify an owner, the default
owner is the current user.

The user name must
conform to the
conventions of your
operating system.

@ dbservername

database

+

Identifier
p. 1-962

:

owner

'owner'
.
.

1-1004 Informix Guide to SQL: Syntax

Procedure Name
The owner name is case sensitive. In an ANSI database, if you type quotation
marks around the name, it is stored as you type it. If you do not use quotation
marks, the name is stored as uppercase letters. For more information, see the
discussion of case sensitivity in ANSI-compliant databases on page 1-1045. ♦

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of procedures. For more information, see the
Guide to GLS Functionality. ♦

Routine Overloading

Due to routine overloading, a procedure name does not need to be unique in
Universal Server. You can define more than one procedure with the same
name and different parameter lists.

Procedures are uniquely identified by their signature. A procedure’s
signature includes the following items:

■ The routine type (FUNCTION or PROCEDURE)

■ The routine name

■ The number, data type, and order of the procedure’s parameters

If a procedure name is not unique, Universal Server uses routine resolution
to identify the instance of the procedure to execute. For more information
about routine resolution, see the Extending INFORMIX-Universal Server:
User-Defined Routines manual.

Database Name and Server Name

When you add the database name and server name options, you use a fully
qualified procedure name to specify a remote procedure. You can use those
options when:

■ All arguments passed to the procedure have built-in data types.

■ The instance of the procedure that is invoked has built-in data types
for all of its parameters.

ANSI

GLS
SQL Statements 1-1005

Procedure Name
References
In this manual, see the CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, DROP ROUTINE, EXECUTE FUNCTION, and
EXECUTE PROCEDURE statements. See also the Function Name and Specific
Name segments.

In the Informix Guide to SQL: Tutorial, see Chapter 14 for information about
how to create and use SPL routines.
1-1006 Informix Guide to SQL: Syntax

Quoted Pathname
Quoted Pathname
Use a Quoted Pathname to supply a pathname to an executable object file
when you register an external routine.

Syntax

pathname

EXT

"

environment variable$
/
.

()symbol

"

environment variable$
/

()symbol

' pathname '

$ variable

.

SQL Statements 1-1007

Quoted Pathname
Usage
A Quoted Pathname must be enclosed in single or double quotation marks.
The opening and closing quotation marks must match. The filename in the
Quoted Pathname must end in .so, because it refers to an executable object
file in a shared library.

You can omit a pathname, and enter just a filename, if you want to refer to an
internal function.

A pathname can begin with an environment variable, used as a location
indicator. An environment variable begins with a dollar sign, and must be the
first element in the pathname.

Element Purpose Restrictions Syntax
environment
variable

A platform-independent
location indicator

The environment variable name
must begin with a dollar sign
and be the first word in the
pathname.

Identifier, p. 1-962

pathname The pathname to the
dynamically loadable
executable file

An absolute pathname must
begin with a forward slash. A
relative pathname need not
begin with a period. Each
directory name must end with a
forward slash. The filename at
the end of the pathname must
end in .so and must refer to an
executable file in a shared object
library.

Identifier, p. 1-962

symbol An optional entry point to
the dynamically loadable
executable

Use a symbol only if the entry
point has a different name than
the routine you are registering
with CREATE FUNCTION or
CREATE PROCEDURE. You must
enclose a symbol in parentheses.

Identifier, p. 1-962

variable A platform-independent
location indicator that
contains the full pathname
to the executable object file

You must begin the variable
name with a dollar sign.

Identifier, p. 1-962
1-1008 Informix Guide to SQL: Syntax

Quoted Pathname
A pathname can also be absolute or relative. An absolute pathname always
begins with a forward slash. A relative pathname need not begin with a
period, and is relative from the current directory at the time the CREATE
PROCEDURE or CREATE FUNCTION statement is run.

If you use a symbol, it refers to an optional entry point in the executable object
file. Use a symbol only if the entry point has a name other than the name of
the routine that you are registering with CREATE PROCEDURE or CREATE
FUNCTION.

You can also specify the full pathname as a variable that begins with a dollar
sign.

You can include spaces or tabs within a Quoted Pathname.

References
In this manual, see the CREATE FUNCTION and CREATE PROCEDURE state-
ments and the External Routine Reference segment.

For information about how to create and use user-defined routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual. In the
Informix Guide to SQL: Tutorial, see Chapter 14 for information about how to
create and use SPL routines.

See the Extending INFORMIX-Universal Server: Data Types manual for infor-
mation about how to create external routines that define opaque data types
and distinct data types.
SQL Statements 1-1009

Quoted String
Quoted String
A quoted string is a string constant that is surrounded by quotation marks.
Use the Quoted String segment whenever you see a reference to a quoted
string in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
character A character that forms part of

the quoted string
The character or characters in
the quoted string cannot be
surrounded by double quotes if
the DELIMIDENT environment
variable is set. For additional
restrictions see “Restrictions on
Specifying Characters in Quoted
Strings” on page 1-1011.

Characters are literal
values that you enter
from the keyboard.

character

character

' '

"
' '

" "

"

+

1-1010 Informix Guide to SQL: Syntax

Quoted String
Restrictions on Specifying Characters in Quoted Strings

You must observe the following restrictions when you specify character in
quoted strings:

■ If you are using the ASCII code set, you can specify any printable
ASCII character, including a single quote or double quote. For restric-
tions that apply to using quotes within quoted strings, see “Using
Quotes in Strings” on page 1-1012.

■ If you are using a nondefault locale, you can specify non-ASCII
characters, including multibyte characters, that the code set of your
locale supports. See the discussion of quoted strings in the Guide to
GLS Functionality for further information. ♦

■ When you set the DELIMIDENT environment variable, you cannot
use double quotes to delimit a quoted string. When DELIMIDENT is
set, a string enclosed in double quotes is an identifier, not a quoted
string. When DELIMIDENT is not set, a string enclosed in double
quotes is a quoted string, not an identifier. See “Using Quotes in
Strings” on page 1-1012 for further information.

■ You can enter DATETIME and INTERVAL data as quoted strings. See
“DATETIME and INTERVAL Values as Strings” on page 1-1012 for
the restrictions that apply to entering DATETIME and INTERVAL data
in quoted-string format.

■ Quoted strings that are used with the LIKE or MATCHES keyword in
a search condition can include wildcard characters that have a
special meaning in the search condition. See “LIKE and MATCHES
in a Condition” on page 1-1012 for further information.

■ When you insert a value that is a quoted string, you must observe a
number of restrictions. See “Inserting Values as Quoted Strings” on
page 1-1013 for further information.

Usage
The string constant must be written on a single line; that is, you cannot use
embedded new lines.

GLS
SQL Statements 1-1011

Quoted String
Using Quotes in Strings
The single quote has no special significance in string constants delimited by
double quotes. Likewise, the double quote has no special significance in
strings delimited by single quotes. For example, the following strings are
valid:

"Nancy's puppy jumped the fence"
'Billy told his kitten, "no!" '

If your string is delimited by double quotes, you can include a double quote
in the string by preceding the double quote with another double quote, as
shown in the following string:

"Enter ""y"" to select this row"

When the DELIMIDENT environment variable is set, double quotes delimit
identifiers, not strings. See “Delimited Identifiers” on page 1-965 for further
information on delimited identifiers.

DATETIME and INTERVAL Values as Strings
You can enter DATETIME and INTERVAL data in the literal forms described in
the “Literal DATETIME” and “Literal INTERVAL” segments beginning on
pages 1-991 and 1-994, respectively, or you can enter them as quoted strings.
Valid literals that are entered as character strings are converted automatically
into DATETIME or INTERVAL values. The following INSERT statements use
quoted strings to enter INTERVAL and DATETIME data:

INSERT INTO cust_calls(call_dtime) VALUES ('1993-5-4 10:12:11')

INSERT INTO manufact(lead_time) VALUES ('14')

The format of the value in the quoted string must exactly match the format
specified by the qualifiers of the column. For the first case in the preceding
example, call_dtime must be defined with the qualifiers YEAR TO MINUTE
for the INSERT statement to be valid.

 LIKE and MATCHES in a Condition
Quoted strings with the LIKE or MATCHES keyword in a condition can
include wildcard characters. See the “Condition” segment beginning on
page 1-831 for a complete description of how to use wildcard characters.
1-1012 Informix Guide to SQL: Syntax

Quoted String
Inserting Values as Quoted Strings
If you are inserting a value that is a quoted string, you must adhere to the
following conventions:

■ Enclose CHAR, VARCHAR, NCHAR, NVARCHAR, DATE, DATETIME,
and INTERVAL values in quotation marks.

■ Set DATE values in the mm/dd/yy format.

■ You cannot insert strings longer than 256 bytes.

■ Numbers with decimal values must contain a decimal point. You
cannot use a comma as a decimal indicator.

■ You cannot precede MONEY data with a dollar sign ($) or include
commas.

■ You can include NULL as a placeholder only if the column accepts
null values.

References
In the Informix Guide to SQL: Reference, see the discussion of the DELIMIDENT
environment variable in Chapter 3.

In the Guide to GLS Functionality, see the discussion of quoted strings.
SQL Statements 1-1013

Relational Operator
Relational Operator
A relational operator compares two expressions quantitatively. Use the
Relational Operator segment whenever you see a reference to a relational
operator in a syntax diagram.

Syntax

Each operator shown in the syntax diagram has a particular meaning.

+

<

<

>

>

=

<

!=

Relational Operator Meaning

< Less than

<= Less than or equal to

> Greater than

= Equal to

>= Greater than or equal to

<> Not equal to

!= Not equal to
1-1014 Informix Guide to SQL: Syntax

Relational Operator
Usage
For DATE and DATETIME expressions, greater than means later in time.

For INTERVAL expressions, greater than means a longer span of time.

For CHAR, VARCHAR, and LVARCHAR expressions, greater than means after in
code-set order.

Locale-based collation order is used for NCHAR and NVARCHAR expressions.
So for NCHAR and NVARCHAR expressions, greater than means after in the
locale-based collation order. See the Guide to GLS Functionality for further
information on locale-based collation order and the NCHAR and NVARCHAR
data types. ♦

Using Operator Functions in Place of Relational Operators
Each relational operator is bound to a particular function, as shown in the
table below. The function accepts two values and returns a boolean value of
true, false, or unknown.

Relational Operator Associated Function

< lessthan()

<= lessthanorequal()

> greater than()

>= greaterthanorequal()

= equal()

<> notequal()

!= notequal()

GLS
SQL Statements 1-1015

Relational Operator
Connecting two expressions with a binary operator is equivalent to invoking
the function on the expressions. For example, the following two statements
both select orders with a shipping charge of $18.00 or more. The >= operator
in the first statement implicitly invokes the greaterthanorequal() operator
function.

SELECT order_num FROM orders
WHERE ship_charge >= 18.00

SELECT order_num FROM orders
WHERE greaterthanorequal(ship_charge, 18.00)

The database server provides the functions associated with the relational
operators for all built-in data types. When you develop a user-defined data
type, you must define the functions for that type for users to be able to use
the relational operator on the type.

Collating Order for English Data
If you are using the default locale (U.S. English), the database server uses the
code-set order of the default code set when it compares the character expres-
sions that precede and follow the relational operator. On UNIX platforms, the
default code set is the ISO8859-1 code set, which consists of the following sets
of characters:

■ The ASCII characters have code points in the range of 0 to 127.

This range contains control characters, punctuation symbols,
English-language characters, and numerals.

■ The 8-bit characters have code points in the range 128 to 255.

This range includes many non-English-language characters (such as
é, â, ö, and ñ) and symbols (such as £, ©, and ¿).
1-1016 Informix Guide to SQL: Syntax

Relational Operator
The following table shows the ASCII code set. The Num column shows the
ASCII code numbers, and the Char column shows the ASCII character corre-
sponding to each ASCII code number. ASCII characters are sorted according
to their ASCII code number. Thus lowercase letters follow uppercase letters,
and both follow numerals. In this table, the caret symbol (^) stands for the
CTRL key. For example, ^X means CTRL-X.

Num Char Num Char Num Char

0 ^@ 43 + 86 V

1 ^A 44 , 87 W

2 ^B 45 - 88 X

3 ^C 46 . 89 Y

4 ^D 47 / 90 Z

5 ^E 48 0 91 [

6 ^F 49 1 92 \

7 ^G 50 2 943]

8 ^H 51 3 94 ^

9 ^I 52 4 95 _

10 ^J 53 5 96 `

11 ^K 54 6 97 a

12 ^L 55 7 98 b

13 ^M 56 8 99 c

14 ^N 57 9 100 d

15 ^O 58 : 101 e

16 ^P 59 ; 102 f

17 ^Q 60 < 103 g

18 ^R 61 = 104 h

19 ^S 62 > 105 i

 (1 of 2)
SQL Statements 1-1017

Relational Operator
20 ^T 63 ? 106 j

21 ^U 64 @ 107 k

22 ^V 65 A 108 l

23 ^W 66 B 109 m

24 ^X 67 C 110 n

25 ^Y 68 D 111 o

26 ^Z 69 E 112 p

27 esc 70 F 113 q

28 ^\ 71 G 114 r

29 ^] 72 H 115 s

30 ^^ 73 I 116 t

31 ^_ 74 J 117 u

32 75 K 118 v

33 ! 76 L 119 w

34 " 77 M 120 x

35 # 78 N 121 y

36 $ 79 O 122 z

37 % 80 P 123 {

38 & 81 Q 124 |

39 ' 82 R 125 }

40 (83 S 126 ~

41) 84 T 127 del

42 * 85 U

Num Char Num Char Num Char

 (2 of 2)
1-1018 Informix Guide to SQL: Syntax

Relational Operator
Support for ASCII Characters in Nondefault Code Sets
Most code sets in nondefault locales (called nondefault code sets) support the
ASCII characters. If you are using a nondefault locale, the database server
uses ASCII code-set order for any ASCII data in CHAR and VARCHAR expres-
sions, as long as the nondefault code set supports these ASCII characters. ♦

References
In the Informix Guide to SQL: Tutorial, see the discussion of relational
operators in the SELECT statement in Chapter 2.

In the Guide to GLS Functionality, see the discussion of relational operator
conditions in the SELECT statement.

GLS
SQL Statements 1-1019

Return Clause
Return Clause

Syntax

Usage
The Return clause is used in the CREATE FUNCTION statement to specify the
data types of the value or values that a user-defined function returns. In the
Return clause, you can use the keywords RETURNING and RETURNS
interchangeably.

If you overload functions in your database, the data type of the return value
is subject to routine resolution. For more information on routine resolution,
see the Extending INFORMIX-Universal Server: User-Defined Routines manual.

For an SPL function, you can specify more than one data type in the Return
clause.

If you write a stored procedure (a legacy SPL function), you can use a Return
clause with the CREATE PROCEDURE statement. However, Informix recom-
mends that you create new SPL functions with the CREATE FUNCTION
statement. Any routine you create with a Return clause is considered a
function. ♦

REFERENCESRETURNS

RETURNING

BYTE

TEXT

SPL
,

SQL Data Type
(Subset)
p. 1-1021

SQL Data Type
(Subset)
p. 1-1021

Return Clause

SPL
1-1020 Informix Guide to SQL: Syntax

Return Clause
For an external function, specify exactly one value in the Return clause.
However, an external function can return more than one row of data if it is an
iterator function. For more information, see the description of the ITERATOR
routine modifier in the Routine Modifier segment. ♦

SQL Data Types (Subset)

SPL functions and external functions can return values of any data type
defined in the database, except SERIAL, SERIAL8, TEXT, BYTE, CLOB, or BLOB.

An external or SPL function can return values of COLLECTION, SET,
MULTISET, LIST, or ROW data type, as the following example shows:

CREATE FUNCTION add_types(a dollar, b yen)
RETURNING collection1, row1 ... ;

The calling routine must define variables of the appropriate complex types to
hold the values the function returns.

A function can also return a value or values of an opaque or distinct data type
that the database defines.

Referencing a Simple Large Object

Neither an SPL function nor an external function can return a TEXT or BYTE
value (collectively called simple large objects) directly. A function can,
however, use the REFERENCES keyword to return a descriptor that contains
a pointer to a TEXT or BYTE object.

A function cannot return a CLOB or BLOB, or a pointer to a CLOB or BLOB.

References
See the CREATE FUNCTION, CREATE PROCEDURE, EXECUTE FUNCTION,
EXECUTE PROCEDURE, and CALL statements in this manual.

In the Informix Guide to SQL: Tutorial, see Chapter 14 for information about
how to create and use SPL functions.

See the Extending INFORMIX-Universal Server: User-Defined Routines manual
for information about how to create and use external functions.

EXT
SQL Statements 1-1021

Routine Modifier
Routine Modifier
Use a Routine Modifier clause to specify attributes of a user-defined routine
behaves. The Routine Modifier clause can be a Function Modifier or a
Procedure Modifier.

Function Modifier
Function modifiers are valid in the WITH clause of the CREATE FUNCTION
statement to register a user-defined function.

Function
Modifier

Procedure
Modifier

p. 1-1023

Function
Modifier

HANDLESNULLS

CLASS

INTERNAL

STACK

=

= stack
size

class name

NOT

VARIANT

‘CPU VP’

ITERATOR
1-1022 Informix Guide to SQL: Syntax

Routine Modifier
Procedure Modifier
Procedure modifiers are valid in the WITH clause of the CREATE PROCEDURE
statement to register a user-defined procedure.

Element Purpose Restrictions Syntax
class name The name of the virtual

processor class in which the
routine is to run

An external function must run in
the CPU VP or in an external VP
(EVP) class.

If you specify an EVP class, the class
must already be defined.

You must enclose the class name in
single or double quotation marks.

Quoted String,
p. 1-1010

stack size The size of the stack while the
routine is running

The stack size must be a positive
integer and gives the stack size in
bytes.

The stack size should be larger than
the stack size specified in the
STACKSIZE configuration
parameter.

Literal Number,
p. 1-997

Procedure
Modifier

HANDLESNULLS

CLASS

INTERNAL

STACK

=

= stack size

class name

‘CPU VP’
SQL Statements 1-1023

Routine Modifier
Modifier Descriptions
The following sections describe each of the routine modifiers.

HANDLESNULLS

You can use the HANDLESNULLS modifier with both external functions and
external procedures. HANDLESNULLS specifies that an external routine can
handle NULL values passed to it as arguments. If you do not specify
HANDLESNULLS, and if you pass an argument with a NULL value to the
routine, the routine does not execute and returns a NULL value.

By default, HANDLESNULLS is not set for external routines. That is, the
database server assumes that an external routine does not handle null
arguments. If your external routine handles NULL values, specify
HANDLESNULLS in the WITH clause of the CREATE FUNCTION or CREATE
PROCEDURE statement. ♦

Do not use HANDLESNULLS with SPL routines. SPL routines handle NULL
values by default. You do not need to specify HANDLESNULLS so that an SPL
routine handles NULL values. ♦

Element Purpose Restrictions Syntax
class name The name of the virtual

processor class in which the
routine is to run

An external procedure must run in
the CPU VP or in an external VP
(EVP) class.

If you specify an EVP class, the class
must already be defined.

You must enclose the class name in
single or double quotation marks.

Quoted String,
p. 1-1010

stack size The size of the stack while the
routine is running

The stack size must be a positive
integer and gives the stack size in
bytes.

The stack size should be larger than
the stack size specified in the
STACKSIZE configuration
parameter.

Literal Number,
p. 1-997

EXT

SPL
1-1024 Informix Guide to SQL: Syntax

Routine Modifier
CLASS

You can use the CLASS modifier with both external functions and external
procedures. The CLASS modifier runs the external routine in a virtual
processor class (VP class) that you specify. The purpose of setting up classes
of virtual processors is to group sets of routines, so that the routines in a
group execute within the same context.

You can run external routines written in C in the CPU virtual processor (CPU
VP) class or in an external virtual processor (EVP) class that you name with
the CLASS modifier. If you do not specify a VP class, the external routine runs
in the CPU VP class by default.

If an external routine is ill-behaved, you must run it in a class other than the
CPU VP. A routine is ill-behaved if it does any of the following:

■ Runs for a long time without yielding

■ Makes an operating system call that can block other calls, for
example, READ, WRITE, SELECT, POLL, PUTMSG, BGETMSG, SEMOP,
MSGGET, PAUSE, and WAIT

■ Modifies the global state of the virtual processor on which it is
running by:

❑ Modifying global or static data

❑ Opening a file descriptor using OPEN, DUP, IOCTL, SOCKET, or
similar commands

❑ Changing the current working directory

❑ Calling the brk(), sbrk(), or malloc() functions

❑ Using operating system threads

■ Calls one of the following ill-behaved C library functions: stdio(),
getpwent(), and gethostbyname().

Use the CLASS modifier in the WITH clause of the CREATE FUNCTION or
CREATE PROCEDURE statement to name an external VP class for any routine
that might cause the database server to hang, stop running, or behave
erratically. ♦

Do not use CLASS with SPL routines. SPL routines always run in the CPU VP. ♦

EXT

SPL
SQL Statements 1-1025

Routine Modifier
VARIANT and NOT VARIANT

You can use VARIANT and NOT VARIANT with user-defined functions, both
external functions and SPL functions. A function is variant if it returns
different results when it is invoked with the same arguments, or if it modifies
a database or variable state. For example, a function that returns the current
date or time is a variant function.

By default, user-defined functions are variant. To define a non-variant
function, specify NOT VARIANT in the WITH clause of the CREATE FUNCTION
statement. If the function is non-variant, the database server may cache the
return values of expensive functions or run parallel queries. You can create
functional indexes only on non-variant functions. For more information on
functional indexes, see the CREATE INDEX statement. ♦

You can specify VARIANT or NOT VARIANT in the Routine Modifier clause or
in the External Routine Reference clause, which is described on page 1-956. If
you specify the modifier in both places, you must use the same modifier in
both. ♦

STACK

You can use the STACK modifier with both external procedures and external
functions. The STACK modifier enables the database server to run an external
routine in a stack that is larger than the stack size that the STACKSIZE config-
uration parameter specifies. When the external routine executes, the database
server increases the stack size of the routine to the number of bytes specified.
When the routine completes, the original stack size is restored. Specify a
larger stack size to prevent stack overflow. ♦

You cannot use the STACK modifier with SPL routines. ♦

INTERNAL

You can use the INTERNAL modifier with both external procedures and
external functions. The INTERNAL modifier specifies that an SQL or SPL
statement cannot call the external routine. A routine that is specified
INTERNAL is not considered during routine resolution. Use INTERNAL for
external routines that define access methods, language managers, and so on.
For more information on how to write iterator functions, see the DataBlade
API Programmer’s Manual.

EXT

EXT

SPL

EXT
1-1026 Informix Guide to SQL: Syntax

Routine Modifier
By default, an external routine is not internal; that is, an SQL or SPL statement
can call the routine. To define an internal function, specify INTERNAL in the
WITH clause of the CREATE FUNCTION or CREATE PROCEDURE statement. ♦

You cannot use the INTERNAL modifier with SPL routines. ♦

ITERATOR

Use the ITERATOR modifier only with external functions. This modifier is not
valid for external procedures. The ITERATOR modifier specifies that the
external function is an iterator function; that is, it returns a set of values and is
invoked repeatedly by the database server. An iterator function is similar to
an SPL function that contains the RETURN WITH RESUME statement.

By default, an external function is not an iterator. To define an iterator
function, specify ITERATOR in the WITH clause of the CREATE FUNCTION
statement. ♦

You cannot use the ITERATOR modifier with SPL routines. ♦

Both an iterator function and an SPL function with RETURN WITH RESUME
require a cursor to be executed. The cursor allows the client application to
retrieve the values one at a time with the FETCH statement. ♦

References
In this manual, see the CREATE FUNCTION and CREATE PROCEDURE state-
ments.

For information about how to create and use external routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual and the
DataBlade API Programmer’s Manual. For information about how to create and
use SPL routines, see Chapter 14 in the Informix Guide to SQL: Tutorial.

SPL

EXT

SPL

E/C
SQL Statements 1-1027

Routine Parameter List
Routine Parameter List
Use the Function Parameter List to define the parameters an external
function or SPL function can accept. Use the Procedure Parameter List to
define the parameters an external procedure or SPL procedure can accept.

Function Parameter List

Procedure Parameter List

Function
Parameter List

Procedure
Parameter List

Function
Parameter List

OUT

,

Parameter
p. 1-1029

, Parameter
p. 1-1029

Procedure
Parameter List

,

Parameter
p. 1-1029
1-1028 Informix Guide to SQL: Syntax

Routine Parameter List
Parameter

A Parameter is one item in a Function Parameter List or Procedure Parameter
List.

Element Purpose Restrictions Syntax
column
name

The name of a column whose
data type is assigned to the
parameter

The column must exist in the
specified table.

Identifier, p. 1-962

parameter
name

The name of a parameter the
routine can accept

The parameter name is required for
SPL routines and optional for
external routines in the CREATE
FUNCTION and CREATE
PROCEDURE statements.

Identifier, p. 1-962

table name The name of the table that
contains column name

The table must exist in the database. Identifier, p. 1-962

value The default value that a routine
uses if you do not supply a value
for the parameter when you call
the routine

This value must be a literal.

If value is a literal, the value must
have the same data type as parameter
name.

If value is a literal and its type is an
opaque type, an input function must
be defined on the type.

Literal Number,
p. 1-997

Parameter

LIKE .

SQL Data
Type (subset),

p. 1-1030
EXT

SPL parameter
name

parameter
name

table
name

column
name

REFERENCES BYTE

TEXT DEFAULT

DEFAULT value

NULL
SQL Statements 1-1029

Routine Parameter List
Usage

To define a parameter when creating a routine, specify its name (required for
SPL routines; optional for external routines) and its data type. The data type
can be any data type in the database, except SERIAL, SERIAL8, TEXT, BYTE,
CLOB, or BLOB.

The data type can be the name of an opaque, distinct, or row type you have
defined. The data type can also be COLLECTION, SET, MULTISET, LIST, or ROW
with the definition of an unnamed row type. For the complete syntax of all
the SQL data types, see “Data Type” on page 1-855.

SQL Data Type (Subset)

A routine can define a parameter of any data type defined in the database,
except SERIAL, SERIAL8, TEXT, BYTE, CLOB, or BLOB. A parameter can have
an opaque type, distinct type, built-in type (except the excluded data types
just listed), collection type, named row type, or unnamed row type.

A parameter can also be of type COLLECTION, which is a generic collection
type that can accept any SET, MULTISET, or LIST as an argument.

For more information on defining data types for parameters, see “Data Type”
on page 1-855.

LIKE Clause

The LIKE keyword specifies that the data type of a parameter is the same as a
column defined in the database and changes with the column definition. If
you define a parameter with LIKE, the parameter’s data type changes as the
data type of the column changes.

If any of the arguments for the routine are defined using the LIKE clause, you
cannot overload the routine and the routine will not be considered in the
routine resolution process.

For example, suppose you create the following routine:

CREATE PROCEDURE cost (a LIKE tab.col, b INT)
.
.
.
END PROCEDURE;
1-1030 Informix Guide to SQL: Syntax

Routine Parameter List
Now you cannot create another routine named cost() in the same database
with two arguments. However, you can create a routine named cost() with a
number of arguments other than two.

REFERENCES Clause

Use the REFERENCES clause to specify that a parameter contains TEXT or
BYTE data.

The REFERENCES keyword allows you to use a pointer to a TEXT or BYTE
object as a parameter. You cannot use a TEXT or BYTE object directly.

If you use the DEFAULT NULL option in the REFERENCES clause, and you call
the routine without a parameter, a null value is used.

Default Value

You can use the DEFAULT keyword followed by an expression to specify a
default value for a parameter. If you provide a default value for a parameter,
and the routine is called with fewer arguments than were defined for that
routine, the default value is used. If you do not provide a default value for a
parameter, and the routine is called with fewer arguments than were defined
for that routine, the calling application receives an error.

The following example shows a CREATE FUNCTION statement that specifies
a default value for a parameter. This function finds the square of the i
parameter. If the function is called without specifying the argument for the i
parameter, the database server uses the default value 0 for the i parameter.

CREATE FUNCTION square_w_default
(i INT DEFAULT 0) {Specifies default value of i}

RETURNING INT; {Specifies return of INT value}

DEFINE j INT; {Defines procedure variable j}
LET j = i * i; {Finds square of i and assigns it to j}
RETURN j; {Returns value of j to calling module}

END FUNCTION;
SQL Statements 1-1031

Routine Parameter List
Warning: When you specify a date value as the default value for a parameter, make
sure to specify 4 digits instead of 2 digits for the year. When you specify a 4-digit year,
the DBCENTURY environment variable has no effect on how the database server
interprets the date value. When you specify a 2-digit year, the DBCENTURY
environment variable can affect how the database server interprets the date value, so
the routine might not use the default value that you intended. See the “Informix
Guide to SQL: Reference” for more information on the DBCENTURY environment
variable.

Specifying an OUT Parameter (Functions Only)

When you register an external function written in C, you can specify that the
last parameter in the list is an OUT parameter. The OUT parameter corre-
sponds to a value the function returns indirectly, through a pointer. The value
the function returns through the pointer is an extra value, in addition to the
value it returns explicitly.

Once you register a function with an OUT parameter, you can use the
function with a Statement Local Variable (SLV) in an SQL statement. You can
only mark one parameter as OUT, and it must be the last parameter.

For example, the following declaration of a C language function allows you
to return an extra value through the y parameter:

int my_func(int x, int *y);

You would register the function with a CREATE FUNCTION statement similar
to this one:

CREATE FUNCTION my_func(x INT, OUT y INT)
RETURNING INT
EXTERNAL NAME "/usr/lib/local_site.so"
LANGUAGE C
END FUNCTION;
1-1032 Informix Guide to SQL: Syntax

Routine Parameter List
If you specify an OUT parameter, and if you use Informix-style parameters,
the argument is passed to the OUT parameter by reference.

The OUT parameter is not significant in determining the routine signature.

References
In this manual, see the CREATE FUNCTION and CREATE PROCEDURE state-
ments. See also the Argument segment.

For information about how to create and use external routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual. For
information about how to create and use SPL routines, see Chapter 14 in the
Informix Guide to SQL: Tutorial.
SQL Statements 1-1033

Specific Name
Specific Name
Use a Specific Name to give a routine a name that is unique in the database
or name space.

Syntax

specific
identifier

Specific Name

.owner
name
1-1034 Informix Guide to SQL: Syntax

Specific Name
Usage
A Specific Name is a unique identifier that you define in a CREATE
PROCEDURE or CREATE FUNCTION statement to serve as an alternate name
for a routine.Because you can create user-defined routines to overload
routines, a database can have more than one routine with the same name and
different parameter lists. You can assign a routine a Specific Name that
uniquely identifies the specific routine.

Element Purpose Restrictions Syntax
owner name The name of the owner of the

routine
This name, if used, must be the
same owner name used in the
Function Name or Procedure
Name for this routine.

If no owner name is specified in
the routine name, then the owner
name you use in the Specific
Name must be the user id of the
person creating the routine.

If you omit owner name, the
server uses the user id of the
person creating the routine.

Identifier, p. 1-962

specific
identifier

The unique name of the routine In a non-ANSI database, the
specific identifier must be unique
within the database. In other
words, two specific names
cannot have the same specific
identifier even if they have two
different owners.

In an ANSI database, the specific
identifier must be unique for the
owner. In other words, the same
specific identifier can be used for
two routines within the same
database if the routines have
different owners.

The specific identifier can be up
to 128 characters long.

Identifier, p. 1-962
SQL Statements 1-1035

Specific Name
If you give a routine a Specific Name when you create it, you can later alter
or drop that routine using the Specific Name only. Otherwise, you need to
include the parameter data types with the routine name when you drop the
routine, if the routine name alone does not uniquely identify the routine.

You can use a Specific Name in the following SQL statements:

■ DROP

■ GRANT

■ REVOKE

■ UPDATE STATISTICS

In an ANSI database, you can use the same specific identifier for two routines
within the same database if the routines have different owners.

The Specific Name must be unique within the name space in which it is
created:

■ For ANSI-compliant databases, the name space is the schema.

■ For databases that are not ANSI compliant, the name space is the
database.

References
In this manual, see the CREATE FUNCTION, CREATE PROCEDURE, DROP
FUNCTION, DROP PROCEDURE, DROP ROUTINE, EXECUTE FUNCTION, and
EXECUTE PROCEDURE statements. See also the Function Name and
Procedure Name segments.

For information about how to create and use external routines, see the
Extending INFORMIX-Universal Server: User-Defined Routines manual. For
information about how to create and use SPL routines, see Chapter 14 in the
Informix Guide to SQL: Tutorial.
1-1036 Informix Guide to SQL: Syntax

Statement Block
Statement Block
Use a Statement Block, instead of an External Routine Reference, when you
write an SPL routine.

Syntax

Usage
If the statement block portion of the statement is empty, no operation takes
place when you call the routine. You might use such a routine in the devel-
opment stage when you want to establish the existence of a routine but have
not yet coded it.

Also, you cannot close the current database or select a new database within a
routine. And you cannot drop the current stored routine within a stored
routine. You can, however, drop another routine.

Statement
Block

 BEGIN END

EXECUTE PROCEDURE
Statement
p. 1-404

ON
EXCEPTION

Statement
p. 2-43

DEFINE
Statement

p. 2-8

SPL Statement
(Subset)
p. 1-1038

EXECUTE FUNCTION
Statement
p. 1-394

SQL Statement
(Subset)
p. 1-1038
SQL Statements 1-1037

Statement Block
Subset of SQL Statements Allowed in the Statement Block

You can use any SQL statement in the statement block, except those listed in
the following table.

Figure 1-7
SQL Statements That Cannot Be Used in an SPL Routine

Subset of SPL Statements Allowed in the Statement Block

You can use any of the following SPL statements in the statement block.

Figure 1-8
SPL Statements that Can Be Used in an SPL Routine

ALLOCATE COLLECTION EXECUTE
ALLOCATE DESCRIPTOR EXECUTE IMMEDIATE
ALLOCATE ROW FETCH
CLOSE FLUSH
CLOSE DATABASE FREE
CONNECT GET DESCRIPTOR
CREATE DATABASE INFO
CREATE FUNCTION LOAD
CREATE FUNCTION FROM OPEN
CREATE PROCEDURE OUTPUT
CREATE PROCEDURE FROM PREPARE
CREATE ROUTINE PUT
DEALLOCATE COLLECTION ROLLFORWARD DATABASE
DEALLOCATE DESCRIPTOR SET CONNECTION
DEALLOCATE ROW SET DESCRIPTOR
DECLARE UNLOAD
DESCRIBE WHENEVER
DISCONNECT

CALL LET
CONTINUE RAISE EXCEPTION
EXIT RETURN
FOR SYSTEM
FOREACH TRACE
IF WHILE
1-1038 Informix Guide to SQL: Syntax

Statement Block
Restrictions on SELECT Statement

You can use a SELECT statement in only two cases:

■ You can use the INTO TEMP clause to put the results of the SELECT
statement into a temporary table.

■ You can use the SELECT... INTO form of the SELECT statement to put
the resulting values into SPL variables.

Support for Roles and User Identity

You can use roles with routines you create. You can execute role-related
statements (CREATE ROLE, DROP ROLE, and SET ROLE) and SET SESSION
AUTHORIZATION statements within a routine. You can also grant privileges
to roles with the GRANT statement within a routine. Privileges that a user has
acquired through enabling a role or by a SET SESSION AUTHORIZATION state-
ment are not relinquished when a routine is executed.

For further information about roles, see the CREATE ROLE, DROP ROLE,
GRANT, REVOKE, and SET ROLE statements in this guide.

Restrictions on a Routine Called in a Data Manipulation Statement

If a routine is called as part of an INSERT, UPDATE, DELETE, or SELECT
statement, the called routine cannot execute any statement listed in
Figure 1-9. This restriction ensures that the routine cannot make changes that
affect the SQL statement that contains the routine call.

Figure 1-9
SQL Statements Not Allowed in an SPL Routine That a Data Manipulation Statement Calls

ALTER FRAGMENT DROP TABLE
ALTER INDEX DROP TRIGGER
ALTER TABLE DROP VIEW
BEGIN WORK INSERT
COMMIT WORK RENAME COLUMN
CREATE TRIGGER RENAME TABLE
DELETE ROLLBACK WORK
DROP DATABASE SET CONSTRAINTS
DROP INDEX UPDATE
DROP SYNONYM
SQL Statements 1-1039

Statement Block
For example, if you use the following INSERT statement, the execution of the
called procedure dup_name is restricted:

CREATE PROCEDURE sp_insert ()
.
.
.
INSERT INTO q_customer

VALUES (SELECT * FROM customer
WHERE dup_name ('lname') = 2)

.

.

.
END PROCEDURE;

In this example, dup_name cannot execute the statements listed in
Figure 1-9. However, if dup_name is called within a statement that is not an
INSERT, UPDATE, SELECT, or DELETE statement (namely EXECUTE
PROCEDURE), dup_name can execute the statements listed in Figure 1-9.

You can use the BEGIN WORK and COMMIT WORK statements in procedures.
You can start a transaction, finish a transaction, or start and finish a trans-
action in a procedure. If you start a transaction in a procedure that is executed
remotely, you must finish the transaction before the procedure exits.

Warning: When you specify a date value in an expression in any statement in the
statement block, make sure to specify 4 digits instead of 2 digits for the year. When
you specify a 4-digit year, the DBCENTURY environment variable has no effect on
how the database server interprets the date value. When you specify a 2-digit year,
the DBCENTURY environment variable can affect how the database server interprets
the date value, so the routine might produce unpredictable results. See the “Informix
Guide to SQL: Reference” for more information on the DBCENTURY environment
variable.

Adding Comments to an SPL Routine

To add a comment to any line of a routine, place a double-dash (--) before the
comment or enclose the comment in braces ({}). The double dash complies
with the ANSI standard. The curly brackets are an Informix extension to the
ANSI standard.
1-1040 Informix Guide to SQL: Syntax

Statement Block
References
In this manual, see the CREATE FUNCTION and CREATE PROCEDURE
statements.

In the Informix Guide to SQL: Tutorial, see Chapter 14 for information about
how to create and use SPL routines.
SQL Statements 1-1041

Synonym Name
Synonym Name
The Synonym Name segment specifies the name of a synonym. Use the
Synonym Name segment whenever you see a reference to a synonym name
in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
database The name of the database where

the synonym resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the Universal

Server database server that is
home to database. The @ symbol
is a literal character that intro-
duces the database server name.

The database server specified in
dbservername must match the
name of a database server in the
sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner of
the synonym

If you are using an ANSI-
compliant database, you must
specify the owner for a synonym
that you do not own. If you put
quotation marks around the
name that you enter in owner, the
name is stored exactly as typed.
If you do not put quotation
marks around the name that you
enter in owner, the name is stored
as uppercase letters.

The user name must
conform to the
conventions of your
operating system.

@ dbservername

owner.

database :

+
'owner'.

Identifier
p. 1-962
1-1042 Informix Guide to SQL: Syntax

Synonym Name
Usage
The actual name of the synonym is an SQL identifier.

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of synonyms. For more information, see the Guide
to GLS Functionality. ♦

If you are creating the synonym, the name of the synonym must be unique
within a database. The name cannot be the same as table names, temporary
table names, or view names. It is possible to have a public and private
synonym with the same name.

If you are creating the synonym, the combination owner.name must be unique
within a database.

The owner name is case sensitive. In an ANSI-compliant database, if you do
not use quotes around the owner name, the name of the table owner is stored
in uppercase letters. For more information, see the discussion of case
sensitivity in ANSI-compliant databases on page 1-1045. ♦

References
See the CREATE SYNONYM statement in this manual for information on
creating synonyms.

In the Informix Guide to SQL: Tutorial, see the discussion of synonyms in
Chapter 11.

GLS

ANSI
SQL Statements 1-1043

Table Name
Table Name
The Table Name segment specifies the name of a table. Use the Table Name

segment whenever you see a reference to a table name in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
database The name of the database

where the table resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the

Universal Server
database server that is
home to database. The @
symbol is a literal
character that introduces
the database server name.

The database server that is specified in dbserv-
ername must match the name of a database
server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the
owner of the table

If you are using an ANSI-compliant database,
you must specify the owner for a table that you
do not own. If you put quotation marks
around the name that you enter in owner, the
name is stored exactly as typed. If you do not
put quotation marks around the name that you
enter in owner, the name is stored as uppercase
letters. In SELECT statements and other state-
ments that access tables in an ANSI-compliant
database, the table owner that you specify
must exactly match the actual owner of the
table. See “Case Sensitivity in ANSI-
Compliant Databases” on page 1-1045 for
further information on this restriction.

The user name
must conform to
the conventions
of your
operating
system.

@ dbservername

owner.

database :

+

Identifier
p. 1-962

'owner'.
1-1044 Informix Guide to SQL: Syntax

Table Name
Usage
The name of a table is an SQL identifier. The following example shows a table
specification:

empinfo@personnel:emp_names

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of tables. For more information, see the Guide to
GLS Functionality. ♦

If you are creating or renaming a table, the name of the table must be unique
among all the tables, synonyms, temporary tables, and views that already
exist in the database.

If you are creating or renaming a table, you must make sure that the
combination of owner and name is unique within a database.

In an ANSI-compliant database, the table name must include owner. unless
you are the owner. For system catalog tables, the owner is informix. ♦

Case Sensitivity in ANSI-Compliant Databases
The database server shifts the owner name to uppercase letters before the
statement executes, unless the owner name is enclosed in quotes. Put quotes
around the owner portion of a name if you want the owner to be read exactly
as written. In the following example, the name cathl in the first statement is
upshifted to CATHL before it is used; the name nancy in the second statement
is not upshifted:

SELECT * FROM cathl.customer

SELECT * FROM 'nancy'.customer

No problem exists if you create a table with an implicit owner in uppercase
letters and the owner’s real login name is also in uppercase letters. For
example, suppose that you are the user BROWN, and you create a view with
the following statement:

CREATE VIEW newcust AS
SELECT fname, lname FROM customer WHERE state = 'NJ'

GLS

ANSI

ANSI
SQL Statements 1-1045

Table Name
You, BROWN, can run the following SELECT statements on the view:

SELECT * FROM brown.newcust

SELECT * FROM newcust

SELECT * FROM systables WHERE tabname = newcust
AND owner = USER

In the first query in the preceding example, the database server automatically
upshifts brown before the SELECT statement executes. In the second query,
the database server returns the owner name BROWN already upshifted. In
the third query, USER returns the login name as it is stored—in this case, in
uppercase letters. If you are the user nancy, and you use the following
statement, the resulting view has the name NANCY.njcust:

CREATE VIEW nancy.njcust AS
SELECT fname, lname FROM customer WHERE state = 'NJ'

If you are nancy, and you use the following statement, the resulting view has
the name nancy.njcust:

CREATE VIEW 'nancy'.njcust AS
SELECT fname, lname FROM customer WHERE state = 'NJ'

The following SELECT statement fails because it tries to match the name
NANCY.njcust to the actual owner and table name of nancy.njcust:

SELECT * FROM nancy.njcust

♦

References
See the CREATE TABLE statement in this manual for information on creating
tables.

In the Informix Guide to SQL: Tutorial, see the discussion of tables in Chapter 9.
1-1046 Informix Guide to SQL: Syntax

View Name
View Name
The View Name segment specifies the name of a view. Use the View Name
segment whenever you see a reference to a view name in a syntax diagram.

Syntax

Element Purpose Restrictions Syntax
database The name of the database where

the view resides
The database must exist. Database Name,

p. 1-852
dbservername The name of the Universal

Server database server that is
home to database. The @ symbol
is a literal character that intro-
duces the database server name.

The database server that is
specified in dbservername must
match the name of a database
server in the sqlhosts file.

Database Name,
p. 1-852

owner The user name of the owner of
the view

If you are using an ANSI-
compliant database, you must
specify the owner for a view that
you do not own. If you put
quotation marks around the
name you enter in owner, the
name is stored exactly as typed.
If you do not put quotation
marks around the name that you
enter in owner, the name is stored
as uppercase letters.

The user name must
conform to the
conventions of your
operating system.

@ dbservername

database

+

Identifier
p. 1-962

'owner'.
:

owner.
SQL Statements 1-1047

View Name
Usage
The name of a view is an SQL identifier.

If you are using a nondefault locale, you can use characters from the code set
of your locale in the names of views. For more information, see the Guide to
GLS Functionality. ♦

The use of the prefix owner. is optional; however, if you use it, the database
server does check owner for accuracy. If you are creating a view, the name of
the view must be unique among all the tables, synonyms, temporary tables,
and views that already exist in the database.

If you are creating a view, the owner.view-name must be unique among all the
tables, synonyms, and views that already exist in the database.

The owner name is case sensitive. In an ANSI-compliant database, if you do
not use quotes around the owner name, the name of the table owner is stored
as uppercase letters. For more information, see the discussion of case sensi-
tivity in ANSI-compliant databases on page 1-1045. ♦

References
See the CREATE VIEW statement in this manual for information about how to
create views.

In the Informix Guide to SQL: Tutorial, see the discussions of views in
Chapter 11.

GLS

ANSI
1-1048 Informix Guide to SQL: Syntax

2
Chapter
SPL Statements
CALL . 2-4
CONTINUE . 2-7
DEFINE . 2-8
EXIT . 2-20
FOR. 2-22
FOREACH . 2-27
IF . 2-34
LET . 2-39
ON EXCEPTION 2-43
RAISE EXCEPTION 2-49
RETURN . 2-51
SYSTEM . 2-54
TRACE . 2-57
WHILE . 2-61

2-2 Infor
mix Guide to SQL: Syntax

You can use Stored Procedure Language (SPL) statements to write
routines, and you can store these SPL routines in the database. These SPL
routines are effective tools for controlling SQL activity.

This chapter contains descriptions of the SPL statements. The description of
each statement includes the following information:

■ A brief introduction that explains the purpose of the statement

■ A syntax diagram that shows how to enter the statement correctly

■ A syntax table that explains each input parameter in the syntax
diagram

■ Rules of usage, including examples that illustrate these rules

If a statement is composed of multiple clauses, the statement description
provides the same set of information for each clause.

For task-oriented information about using SPL routines, see Chapter 14 of the
Informix Guide to SQL: Tutorial.
SPL Statements 2-3

CALL
CALL
Use the CALL statement to execute a routine from within an SPL routine.

Syntax

Element Purpose Restrictions Syntax
data variable The name of a variable that

receives the value or values a
function returns

The data type of data variable
must be appropriate for the
value the function returns.

Identifier, p. 1-962

routine variable The name of a variable that is set
to the name of an SPL routine or
external routine

The routine variable must have
the data type CHAR, VARCHAR,
NCHAR, or NVARCHAR. The
routine name you assign to SPL
variable must be non-null and the
name of an existing routine.

Identifier, p. 1-962

Procedure
Name

p. 1-1004
()

,

Argument
p. 1-824

;

,

Argument
p.1-824

,

Function
Name

p. 1-959

RETURNING
data

variable)(

CALL

,
data

variableRETURNING

routine
variable
2-4 Informix Guide to SQL: Syntax

CALL
Usage
The CALL statement invokes one of the following:

■ A procedure named procedure name

■ A function named function name

■ Any routine named by routine variable

The CALL statement is identical in behavior to the EXECUTE PROCEDURE and
EXECUTE FUNCTION statements, but you can only use CALL from within an
SPL routine. You can use CALL in an ESQL/C program or with DB-Access, but
only if you place the statement within an SPL routine executed by the
program or DB-Access.

If you use CALL with a procedure name, you cannot specify a RETURNING
clause. If you use CALL with a function name, you must specify a RETURNING
clause.

Specifying Arguments
Specifying arguments is optional, whether you use CALL with a procedure or
a function.

When you use CALL to execute a routine, you have the option of specifying
parameter names for the arguments you pass to the routine. For example,
each of the following examples is valid for a routine that has three parameters
of VARCHAR type, named t, n, and d, in that order:

CALL add_col (t='customer', n = 'newint', d ='integer');
CALL add_col('customer','newint','integer');

The syntax of specifying arguments is described in more detail in the
Argument segment on page 1-824.
SPL Statements 2-5

CALL
Receiving Input from the Called Routine
The RETURNING clause, used only with functions, specifies the data variable
that receives the values the function returns. If you are calling a procedure,
do not use the RETURNING clause.

The following example shows two routine calls.

CREATE PROCEDURE not_much()

DEFINE i, j, k INT;
CALL no_args (10,20);
CALL yes_args (5) RETURNING i, j, k;

END PROCEDURE

One routine call is to a procedure (no_args), which expects no returned
values. The second routine call is to a function (yes_args), which expects
three returned values. The not_much() procedure declares three integer
variables (i, j, and k) to receive the returned values from yes_args.
2-6 Informix Guide to SQL: Syntax

CONTINUE
CONTINUE
Use the CONTINUE statement to start the next iteration of the innermost FOR,
WHILE, or FOREACH loop.

Syntax

Usage
When you encounter a CONTINUE statement, the routine skips the rest of the
statements in the innermost loop of the indicated type. Execution continues
at the top of the loop with the next iteration. In the following example, the SPL
function loop_skip inserts values 3 through 15 into the table testtable. The
function also returns values 3 through 9 and 13 through 15 in the process.
The function does not return the value 11, because it encounters the
CONTINUE FOR statement. The CONTINUE FOR statement causes the
function to skip the RETURN i WITH RESUME statement.

CREATE FUNCTION loop_skip()
RETURNING INT;
DEFINE i INT;
.
.
.
FOR i IN (3 TO 15 STEP 2)
INSERT INTO testtable values(i, null, null);

IF i = 11
CONTINUE FOR;

END IF;
RETURN i WITH RESUME;

END FOR;

END FUNCTION;

The CONTINUE statement generates errors if it cannot find the identified
loop.

CONTINUE

FOREACH

WHILE

FOR ;
SPL Statements 2-7

DEFINE
DEFINE
Use the DEFINE statement to declare variables that an SPL routine uses and to
assign them data types.

Syntax

DEFINE GLOBAL
SQL Data Type

(Subset)
p. 2-11

Default
Value

p. 2-10DEFAULT

,

SPL
variable

DEFAULT
NULLREFERENCES

REFERENCES

SQL Data Type
(Subset)
p. 2-11

 BYTE

 TEXT
COLLECTION

Table Name
p. 1-1044 column

name
.LIKE

 BYTE

 TEXT

;

,
SPL

variable

Synonym
Name

p. 1-1042

View Name
p. 1-1047

PROCEDURE

opaque type name

distinct type name

Complex Data
Type (Subset)

p. 2-9
2-8 Informix Guide to SQL: Syntax

DEFINE
Complex Data Type (Subset)

Element Purpose Restrictions Syntax
column name The name of a column in the

table.
The column must exist in the
table by the time you run the SPL
routine.

Identifier, p. 1-962

distinct type name The name of a distinct type. The distinct type must be
defined in the database by the
time you run the SPL routine.

Identifier, p. 1-962

opaque type name The name of an opaque type. The opaque type must be
defined in the database by the
time you run the SPL routine.

Identifier, p. 1-962

SPL variable The name of the SPL
variable that is being
defined.

The name must be unique
within the statement block.

Identifier, p. 1-962

Element Purpose Restrictions Syntax
data type The data type of the

elements of a collection
The data type must match the
data type of the elements of the
collection the variable will
contain.

The data type can be any data
type except a SERIAL, SERIAL8,
TEXT, BYTE, CLOB, or BLOB.

Identifier, p. 1-962

MULTISET

LIST

MULTISET

LIST

SET

SET (data type

(data
type

NOT NULL)

NOT NULL)

Complex Data
Type (Subset)
SPL Statements 2-9

DEFINE
Default Value Clause

Usage
The DEFINE statement is not an executable statement. It must appear after the
routine header and before any other statements.

If you define a local variable (by using DEFINE without the GLOBAL
keyword), the scope of the variable is the statement block in which it is
defined. You can use the variable anywhere within the statement block. You
can also use the same variable name outside the statement block with a
different definition.

If you define a variable with the GLOBAL keyword, the variable is global in
scope and is available outside the statement block and to other routines.

Literal Number
p. 1-997

Quoted String
p. 1-1010

Literal Interval
p. 1-994

Literal Datetime
p. 1-991

CURRENT
p. 1-892

Default
Value

TODAY

USER

DATETIME
Field Qualifier

p. 1-874

SITENAME

NULL

DBSERVERNAME
2-10 Informix Guide to SQL: Syntax

DEFINE
SQL Data Type Subset
In defining variables, the SQL data type subset includes all the SQL data types
except SERIAL, SERIAL8, TEXT, BYTE, CLOB, and BLOB.

Variables of INT data type hold data from SERIAL columns, and variables of
INT8 data type hold data from SERIAL8 columns.

Referencing TEXT and BYTE Variables
The REFERENCES keyword lets you use TEXT and BYTE variables. TEXT and
BYTE variables do not contain the actual data but are simply pointers to the
data. The REFERENCES keyword is a reminder that the SPL variable is just a
pointer. Use an SPL variables that references a TEXT or BYTE data type exactly
as you would any other variable.

You cannot define a variable that references a CLOB or BLOB data type.

Declaring GLOBAL Variables
The GLOBAL keyword indicates that the variables that follow are available to
other routines through the global environment. The global environment is
the memory that is used by all the routines that run within a given DB-Access
or SQL API session.

Routines that are running in the current session share global variables.
Because the database server does not save global variables in the database,
the global variables do not remain when the current session closes. The data
types of global variables you use in your SPL routine must match the data
types of variables in the global environment.

Databases do not share global variables. The database server does not share
global variables with application development tools.
SPL Statements 2-11

DEFINE
The first declaration of a global variable establishes the variable in the global
environment. Subsequent global declarations simply bind the variable to the
global environment and establish the value of the variable at that point. The
following example shows two SPL procedures, proc1 and proc2. Each
procedure has defined the global variable gl_out:

CREATE PROCEDURE proc1()
.
.
.
DEFINE GLOBAL gl_out INT DEFAULT 13;
.
.
.
LET gl_out = gl_out + 1;
END PROCEDURE;

CREATE PROCEDURE proc2()
.
.
.
DEFINE GLOBAL gl_out INT DEFAULT 23;
DEFINE tmp INT;
.
.
.
LET tmp = gl_out
.
.
.

END PROCEDURE;

If proc1 is called first, gl_out is set to 13 and then incremented to 14. If proc2
is then called, it sees that the value of gl_out is already defined, so the default
value of 23 is not applied. Then, proc2 assigns the existing value of 14 to tmp.
If proc2 had been called first, gl_out would have been set to 23, and 23 would
have been assigned to tmp. Later calls to proc1 would not apply the default
of 13.
2-12 Informix Guide to SQL: Syntax

DEFINE
Providing Default Values

You can provide a literal value or a null value as the default for a global
variable. You can also use a call to an SQL function to provide the default
value. The following example uses the SITENAME function to provide a
default value. It also defines a global BYTE variable.

CREATE PROCEDURE gl_def()
DEFINE GLOBAL gl_site CHAR(18) DEFAULT SITENAME;
DEFINE GLOBAL gl_byte REFERENCES BYTE DEFAULT NULL;
.
.
.

END PROCEDURE

SITENAME or DBSERVERNAME

If you use the value returned by SITENAME or DBSERVERNAME as the
default, the variable must be a CHAR, VARCHAR, NCHAR, or NVARCHAR
value of at least 18 characters.

USER

If you use USER as the default, the variable must be a CHAR, VARCHAR,
NCHAR, or NVARCHAR value of at least 8 characters.

CURRENT

If you use CURRENT as the default, the variable must be a DATETIME value.
If the YEAR TO FRACTION keyword has qualified your variable, you can use
CURRENT without qualifiers. If your variable uses another set of qualifiers,
you must provide the same qualifiers when you use CURRENT as the default
value. The following example defines a DATETIME variable with qualifiers
and uses CURRENT with matching qualifiers:

DEFINE GLOBAL d_var DATETIME YEAR TO MONTH
DEFAULT CURRENT YEAR TO MONTH;

TODAY

If you use TODAY as the default, the variable must be a DATE value.
SPL Statements 2-13

DEFINE
TEXT and BYTE

The only default value possible for a TEXT or BYTE variable is null. The
following example defines a TEXT global variable that is called l_blob:

CREATE PROCEDURE use_text()
DEFINE i INT;
DEFINE GLOBAL l_blob REFERENCES TEXT DEFAULT NULL;

END PROCEDURE

Declaring Local Variables
Most local variables (that is, nonglobal variables) do not allow defaults. The
following example shows typical definitions of local variables:

CREATE PROCEDURE def_ex()
DEFINE i INT;
DEFINE word CHAR(15);
DEFINE b_day DATE;
DEFINE c_name LIKE customer.fname;
DEFINE b_text REFERENCES TEXT;

END PROCEDURE;

Declaring Collection Variables

A variable of type COLLECTION, SET, MULTISET, and LIST is a collection
variable and holds a collection fetched from the database. You cannot define
a collection variable as global (with the GLOBAL keyword) or with a default
value.

A variable defined with the type COLLECTION is an untyped collection
variable. An untyped collection variable is generic and can hold a collection
of any type.

A variable defined with the type SET, MULTISET, or LIST is a typed collection
variable. A typed collection variable can hold only a collection of its type.
2-14 Informix Guide to SQL: Syntax

DEFINE
You must define the elements of a typed collection variable as NOT NULL, as
in the following examples:

DEFINE a SET (INT NOT NULL);

DEFINE b MULTISET (ROW (b1 INT,
b2 CHAR(50)

) NOT NULL);

DEFINE c LIST(SET(INTEGER NOT NULL) NOT NULL);

Note that with variable c, both the INTEGER values in the SET and the SET
values in the LIST are defined as NOT NULL.

You can define collection variables with nested complex types to hold
matching nested complex type data. Any type or depth of nesting is allowed.
You can nest row types within collection types, collection types within row
types, collection types within collection types, s within collection and row
types, and so on.

If you define a variable of COLLECTION type, the variable acquires varying
type assignments if it is reused within the same statement block, as in the
following example:

DEFINE a COLLECTION;
LET a = setB;
.
.
.
LET a = listC;

In this example, varA is a generic collection variable that changes its data
type to the data type of the currently assigned collection. The first LET
statement makes varA a SET variable. The second LET statement makes varA
a LIST variable.
SPL Statements 2-15

DEFINE
Declaring Row Variables

Row variables hold data from named or unnamed row types. You can define
a generic row variable, a named row variable, or an unnamed row variable.

A generic row variable, defined with the ROW keyword, can hold data from
any row type. A named row variable holds data from the specific named row
type specified in the variable definition. The following statements show
examples of generic row variables and named row variables:

DEFINE d ROW; -- generic row variable

DEFINE rectv rectangle_t;-- named row variable

A named row variable holds named row types of the same type in the
variable definition.

To define a variable that will hold data stored in an unnamed row type, use
the ROW keyword followed by the fields of the row type, as in:

DEFINE area ROW (x int, y char(10));

Unnamed row types are type-checked only by structural equivalence. Two
unnamed row types are considered equivalent if they have the same number
of fields, and if the fields have the same type definitions. Therefore, you could
fetch either of the following row types into the variable area defined above:

ROW (a int, b char(10))
ROW (area int, name char(10))

Row variables can have fields, just as row types have fields. To assign a value
to a field of a row variable, use the SQL dot notation variableName.fieldName,
followed by an expression, as in the following example:

CREATE ROW TYPE rectangle_t (start point_t, length real,
width real);

DEFINE r rectangle_t;
-- Define a variable of a named row type

LET r.length = 45.5;
-- Assign a value to a field of the variable

When you assign a value to a row variable, you can use any allowed
expression described in “Expression” on page 1-876.
2-16 Informix Guide to SQL: Syntax

DEFINE
Declaring Opaque-Type Variables

Opaque type variables hold data retrieved from opaque types, which you
create with the CREATE OPAQUE TYPE statement. An opaque type variable
can only hold data of the opaque type on which it is defined.

The following example defines a variable of the opaque type point, which
holds the x and y coordinates of a two-dimensional point:

DEFINE b point;

Declaring Variables Like Columns

If you use the LIKE clause, the database server gives SPL variable the same
data type as a column in a table, synonym, or view.

The data types of variables that are defined as database columns are resolved
at runtime. Therefore, column and table do not need to exist at compile time.

Declaring Variables of Type PROCEDURE

The PROCEDURE type indicates that in the current scope, SPL variable is a call
to an SPL routine or external routine. In this release of INFORMIX-Universal
Server, the DEFINE statement does not have a FUNCTION keyword. Use the
PROCEDURE keyword, whether you are calling a procedure or function.

Defining a variable of PROCEDURE type indicates that in the current
statement scope, SPL variable is not a call to an SQL function or a system
function. For example, the following statement defines length as an SPL
routine, not as the SQL LENGTH function:

DEFINE length PROCEDURE;
.
.
.
LET x = length (a,b,c)

This definition disables the SQL LENGTH function within the scope of the
statement block. You would use such a definition if you had already created
an SPL routine or an external routine with the name length.

If you create a routine with the same name as an aggregate function (SUM,
MAX, MIN, AVG, COUNT) or with the name extend, you must qualify the
routine name with the owner name.
SPL Statements 2-17

DEFINE
Declaring Variables for BYTE and TEXT Data

The keyword REFERENCES indicates that SPL variable is not a BYTE or TEXT
value but a pointer to the BYTE or TEXT value. However, you can use the
variable as though it holds the data.

The following example defines a local BYTE variable:

CREATE PROCEDURE use_blob()

DEFINE i INT;
DEFINE l_blob REFERENCES BYTE;

END PROCEDURE --use_blob

If you pass a variable of TEXT or BYTE data type to an SPL routine, the data is
passed to the database server and stored in the root dbspace or dbspaces that
the DBSPACETEMP environment variable specifies, if it is set. You do not
need to know the location or name of the file that holds the data. BYTE or
TEXT manipulation requires only the name of the BYTE or TEXT variable as it
is defined in the routine.

You cannot declare a variable to hold or reference a CLOB or BLOB data type.

Redeclaring Variables
If you define the same variable twice within the same statement block, you
receive an error. However, you can redefine a variable within a nested block,
in which case it temporarily hides the outer declaration. The following
example produces an error:

CREATE PROCEDURE example1()

DEFINE n INT;
DEFINE j INT;
DEFINE n CHAR (1); -- redefinition produces an error
.
.
.

END PROCEDURE;
2-18 Informix Guide to SQL: Syntax

DEFINE
The database server allows the redeclaration in the following example.
Within the nested statement block, n is a character variable. Outside the
block, n is an integer variable.

CREATE PROCEDURE example2()

DEFINE n INT;
DEFINE j INT;
.
.
.
BEGIN
DEFINE n CHAR (1); -- character n masks integer variable

-- locally
.
.
.

END PROCEDURE;
SPL Statements 2-19

EXIT
EXIT
Use the EXIT statement to stop the execution of a FOR, WHILE, or FOREACH
loop.

Syntax

Usage
The EXIT statement causes the innermost loop of the indicated type (FOR,
WHILE, or FOREACH) to terminate. Execution resumes at the first statement
outside the loop.

If the EXIT statement cannot find the identified loop, it fails.

If the EXIT statement is used outside all loops, it generates errors.

FOREXIT

WHILE

;

FOREACH
2-20 Informix Guide to SQL: Syntax

EXIT
The following example uses an EXIT FOR statement. In the FOR loop, when j
becomes 6, the IF condition i = 5 in the WHILE loop is true. The FOR loop
stops executing, and the procedure continues at the next statement outside
the FOR loop (in this case, the END PROCEDURE statement). In this example,
the procedure ends when j equals 6.

CREATE PROCEDURE ex_cont_ex()

DEFINE i,s,j, INT;

FOR j = 1 TO 20
IF j > 10 THEN

CONTINUE FOR;
END IF

LET i,s = j,0;
WHILE i > 0

LET i = i -1;
IF i = 5 THEN

EXIT FOR;
END IF

END WHILE
END FOR

END PROCEDURE;
SPL Statements 2-21

FOR
FOR
Use the FOR statement to initiate a controlled (definite) loop when you want
to guarantee termination of the loop. The FOR statement uses expressions or
range operators to establish a finite number of iterations for a loop.

Syntax

)

,

FOR variable
name

left
expression

TO right
expressionIN (

Statement
Block

p. 1-1037
END
FOR

,

expression

;

increment
expression

left
expression

TO right
expression

=

increment
expression

STEP

STEP
2-22 Informix Guide to SQL: Syntax

FOR
Element Purpose Restrictions Syntax
expression A numeric or character value

against which variable name is
compared to determine if the
loop should be executed

The data type of expression must
match the data type of variable
name. You can use the output of a
SELECT statement as an
expression.

Expression, p. 1-876

increment
expression

A positive or negative value by
which variable name is
incremented. Defaults to +1 or
-1 depending on left expression
and right expression.

The increment expression
cannot evaluate to 0.

Expression, p. 1-876

left expression The starting expression of a
range

The value of left expression must
match the data type of variable
name. It must be either INT or
SMALLINT.

Expression, p. 1-876

right expression The ending expression in the
range. The size of right expression
relative to left expression
determines if the range is
stepped through positively or
negatively.

The value of right expression
must match the data type of
variable name. It must be either
INT or SMALLINT.

Expression, p. 1-876

variable name The value of this variable
determines how many times the
loop executes.

You must have already defined
this variable, and the variable
must be valid within this
statement block. If you are using
variable name with a range of
values and the TO keyword, you
must define variable name
explicitly as either INT or
SMALLINT.

Identifier, p. 1-962
SPL Statements 2-23

FOR
Usage
The database server computes all expressions before the FOR statement
executes. If one or more of the expressions are variables, and their values
change during the loop, the change has no effect on the iterations of the loop.

The FOR loop terminates when variable name takes on the values of each
element in the expression list or range in succession or when it encounters an
EXIT FOR statement.

The database server generates an error if an assignment within the body of
the FOR statement attempts to modify the value of variable name.

Using the TO Keyword to Define a Range

The TO keyword implies a range operator. The range is defined by left
expression and right expression, and the STEP increment expression option
implicitly sets the number of increments. If you use the TO keyword, variable
name must be an INT or SMALLINT data type. The following example shows
two equivalent FOR statements. Each uses the TO keyword to define a range.
The first statement uses the IN keyword, and the second statement uses an
equal sign (=). Each statement causes the loop to execute five times.

FOR index_var IN (12 TO 21 STEP 2)
-- statement block

END FOR

FOR index_var = 12 TO 21 STEP 2
-- statement block

END FOR
2-24 Informix Guide to SQL: Syntax

FOR
If you omit the STEP option, the database server gives increment expression the
value of -1 if right expression is less than left expression, or +1 if right expression
is more than left expression. If increment expression is specified, it must be
negative if right expression is less than left expression, or positive if right
expression is more than left expression. The two statements in the following
example are equivalent. In the first statement, the STEP increment is explicit.
In the second statement, the STEP increment is implicitly 1.

FOR index IN (12 TO 21 STEP 1)
-- statement block

END FOR

FOR index = 12 TO 21
-- statement block

END FOR

The database server initializes the value of variable name to the value of left
expression. In subsequent iterations, the server adds increment expression to the
value of variable name and checks increment expression to determine whether
the value of variable name is still between left expression and right expression. If
so, the next iteration occurs. Otherwise, an exit from the loop takes place. Or,
if you specify another range, the variable takes on the value of the first
element in the next range.

Specifying Two or More Ranges in a Single FOR Statement

The following example shows a statement that traverses a loop forward and
backward and uses different increment values for each direction:

FOR index_var IN (15 to 21 STEP 2, 21 to 15 STEP -3)
-- statement body

END FOR
SPL Statements 2-25

FOR
Using an Expression List as the Range

The database server initializes the value of variable name to the value of the
first expression specified. In subsequent iterations, variable name takes on the
value of the next expression. When the server has evaluated the last
expression in the list and used it, the loop stops.

The expressions in the IN list do not have to be numeric values, as long as you
do not use range operators in the IN list. The following example uses a
character expression list:

FOR c IN ('hello', (SELECT name FROM t), 'world', v1, v2)
INSERT INTO t VALUES (c);
END FOR

The following FOR statement shows the use of a numeric expression list:

FOR index IN (15,16,17,18,19,20,21)
-- statement block

END FOR

Mixing Range and Expression Lists in the Same FOR Statement

If variable name is an INT or SMALLINT value, you can mix ranges and
expression lists in the same FOR statement. The following example shows a
mixture that uses an integer variable. Values in the expression list include the
value that is returned from a SELECT statement, a sum of an integer variable
and a constant, the values that are returned from an SPL procedure named
p_get_int, and integer constants.

CREATE PROCEDURE for_ex ()
DEFINE i, j INT;
LET j = 10;
FOR i IN (1 TO 20, (SELECT c1 FROM tab WHERE id = 1),
j+20 to j-20, p_get_int(99),98,90 to 80 step -2)

INSERT INTO tab VALUES (i);
END FOR

END PROCEDURE
2-26 Informix Guide to SQL: Syntax

FOREACH
FOREACH
Use a FOREACH loop to select and handle a set of rows or a collection.

Syntax

Element Purpose Restrictions Syntax
cursor name An identifier that you supply as

a name for the FOREACH loop
Each cursor name within a
routine must be unique.

Identifier, p. 1-962

data variable The name of an SPL variable in
the calling routine that will
receive the value or values the
called function returns

The data type of variable name
must be appropriate for the
value that is being returned.

Identifier, p. 1-962

routine variable The name of an SPL variable in
the calling routine that contains
the name of a routine to be
executed

The data type of routine variable
must be CHAR, VARCHAR,
NCHAR, NVARCHAR.

Identifier, p. 1-962

,

FOREACH
SELECT...INTO

Statement
p. 2-30

Statement
Block

p. 1-1037

END
FOREACH

;
cursor
name FOR

WITH HOLD

WITH HOLD

EXECUTE
PROCEDURE

Procedure
Name

p. 1-1004
()

data
variableINTO

Argument
p. 1-824

,
EXECUTE
FUNCTION

Function
Name

p. 1-959

routine
variable

routine
variable
SPL Statements 2-27

FOREACH
Usage
A FOREACH loop is the procedural equivalent of using a cursor. When
Universal Server executes a FOREACH statement, it takes the following
actions:

1. It declares and implicitly opens a cursor.

2. It obtains the first row, the first collection element, or the first set of
return values (depending upon the syntax of your FOREACH
statement).

3. It assigns each variable in the variable list the corresponding value
from the active set that the SELECT statement or the called routine
creates.

4. It executes the statement block.

5. It fetches the next row, the next collection element, or the next set of
return values, and it repeats steps 3 and 4.

6. It terminates the loop when it finds no more rows, the end of the
collection, or the last set of return values. It closes the implicit cursor
when the loop terminates.

Because the statement block can contain additional FOREACH statements,
you can nest cursors. No limit exists to the number of cursors that can be
nested.

An SPL routine that returns more than one row, collection element, or set of
values is called a cursor routine. An SPL routine that returns only one row or
value is a noncursor routine.
2-28 Informix Guide to SQL: Syntax

FOREACH
The following SPL procedure illustrates the three types of FOREACH state-
ments: with a SELECT...INTO clause, with an explicitly named cursor, and
with a procedure call:

CREATE PROCEDURE foreach_ex()
DEFINE i, j INT;

FOREACH SELECT c1 INTO i FROM tab order by 1
INSERT INTO tab2 VALUES (i);

END FOREACH

FOREACH cur1 FOR SELECT c2, c3 INTO i, j FROM tab
IF j > 100 THEN

DELETE FROM tab WHERE CURRENT OF cur1;
CONTINUE FOREACH;

END IF
UPDATE tab SET c2 = c2 + 10 WHERE CURRENT OF cur1;

END FOREACH

FOREACH EXECUTE PROCEDURE bar(10,20) INTO i
INSERT INTO tab2 VALUES (i);

END FOREACH
END PROCEDURE -- foreach_ex

A select cursor is closed when any of the following situations occur:

■ The cursor returns no more values.

■ The cursor is a select cursor without a HOLD specification, and a
transaction completes using COMMIT or ROLLBACK statements.

■ An EXIT statement executes, which transfers control out of the
FOREACH statement.

■ An exception occurs that is not trapped inside the body of the
FOREACH statement. (See the ON EXCEPTION statement on
page 2-43.)

■ A cursor in the calling routine that is executing this cursor routine
(within a FOREACH loop) closes for any reason.
SPL Statements 2-29

FOREACH
Using a SELECT...INTO Statement
With an ordinary cursor that fetches a set of rows or values, you can use a
SELECT ... INTO statement. With an ordinary cursor, SELECT ... INTO can also
include the UNION and ORDER BY clauses, but it cannot include the INTO
TEMP clause. The syntax of a SELECT statement is shown on page 1-593.

The type and count of each variable in the variable list must match each value
that the SELECT...INTO statement returns.

Using Hold Cursors

The WITH HOLD keyword specifies that the cursor should remain open when
a transaction closes (that is, is committed or rolled back).

Updating or Deleting Rows Identified by Cursor Name

Use the WHERE CURRENT OF cursor name clause to update or delete the
current row of cursor name.

Using Collection Variables

The FOREACH statement allows you to declare a cursor for an SPL collection
variable. Such a cursor is called a collection cursor. You use a collection
variable to access the elements of a collection (SET, MULTISET, LIST) column.
Use a cursor when you want to access one or more elements in a collection
variable.

Tip: To access only one element of a collection variable, you do not need to declare a
cursor. For information on how to select a single element, see “Selecting From a Col-
lection Variable” on page 1-610. For information on how to insert a single element,
see “Inserting Into a Collection Variable” on page 1-506.
2-30 Informix Guide to SQL: Syntax

FOREACH
If you are using a collection cursor to fetch individual elements from a
collection variable, you must use a restricted form of the SELECT statement
called a collection query. The collection query has the following restrictions:

■ Its general structure is SELECT ... INTO ... FROM TABLE. The statement
selects one element at a time from a collection variable named after
the TABLE keyword into another variable called an element variable.

■ You must use a collection query within a FOREACH loop.

■ You cannot use the WITH HOLD option on the FOREACH statement.

■ The data type of the element variable must be the same as the
element type of the collection.

■ The element variable can have any opaque, distinct, or collection
data type, or any built-in data type except SERIAL, SERIAL8, TEXT,
BYTE, CLOB or BLOB.

■ If the collection contains opaque, distinct, built-in, or collection
types, the select field list must be an asterisk (*).

■ If the collection contains row types, the select field list can be a list of
one or more field names.

■ The select field list cannot contain an expression.

■ The collection query cannot specify a WHERE clause, a HAVING
clause, a GROUP BY clause, or an ORDER BY clause.

The following excerpt from an SPL routine shows a collection query within a
FOREACH loop:

DEFINE a SMALLINT;
DEFINE b SET(SMALLINT NOT NULL);

SELECT numbers INTO b FROM table1
WHERE id = 207;

FOREACH cursor1 FOR
SELECT * INTO a FROM TABLE(b);

.

.
END FOREACH;

In this example, the SELECT statement within the FOREACH loop is the
collection query. The statement selects one element at a time from the
collection variable b into the element variable a.
SPL Statements 2-31

FOREACH
In the collection query, the select field list is an asterisk, because the collection
variable b contains a collection of built-in types. The variable b is used with
the TABLE keyword as a Collection Derived Table. For more information on
using a Collection Derived Table, see page 1-827.

The next example shows a collection query that uses a list of row type fields
in its select field list.

.

.
DEFINE employees employee_t;
DEFINE n VARCHAR(30);
DEFINE s INTEGER;

SELECT emp_list into employees FROM dept_table
WHERE dept_no = 1057;

FOREACH cursor1 FOR
SELECT name,salary

INTO n,s FROM TABLE(employees) AS e;
.
.
END FOREACH;
.
.

In this example, the collection variable employees contains a collection of
row types. Each row type contains the fields name and salary. The collection
query selects one name and salary combination at a time, placing name into
n and salary into s. The AS keyword names e as an alias for the collection
derived table employees. The alias exists as long as the SELECT statement
executes.

To update an element of a collection, you must first declare a cursor with the
FOREACH statement. Then, within the FOREACH loop, select elements one at
a time from the collection variable, using the collection variable as a
Collection Derived Table in a SELECT query. For more information on
selecting from a collection variable, see the SELECT statement on page 1-593.

When the cursor is positioned on the element to be updated, you can use the
WHERE CURRENT OF clause, as follows:

■ The UPDATE statement with the WHERE CURRENT OF clause updates
the value in the current element of the collection variable.

■ The DELETE statement with the WHERE CURRENT OF clause deletes
the current element from the collection variable.
2-32 Informix Guide to SQL: Syntax

FOREACH
Calling a Routine in the FOREACH Loop
In general, use the following guidelines for calling another routine from an
SPL routine:

■ To call an SPL procedure or external procedure, use
EXECUTE PROCEDURE procedure name.

■ To call an SPL function or external function, use
EXECUTE FUNCTION function name.

■ Do not use EXECUTE FUNCTION procedure name in any case.

Important: Universal Server allows you to use an EXECUTE PROCEDURE statement
to execute SPL functions (routines that were formerly called stored procedures that
return a value). However, Informix recommends that you use the EXECUTE
PROCEDURE statement only with procedures and the EXECUTE FUNCTION
statement only with functions.

If you use EXECUTE PROCEDURE, Universal Server looks first for a procedure
of the name you specify. If it finds the procedure, the server executes it. If
Universal Server does not find the procedure, it looks for a function of the
same name to execute. If the server finds neither a function nor a procedure,
it issues an error message.

If you use EXECUTE FUNCTION, Universal Server looks for a function of the
name you specify. If it does not find a function of that name, the server issues
an error message.

A called function can return zero or more values or rows. The type and count
of each variable in the variable list must match each value that the function
returns.
SPL Statements 2-33

IF
IF
Use an IF statement to create a branch within an SPL routine.

Syntax

Usage
The condition that the IF clause states is evaluated. If the result is true, the
statements that follow the THEN keyword execute. If the result is false, and
an ELIF clause exists, the statements that follow the ELIF clause execute. If no
ELIF clause exists, or if the condition in the ELIF clause is not true, the state-
ments that follow the ELIF keyword execute.

;

IF Condition
p. 1-831

THEN

ELIF Condition
p. 1-831 THEN

IF Statement
List

p. 2-37

IF Statement
List

p. 2-37

END IF

ELSE
IF Statement

List
p. 2-37
2-34 Informix Guide to SQL: Syntax

IF
In the following example, the SPL function uses an IF statement with both an
ELIF clause and an ELSE clause. The IF statement compares two strings and
displays a 1 to indicate that the first string comes before the second string
alphabetically, or a -1 if the first string comes after the second string
alphabetically. If the strings are the same, a 0 is returned.

CREATE FUNCTION str_compare (str1 CHAR(20), str2 CHAR(20))
RETURNING INT;

DEFINE result INT;

IF str1 > str2 then
result =1;

ELIF str2 > str1 THEN
result = -1;

ELSE
result = 0;

END IF
RETURN result;

END FUNCTION -- str_compare

The ELIF Clause

Use the ELIF clause to specify one or more additional conditions to evaluate.

If you specify an ELIF clause, and the IF condition is false, the ELIF condition
is evaluated. If the ELIF condition is true, the statements that follow the ELIF
clause execute.
SPL Statements 2-35

IF
The ELSE Clause

The ELSE clause executes if no true previous condition exists in the IF clause
or any of the ELIF clauses.

Conditions in an IF Statement

Conditions in an IF statement are evaluated in the same way as conditions in
a WHILE statement.

If any expression that the condition contains evaluates to null, the condition
automatically becomes untrue. Consider the following points:

1. If the expression x evaluates to null, then x is not true by definition.
Furthermore, not(x) is also not true.

2. IS NULL is the sole operator that can yield true for x. That is, x IS
NULL is true, and x IS NOT NULL is not true.

An expression within the condition that has an UNKNOWN value (due to the
use of an uninitialized variable) causes an immediate error. The statement
terminates and raises an exception.
2-36 Informix Guide to SQL: Syntax

IF
IF Statement List

Statement Block
p. 1-1037

 BEGIN END

CONTINUE Statement
p. 2-7

IF Statement
p. 2-34

EXIT Statement
p. 2-20

FOR Statement
p. 2-22

FOREACH Statement
p. 2-27

LET Statement
p. 2-39

RAISE EXCEPTION Statement
p. 2-49

TRACE Statement
p. 2-57

WHILE Statement
p. 2-61

SYSTEM Statement
p. 2-54

SQL Statement

IF Statement
List

CALL Statement
p. 2-4

RETURN Statement
p. 2-51
SPL Statements 2-37

IF
Subset of SQL Statements Allowed in an IF Statement

You can use any SQL statement in the statement block except the ones in the
following list.

You can use a SELECT statement only if you use the INTO TEMP clause to put
the results of the SELECT statement into a temporary table.

ALLOCATE DESCRIPTOR GET DESCRIPTOR
CHECK TABLE GET DIAGNOSTICS
CLOSE DATABASE INFO
CONNECT LOAD
CREATE DATABASE OPEN
CREATE PROCEDURE OUTPUT
DATABASE PREPARE
DEALLOCATE DESCRIPTOR PUT
DECLARE REPAIR TABLE
DESCRIBE ROLLFORWARD DATABASE
DISCONNECT SET CONNECTION
EXECUTE SET DESCRIPTOR
EXECUTE IMMEDIATE START DATABASE
FETCH UNLOAD
FLUSH WHENEVER
FREE
2-38 Informix Guide to SQL: Syntax

LET
LET
Use the LET statement to assign values to variables or to call a function from
an SPL routine and assign the return value or values to variables.

Syntax

Element Purpose Restrictions Syntax
SPL variable An SPL variable that receives the

value the function returns or is
set to the result of the expression

The SPL variable must be
defined in the routine and must
be valid in the statement block.

Identifier, p. 1-962

,

,
SPL

variableLET = Function
Name

p. 1-959 ,
(;)

Expression
p. 1-876

,

SELECT
statement
(subset)
p. 2-40

Argument
p. 1-824
SPL Statements 2-39

LET
Usage
If you assign a value to a single variable, you make a simple assignment. If you
assign values to two or more variables, you make a compound assignment.

You can also assign the value of an expression to a variable. At runtime, the
value of the SPL expression is computed first. The resulting value is cast to the
data type of variable, if possible, and the assignment occurs. If conversion is
not possible, an error occurs, and the value of variable name is undefined.

A compound assignment assigns multiple expressions to multiple variables.
The data types of expressions in the expression list does not need to match
the data types of the corresponding variables in the variable list, because the
database server automatically converts the data types. (For a detailed
discussion of casting, see the Informix Guide to SQL: Reference.)

The following example shows several LET statements that assign values to
SPL variables:

LET a = c + d ;
LET a,b = c,d ;
LET expire_dt = end_dt + 7 UNITS DAY;
LET name = 'Brunhilda';
LET sname = DBSERVERNAME;
LET this_day = TODAY;

You cannot use multiple values to operate on other values. For example, the
following statement is illegal:

LET a,b = (c,d) + (10,15); -- ILLEGAL EXPRESSION

Using a SELECT Statement in a LET Statement

The examples in this section use a SELECT statement within a LET statement.
You can use a SELECT statement to assign values to one or more variables on
the left side of the = operator, as the following examples show:

LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
LET a,b,c = (SELECT c1,c2 FROM t WHERE id = 1), 15;

You cannot use a SELECT statement to make multiple values operate on other
values. The following example is illegal:

LET a,b = (SELECT c1,c2 FROM t) + (10,15); -- ILLEGAL CODE
2-40 Informix Guide to SQL: Syntax

LET
Because a LET statement is equivalent to a SELECT...INTO statement, the two
statements in the following example have the same results, a=c and b=d:

CREATE PROCEDURE proof()

DEFINE a, b, c, d INT;

LET a,b = (SELECT c1,c2 FROM t WHERE id = 1);
SELECT c1, c2 INTO c, d FROM t WHERE id = 1

END PROCEDURE;

If the SELECT statement returns more than one row, you must enclose the
SELECT statement in a FOREACH loop For more information on FOREACH,
see page 2-27.

Calling a Function in a LET Statement

You can call an SPL function or an external function in a LET statement and
assign the returned value or values to variables. You must specify all the
necessary arguments to the function unless the function’s arguments have
default values.

If you name one of the parameters in the called function, with syntax such as
name = 'smith', you must name all the parameters.

The named variable receives the returned value from a function call. A
function can return more than one value into a list of variable names.
However, you must enclose a function that returns more than one value in a
FOREACH loop.
SPL Statements 2-41

LET
The following example shows several LET statements. The first two are valid
LET statements that contain function calls. The third LET statement is not
legal, because it tries to add the output of two functions and then assign the
sum to two variables, a and b. You can easily split this LET statement into two
legal LET statements.

LET a, b, c = proc1(name = 'grok', age = 17);
LET a, b, c = 7, proc2('orange', 'green');

LET a, b = proc1() + proc2(); -- ILLEGAL CODE

A function called in a LET statement can have an argument of COLLECTION,
SET, MULTISET, or LIST. COLLECTION is a generic collection data type that
includes SET, MULTISET, and LIST collection types.

You can then assign the value returned by the function to a variable, for
example:

LET d = function1(collection1);
LET a = function2(set1);

In the first statement, the SPL function function1 accepts collection1 (that is,
any collection data type) as an argument and returns its value to the variable
d. In the second statement, the SPL function function2 accepts set1 as an
argument and returns a value to the variable a.
2-42 Informix Guide to SQL: Syntax

ON EXCEPTION
ON EXCEPTION
Use the ON EXCEPTION statement to specify the actions that are taken for a
particular error or a set of errors.

Syntax

Element Purpose Restrictions Syntax
error data
variable

An SPL variable that contains a
string returned by an SQL error
or a user-defined exception

The variable must be a character
data type to receive the error
information. It must be valid in
the current statement block.

Identifier, p. 1-962

error number An SQL error number, or an error
number created by a RAISE
EXCEPTION statement, that is to
be trapped

The error number must be of
integer data type. It must be
valid in the current statement
block.

Literal number,
p. 1-997

ISAM error
variable

A variable that receives the ISAM
error number of the exception
raised

The error variable must be of
integer data type. It must be
valid in the current statement
block.

Identifier, p. 1-962

SQL error
variable

A variable that receives the SQL
error number of the exception
raised

The error variable must be a
character data type. It must be
valid in the current statement
block.

Identifier, p. 1-962

,
ON EXCEPTION

Statement
Block

p. 1-1037
END EXCEPTION

error
numberIN)(

SET
SQL
error

variable

;

error
data

variable

WITH RESUME

,

ISAM
error

variable
,

SPL Statements 2-43

ON EXCEPTION
Usage
The ON EXCEPTION statement, together with the RAISE EXCEPTION
statement, provides an error-trapping and error-recovery mechanism for
SPL. The ON EXCEPTION statement defines a list of errors that are to be
trapped as the SPL routine executes and specifies the action (within the
statement block) to take when the trap is triggered. If the IN clause is omitted,
all errors are trapped.

You can use more than one ON EXCEPTION statement within a given
statement block.

The scope of an ON EXCEPTION statement is the statement block that follows
the ON EXCEPTION statement, all the statement blocks that are nested within
that following statement block, and all the statement blocks that follow the
ON EXCEPTION statement.

The exceptions that are trapped can be either system- or user-defined.

When an exception is trapped, the error status is cleared.

If you specify a variable to receive an ISAM error, but no accompanying ISAM
error exists, a zero returns to the variable. If you specify a variable to receive
the returned error text, but none exists, an empty string goes into the
variable.
2-44 Informix Guide to SQL: Syntax

ON EXCEPTION
Placement of the ON EXCEPTION Statement

ON EXCEPTION is a declarative statement, not an executable statement. For
this reason, you must use the ON EXCEPTION statement before any
executable statement and after any DEFINE statement in an SPL routine.

The following example shows the correct placement of an ON EXCEPTION
statement. Use an ON EXCEPTION statement after the DEFINE statement and
before the body of the routine.

The following SPL function inserts a set of values into a table. If the table does
not exist, it is created, and the values are inserted. The SPL function also
returns the total number of rows in the table after the insert occurs.

CREATE FUNCTION add_salesperson(last CHAR(15),
 first CHAR(15))

RETURNING INT;

DEFINE x INT;

ON EXCEPTION IN (-206) -- If no table was found, create one
CREATE TABLE emp_list

 (lname CHAR(15),fname CHAR(15), tele CHAR(12));
INSERT INTO emp_list VALUES -- and insert values

 (last, first, '800-555-1234');
END EXCEPTION WITH RESUME
INSERT INTO emp_list VALUES (last, first, '800-555-1234')
LET x = SELECT count(*) FROM emp_list;

RETURN x;

END FUNCTION;

When an error occurs, the database server searches for the last declaration of
the ON EXCEPTION statement, which traps the particular error code. The ON
EXCEPTION statement can have the error number in the IN clause or have no
IN clause. If the database server finds no pertinent ON EXCEPTION statement,
the error code passes back to the caller (the routine, application, or interactive
user), and execution aborts.
SPL Statements 2-45

ON EXCEPTION
The following example uses two ON EXCEPTION statements with the same
error number so that error code 691 can be trapped in two levels of nesting:

CREATE PROCEDURE delete_cust (cnum INT)

ON EXCEPTION IN (-691) -- children exist
BEGIN -- Begin-end is necessary so that other DELETEs

 -- don't get caught in here.
ON EXCEPTION IN (-691)

DELETE FROM another_child WHERE num = cnum;
DELETE FROM orders WHERE customer_num = cnum;

END EXCEPTION -- for 691

DELETE FROM orders WHERE customer_num = cnum;
END

 DELETE FROM cust_calls WHERE customer_num = cnum;
 DELETE FROM customer WHERE customer_num = cnum;
 END EXCEPTION
 DELETE FROM customer WHERE customer_num = cnum;

END PROCEDURE;

Using the IN Clause to Trap Specific Exceptions
A trap is triggered if either the SQL error code or the ISAM error code matches
an exception code in the list of error numbers. The search through the list
begins from the left and stops with the first match.

You can use a combination of an ON EXCEPTION statement without an IN
clause and one or more ON EXCEPTION statements with an IN clause to set
up default trapping. A summary of the sequence of statements in the
following example would be: “Test for an error. If error -210, -211, or -212
occurs, take action A. If error -300 occurs, take action B. If any other error
occurs, take action C.” When an error occurs, the database server searches for
the last declaration of the ON EXCEPTION statement that traps the particular
error code.

CREATE PROCEDURE ex_test ()
DEFINE error_num INT;
.
.
.
ON EXCEPTION
SET error_num
-- action C
END EXCEPTION

ON EXCEPTION IN (-300)
2-46 Informix Guide to SQL: Syntax

ON EXCEPTION
-- action B
END EXCEPTION
ON EXCEPTION IN (-210, -211, -212)
SET error_num
-- action A
END EXCEPTION
.
.
.

Receiving Error Information in the SET Clause
If you use the SET clause, when an exception occurs, the SQL error code and
(optionally) the ISAM error code are inserted into the variables that are
specified in the SET clause. If you provided an error data variable, any error text
that the database server returns is put into the error data variable. Error text
includes information such as the offending table or column name.

Forcing the Routine to Continue
The example on page 2-45 uses the WITH RESUME keyword to indicate that
after the statement block in the ON EXCEPTION statement executes, execution
is to continue at the LET x = SELECT COUNT(*) FROM emp_list statement,
which is the line following the line that raised the error. For this routine, the
result is that the count of salespeople names occurs even if the error occurred.
SPL Statements 2-47

ON EXCEPTION
Continuing Execution After an Exception Occurs

If you do not include the WITH RESUME keyword in your ON EXCEPTION
statement, the next statement that executes after an exception occurs depends
on the placement of the ON EXCEPTION statement, as the following scenarios
describe:

■ If the ON EXCEPTION statement is inside a statement block with a
BEGIN and an END keyword, execution resumes with the first
statement (if any) after that BEGIN...END block. That is, it resumes
after the scope of the ON EXCEPTION statement.

■ If the ON EXCEPTION statement is inside a loop (FOR, WHILE,
FOREACH), the rest of the loop is skipped, and execution resumes
with the next iteration of the loop.

■ If the ON EXCEPTION statement is not contained within a statement
or statement block, the SPL routine executes a RETURN statement
with no arguments to terminate. That is, the routine returns a
successful status and no values.

Errors Within the ON EXCEPTION Statement Block

To prevent an infinite loop, if an error occurs during execution of the
statement block of an error trap, the search for another trap does not include
the current trap.
2-48 Informix Guide to SQL: Syntax

RAISE EXCEPTION
RAISE EXCEPTION
Use the RAISE EXCEPTION statement to simulate the generation of an error.

Syntax

Usage
Use the RAISE EXCEPTION statement to simulate an error. An ON EXCEPTION
statement can trap the generated error.

If you omit the ISAM error parameter, the database server sets the ISAM error
code to zero when the exception is raised. If you want to use the error text
variable parameter but not specify a value for ISAM error, you can specify 0 as
the value of ISAM error.

Element Purpose Restrictions Syntax
error text
variable

An SPL variable that contains the
error text

The SPL variable must be a
character data type and must be
valid in the statement block.

Identifier, p. 1-962

ISAM error A variable or expression that
represents an ISAM error
number. The default value is 0.

The variable or expression must
evaluate to a SMALLINT value.
You can place a minus sign
before the error number.

Expression, p. 1-876

SQL error A variable or expression that
represents an SQL error number

The variable or expression must
evaluate to a SMALLINT value.
You can place a minus sign
before the error number.

Expression, p. 1-876

RAISE EXCEPTION ;SQL
error

ISAM
error

,
error text
variable,
SPL Statements 2-49

RAISE EXCEPTION
For example, the following statement raises the error number -9999 and
returns the stated text:

RAISE EXCEPTION -9999, 0, 'You broke the rules';

The statement can raise either system-generated exceptions or user-
generated exceptions.

In the following example, a negative value for a raises exception 9999. The
code should contain an ON EXCEPTION statement that traps for an exception
of 9999.

FOREACH SELECT c1 INTO a FROM t
IF a < 0 THEN
RAISE EXCEPTION 9999-- emergency exit
END IF
END FOREACH

See the ON EXCEPTION statement for more information about the scope and
compatibility of exceptions.
2-50 Informix Guide to SQL: Syntax

RETURN
RETURN
Use the RETURN statement to designate the values that the routine returns to
the calling module.

Syntax

Usage
The RETURN statement returns values to the calling module. An SPL routine
that returns one or more values is called an SPL function.

All the RETURN statements in an SPL function must be consistent with the
RETURNING clause of the CREATE FUNCTION statement, which defines the
function. The number and data type of values in the RETURN statement, if
any, must match in number and data type the data types that are listed in the
RETURNING clause of the CREATE FUNCTION statement. You can choose to
return no values even if you specify one or more values in the RETURNING
clause. If you use a RETURN statement without any expressions, but the
calling routine or program expects one or more return values, it is equivalent
to returning the expected number of null values to the calling program.

,
RETURN

Expression
p. 1-876

WITH RESUME

;

SPL Statements 2-51

RETURN
In the following example, the SPL function includes two acceptable RETURN
statements. A program that calls this function should check if no values are
returned and act accordingly.

CREATE FUNCTION two_returns (stockno INT)

RETURNING CHAR (15);
DEFINE des CHAR(15);
ON EXCEPTION (-272)

-- if user doesn’t have select privs...
RETURN; -

- return no values.
END EXCEPTION;
SELECT DISTINCT descript INTO des FROM stock

WHERE stocknum = stockno;
RETURN des;

END FUNCTION;

A RETURN statement without any expressions exits only if the SPL function
is declared not to return values; otherwise it returns nulls.

In an SPL program, you can use an external function as an expression in a
RETURN statement provided that the external function is not an iterator
function. An iterator function is an external function that returns one or more
rows of data and therefore requires a cursor to execute.

The WITH RESUME Keyword
If you use the WITH RESUME keyword after the RETURN statement executes,
the next invocation of the SPL function (upon the next FETCH or FOREACH
statement) starts from the statement that follows the RETURN statement. If a
function executes a RETURN WITH RESUME statement, the calling routine or
program must call the function within a FOREACH loop.

If an SPL routine executes a RETURN WITH RESUME statement, a FETCH
statement in an application that is written in an SQL API can call it. ♦

ESQL
2-52 Informix Guide to SQL: Syntax

RETURN
The following example shows a cursor routine that another routine can call.
After the RETURN i WITH RESUME statement returns each value to the calling
routine or program, the next line of sequence() executes the next time
sequence() is called. If backwards equals 0, no value is returned to the calling
routine or program, and execution of sequence stops.

CREATE FUNCTION sequence (limit INT, backwards INT)

RETURNING INT;
DEFINE i INT;

FOR i IN (1 TO limit STEP 1)
RETURN i WITH RESUME;

END FOR

IF backwards = 0 THEN
RETURN;

END IF

FOR i IN (limit TO 1 STEP -1)
RETURN i WITH RESUME;

END IF

END FUNCTION; -- sequence
SPL Statements 2-53

SYSTEM
SYSTEM
Use the SYSTEM statement to make an operating-system command run from
within an SPL routine.

Syntax

Usage
If the supplied expression is not a character expression, expression is
converted to a character expression before the operating-system command is
made. The complete character expression passes to the operating system and
executes as an operating-system command.

The operating-system command that the SYSTEM statement specifies cannot
run in the background. The database server waits for the operating system to
complete execution of the command before it continues to the next statement
in the SPL routine.

Your SPL routine cannot use a value or values that the command returns.

Element Purpose Restrictions Syntax
expression Any expression that is a user-

executable operating-system
command

You cannot specify that the
command run in the
background.

Operating-system
dependent

SPL variable An SPL variable that contains a
valid operating-system
command

The SPL variable must be of
CHAR, VARCHAR, NCHAR,
NVARCHAR, or CHARACTER
VARYING data type,

Identifier, p. 1-962

expressionSYSTEM ;

SPL variable
2-54 Informix Guide to SQL: Syntax

SYSTEM
If the operating-system command fails (that is, if the operating system
returns a nonzero status for the command), an exception is raised that
contains the returned operating-system status as the ISAM error code and an
appropriate SQL error code.

In routines that contain SYSTEM statements, the operating-system command
runs with the permissions of the user who is executing the routine.

Specifying Environment Variables in SYSTEM Statements
When the operating-system command that SYSTEM specifies is executed, no
guarantee exists that the environment variables that the user application set
are passed to the operating system. To ensure that the environment variables
that the application set are carried forward to the operating system, enter a
SYSTEM command that sets the environment variables before you enter the
SYSTEM command that causes the operating-system command to execute.

For information on the operating-system commands that set environment
variables, see Chapter 3 of the Informix Guide to SQL: Reference.

Examples of the SYSTEM Statement in SPL Routines
The following example shows the use of a SYSTEM statement within an SPL
routine. The SYSTEM statement in this example causes the operating system
to send a mail message to the system administrator.

CREATE PROCEDURE sensitive_update()
.
.
.
LET mailcall = 'mail headhoncho < alert'
-- code that evaluates if operator tries to execute a
-- certain command, then sends email to system
-- administrator
SYSTEM mailcall
.
.
.

END PROCEDURE; -- sensitive_update
SPL Statements 2-55

SYSTEM
You can use a double-pipe symbol (||) to concatenate expressions with a
SYSTEM statement, as the following example shows:

CREATE PROCEDURE sensitive_update2()
DEFINE user1 char(15);
DEFINE user2 char(15);
LET user1 = 'joe';
LET user2 = 'mary';
.
.
.
-- code that evaluates if operator tries to execute a
-- certain command, then sends email to system
-- administrator
SYSTEM 'mail -s violation' ||user1 || ' ' || user2

 || '< violation_file';
.
.
.

END PROCEDURE;
2-56 Informix Guide to SQL: Syntax

TRACE
TRACE
Use the TRACE statement to control the generation of debugging output.

Syntax

Usage
The TRACE statement generates output that is sent to the file that the SET
DEBUG FILE TO statement specifies.

Tracing prints the current values of the following items:

■ Variables

■ Routine arguments

■ Return values

■ SQL error codes

■ ISAM error codes

The output of each executed TRACE statement appears on a separate line.

If you use the TRACE statement before you specify a DEBUG file to contain the
output, an error is generated.

TRACE ON

OFF

PROCEDURE

Expression
p. 1-876

;

SPL Statements 2-57

TRACE
Any routine the SPL routine calls inherit the trace state. That is, a called
routine assumes the same trace state (ON, OFF, or PROCEDURE) as the calling
routine. The called routine can set its own trace state, but that state is not
passed back to the calling routine.

A routine that is executed on a remote database server does not inherit the
trace state.

TRACE ON

If you specify the keyword ON, all statements are traced. The values of
variables (in expressions or otherwise) are printed before they are used. To
turn tracing ON implies tracing both routine calls and statements in the body
of the routine.

TRACE OFF

If you specify the keyword OFF, all tracing is turned off.

TRACE PROCEDURE

If you specify the keyword PROCEDURE, only the routine calls and return
values, but not the body of the routine, are traced.

The TRACE statement does not have ROUTINE or FUNCTION keywords.
Therefore, use the TRACE PROCEDURE keywords even if the SPL routine you
want to trace is a function.
2-58 Informix Guide to SQL: Syntax

TRACE
Printing Expressions

You can use the TRACE statement with a quoted string or an expression to
display values or comments in the output file. If the expression is not a literal
expression, the expression is evaluated before it is written to the output file.

You can use the TRACE statement with an expression even if you used a
TRACE OFF statement earlier in a routine. However, you must first use the
SET DEBUG statement to establish a trace-output file.

The following example uses a TRACE statement with an expression after it
uses a TRACE OFF statement:

CREATE PROCEDURE tracing ()
DEFINE i INT;

BEGIN
ON EXCEPTION IN (1)
END EXCEPTION; -- do nothing
TRACE OFF;
SET DEBUG FILE TO '/tmp/foo.trace';
TRACE 'Forloop starts';
FOR i IN (1 TO 1000)

BEGIN
TRACE 'FOREACH starts';
FOREACH SELECT...INTO a FROM t

IF <some condition> THEN
RAISE EXCEPTION 1 -- emergency exit

END IF
END FOREACH

-- return some value
END

END FOR

-- do something
END;
END PROCEDURE
SPL Statements 2-59

TRACE
The following example shows additional TRACE statements:

PROCEDURE testproc()
DEFINE i INT;

TRACE OFF;
SET DEBUG FILE TO '/tmp/test.trace';
TRACE 'Entering foo';

TRACE PROCEDURE;
LET i = testtoo();

TRACE ON;
LET i = i + 1;

TRACE OFF;
TRACE 'i+1 = ' || i+1;
TRACE 'Exiting testproc';

SET DEBUG FILE TO '/tmp/test2.trace';

END PROCEDURE;

Looking at the Traced Output
To see the traced output, use an editor or utility to display or read the
contents of the file.
2-60 Informix Guide to SQL: Syntax

WHILE
WHILE
Use the WHILE statement to establish an indefinite loop within an SPL
routine.

Syntax

Usage
The condition is evaluated once at the beginning of the loop, and subse-
quently at the beginning of each iteration. The statement block is executed as
long as the condition remains true. The loop terminates when the condition
evaluates to not true.

If any expression within the condition evaluates to null, the condition
automatically becomes not true unless you are explicitly testing for the IS
NULL condition.

If an expression within the condition has an unknown value because it
references uninitialized SPL variables, an immediate error results. In this
case, the loop terminates, and an exception is raised.

CREATE PROCEDURE simp_while()
DEFINE i INT;
DEFINE pf_name CHAR(15);
WHILE EXISTS (SELECT fname INTO pf_name FROM customer

 WHERE customer_num > 400)
DELETE FROM customer WHERE id_2 = 2;

END WHILE

LET i = 1;
WHILE i < 10

INSERT INTO tab_2 VALUES (i);
LET i = i +1;

END WHILE;
END PROCEDURE;

;

WHILE Condition
p. 1-831

Statement
Block

p. 1-1037
END WHILE
SPL Statements 2-61

Index

Index
A
ABS function 1-903
Access control. See Privilege,

database-level, Connect.
Access method

CREATE TABLE option 1-252
CREATE TABLE with 1-252
index 1-135
name clause 1-253
primary 1-252
secondary 1-135
SQL statements for 1-12

ACOS function 1-932, 1-934
Active set

constructing with OPEN 1-527,
1-528

deallocating 1-91
of sequential cursor 1-411
retrieving data with

FETCH 1-408
scroll cursor 1-314, 1-413
sequential cursor 1-313

Aggregate expression. See Aggregate
function;Expression segment.

Aggregate function
behavior of, example 1-951
error checking

counting selected rows with
COUNT 1-953

empty rows (indicator
variable) 1-953

error checking with external
(ESQL) function 1-953

restrictions 1-943

restrictions with GROUP
BY 1-628

rowid not allowed with 1-885
Aggregate functions 1-941 to 1-955
Algebraic functions 1-900 to 1-906
Algorithm

for adding columns to tables 1-56
Alias

SELECT with 1-596, 1-607
SELECT...AS with 1-610
use with GROUP BY clause 1-627,

1-631
ALLOCATE DESCRIPTOR

statement 1-25
syntax 1-20
WITH MAX clause 1-23

Allocating memory
with ALLOCATE

COLLECTION 1-20
ALS. See Asian Language Support.
ALTER FRAGMENT statement

ADD Clause 1-43
ATTACH clause 1-30 to 1-34

example 1-34
DETACH clause 1-35
DROP clause 1-45
effects on large objects, triggers,

constraints, indexes 1-31
INIT clause 1-36
logging 1-29
MODIFY clause 1-46
privileges 1-28

ALTER INDEX 1-49
ALTER INDEX statement

creating clustered index 1-49
dropping clustered index 1-50
TO CLUSTER clause 1-50

ALTER TABLE
DEFAULT clause 1-58

ALTER TABLE statement
ADD clause 1-55
ADD CONSTRAINT clause 1-78
ADD TYPE clause 1-83
BEFORE option 1-71
CHECK clause 1-70
constraint mode definition 1-62
DROP clause 1-72
DROP CONSTRAINT clause 1-82
LOCK MODE clause 1-85
ON DELETE CASCADE

option 1-68
PAGE keyword 1-85
privileges for See Privilege,

table-level.
REFERENCES clause 1-65
ROW keyword 1-85
ROWIDS clause 1-85
setting columns NOT NULL 1-61

American National Standards
Institute. See ANSI.

AND logical operator 1-848
ANSI compliance

-ansi flag Intro-14, 1-203, 1-211,
1-288

icon Intro-12
level Intro-21
reserved words 1-963
SQL statements 1-17
SQLSTATE variable 1-441
table naming 1-569
updating rows 1-778

ANSI-compliant database
BEGIN WORK with 1-89
CHARACTER VARYING data

type 1-858
constraint naming 1-850
criteria for 1-115
cursor in 1-307, 1-308, 1-310
function naming 1-959, 1-1004
index naming 1-980
opaque-type naming 1-165
operator-class naming 1-172
procedure name 1-469, 1-580,

1-811
SQLNOTFOUND 1-393

synonym naming 1-1042
table name with 1-1044
table privileges 1-218
USER function 1-890
view naming 1-1047

API.See Application programming
interface (API).

Application
single-threaded 1-684
thread-safe 1-684, 1-687

Arbitrary rule 1-157
Argument 1-824 to 1-826
Arithmetic functions. See Algebraic

functions.
Arithmetic operator

binary 1-954
expression with 1-954
unary 1-955

Array
moving rows into with

FETCH 1-415
ASCII code set 1-1017
ASIN function 1-934
Assign support function 1-169,

1-500, 1-516, 1-520, 1-788
ATAN function 1-934
ATAN2 function 1-934
ATAN, ATAN2 functions 1-934
AUTOFREE feature 1-674
Automatic type conversion. See

Data type conversion.
AVG function 1-948

B
Backslash. See\, backslash.
Backup. See Archiving.
Base data type

See Opaque data type.
BEGIN WORK statement 1-88
Binary Large Object (BLOB)

effect of isolation on
retrieval 1-722, 1-743

Bindary data type. See BLOB data
type; BYTE data type; Smart
large object; Simple large object.

BLOB data type 1-865
copying to a file 1-923
copying to a smart large

object 1-925
creating from a file 1-921
handle values 1-885
storage (PUT) location for 1-247
syntax 1-864
unloading 1-767, 1-769
 See also Smart large object.

blob.See Simple large object.
BOOLEAN data type

unloading 1-766
Btree cleaner list 1-810
B-tree index

btree_ops operator class 1-176
default operator class 1-176
sort order options 1-142
uses 1-148

B-tree secondary access
method 1-148

Built-in data type
owner 1-119
syntax 1-856 to 1-863
 See also each data type listed

under its own name.
BYTE data type 1-865

loading 1-515
referencing 2-18
referencing in SPL routine 2-11
unloading 1-767, 1-769
with SET DESCRIPTOR 1-709
 See also Simple large object.

C
C omments symbol. See--, double

dash; {}, curly brackets.
Calculated expression, restrictions

with GROUP BY 1-628
CALL statement 2-4
CARDINALITY function 1-907
Caret. See ^, caret.
Cascading deletes 1-327

adding with ALTER TABLE 1-68
ALTER TABLE...ON DELETE

CASCADE 1-68
2 INFORMIX

CREATE TABLE example 1-236
CREATE TABLE with 1-236
disallowing with REVOKE

REFERENCES 1-577
locking associated with 1-237
logging 1-237
multiple child tables 1-237
privileges 1-237
restriction 1-237
See alsoCREATE TABLE

statement;DELETE
sstatement.

trigger restriction 1-257
Cascading triggers 1-278

effect on a triggering table 1-275
Cast

CREATE CAST 1-109
DROP CAST 1-347
explicit 1-111

syntax 1-880
function for 1-113
implicit 1-112
privileges 1-110
registering 1-109
system-defined 1-112

DROP CAST restrictions 1-348
CHAR data type 1-858

greater than condition 1-1015
unloading 1-766

CHARACTER data type
ANSI compliancy 1-858
See CHAR data type.

Character data type
fixed and varying length 1-858
fixed length

ANSI compliancy 1-858
length functions 1-916
subscripting substring 1-884
syntax 1-857
varying length in ANSI-compliant

database 1-858
 See also CHAR; CHARACTER;

LVARCHAR; VARCHAR;
CHARACTER; VARYING
data types.

Character variables
subscripting 1-842

CHARACTER VARYING data type
in ANSI-compliant

database 1-858
syntax 1-857

CHARACTER_LENGTH
function 1-916

CHARACTER_LENGTH function.
See CHAR_LENGTH function.

CHAR_LENGTH function 1-916
Check constraint

adding with ALTER
TABLE..CHECK 1-70

renamed column with 1-566
trigger and 1-279

CLASS routine modifier 1-1025
CLIENT routine modifier 1-1025
Client/server

environment 1-281
CLOB data type 1-865

copying to a file 1-923
copying to a smart large

object 1-925
creating from a file 1-921
handle values 1-885
syntax 1-864
unloading 1-767, 1-769
 See also Smart large object.

CLOSE DATABASE statement 1-94
prerequisite actions 1-94

CLOSE statement 1-90
collection cursor 1-92
function cursor 1-91
insert cursor 1-91
select cursor 1-91

Collating sequence. See Collation
order.

Collation order
with relational operators 1-1016
See alsoGlobal Language Support

(GLS); Guide to GLS
Functionality

Collection
nested 1-988

Collection cursor 1-317 to 1-322
closing 1-92
DECLARE for ESQL/C

variable 1-317
deleting elements 1-329
FOR EACH with 2-30

inserting into 1-419, 1-560
opening 1-530
updating elements 1-792

Collection data type 1-871
deleting 1-326, 1-329, 1-330
element

searching for with IN 1-839
IN operator 1-839
loading 1-519
MULTISET 1-872
returning number of

elements 1-907
selecting from 1-610
SET 1-872
unloading 1-766
updating 1-786, 1-790, 1-792,

1-793
Collection derived

table 1-827 to 1-830
collection cursor 1-419, 1-560
collection variables with 1-828
DECLARE statement with 1-828
DELETE statement with 1-828
DELETE with 1-330, 1-334
FETCH statement with 1-828
FOREACH statement 1-828
INSERT statement with 1-828
INSERT with 1-321, 1-506, 1-510
PUT statement with 1-828
row variables with 1-830
SELECT statement with 1-828,

1-830
SELECT with 1-610

fields from row variable 1-614
TABLE keyword 1-827, 1-828,

1-830
UPDATE row variable with 1-798
UPDATE statement with 1-828,

1-830
UPDATE with 1-793

Collection data type
 See also LIST data type;

MULTISET data type; SET
data type.

Collection variable
accessing 1-828
allocating memory for 1-20
cursor for 1-419
deallocating memory for 1-294
Index 3

deleting 1-329, 1-330
describing 1-341
inserting 1-506
inserting elements into 1-507
opening a cursor 1-530
selecting from 1-610
selecting, inserting

elements 1-317 to 1-322
updating 1-781, 1-792, 1-793
See also Literal, Collection;

Constant, Collection.
Colon. See:, colon; :: , cast operator.
Column

algorithms for adding 1-56
check constraint for 1-231
comparisons 1-835
constraints 1-223
dropping 1-72
INFO...COLUMNS with 1-488
inserting into 1-494
length 1-338
modifying with ALTER

TABLE 1-74
name. SeeColumn name.
primary or foreign key 1-229
privileges 1-465
projection 1-883
referenced and referencing 1-67,

1-233
renaming 1-565
subscript, substring 1-633
value. SeeColumn value.
virtual 1-288

Column definition clause 1-219
Column expression 1-881

determining dynamically 1-338
Column name

determining dynamically 1-338
dot notation 1-883
functions as names 1-968
label for 1-973
rowid as 1-972
when qualified 1-271
workaround for keyword 1-973
'all', 'unique', 'distinct' as 1-970
'interval’, 'datetime' as 1-971
'null', ‘select' 1-976
’as’, ’from’ as 1-974

Column value
in a SET clause 1-784
in triggered action 1-273
INSERT statement

considerations 1-499
qualified vs. unqualified 1-273

Column-level properties. See
Constraints

column-level.
Command script file

comment symbols in 1-10
defined 1-10

Comment icons Intro-10
Comment symbol

double dash (--) 1-1040
how to enter 1-9
in application programs 1-10
in prepared statements 1-541
SPL routine 1-1040

COMMIT WORK statement
ANSI-compliancy 1-97
cursor with 1-316
syntax 1-96

Committed Read isolation level
(Informix) 1-720

Compare support function 1-170
Complex data type

loading element values 1-519
unloading 1-771

Complex data type. See Collection
data type; Row type.

Compliance
icons Intro-12
with industry standards Intro-21

Composite index 1-150
Compound assignment 2-40
Concatenation operator. See ||,

concatination operator; concat()
operator function.

concat() operator function 1-879
Concurrency

access modes 1-742
ANSI Read Committed

isolation 1-741
ANSI Read Uncommitted

isolation 1-741
ANSI Repeatable Read

isolation 1-741
ANSI Serializable isolation 1-741

defining with SET
ISOLATION 1-719

defining with SET
TRANSACTION 1-742

Informix Committed Read
isolation 1-720

Informix Cursor Stability
isolation 1-721

Informix Dirty Read
isolation 1-720

Informix Repeatable Read
isolation 1-721

Condition 1-831, 1-831 to 1-849
ALL/ANY/SOME

subquery 1-618, 1-846
AND operator 1-848
BETWEEN operator 1-837
comparing a range of

values 1-842
comparison 1-832

ESCAPE character
substitution 1-843

examples using special
characters 1-841

value range delimiters 1-842
EXISTS subquery 1-618, 1-846
IN operator 1-838
IN subquery 1-618, 1-845
LIKE comparator 1-841

wildcards 1-840
logical operators in 1-848
MATCHES comparator 1-842

wildcards 1-840
NOT IN operator 1-838
NOT operator with 1-832, 1-841
null values 1-832, 1-849
OR operator 1-848
quotation marks in 1-835
relational operators 1-617
relational operators in 1-836
restrictions 1-831
subquery in 1-844 to 1-848
subquery with 1-618
subscript delimiters 1-842

Condition segment 1-831
join conditions 1-624

Condtion
boolean. SeeCondtion,

comparison.
4 INFORMIX

Connect privilege. See Privilege,
database-level.

CONNECT statement 1-98 to 1-108
connection context 1-100
connection identifiers 1-100
database environment

specification 1-103 to 1-106
DEFAULT option 1-100
implicit connections 1-101
switching connections 1-102
transactions with 1-102
USER clause 1-106
WITH CONCURRENT

TRANSACTION option 1-102
Connecting to data

sqlhosts file and sqlexecd
daemon 1-106

Connection
context 1-100, 1-344, 1-683
current 1-99, 1-345, 1-687
default 1-101, 1-344, 1-686
dormant 1-99, 1-344, 1-683
identifiers 1-100
implicit 1-101, 1-344, 1-686

Constant
comparisons 1-835
UNITS keyword with 1-894

Constant expression
inserting with PUT 1-555
restrictions with GROUP

BY 1-628
Constraint

adding with ALTER TABLE 1-77
adding with object

modes 1-660 to 1-666
altering 1-225
column-level 1-227
composite column list 1-80
definition of 1-223
dropping

effect on foreign key 1-82
dropping a column with 1-73
dropping with ALTER

TABLE 1-82
duplicate indexes 1-81
enforcing 1-225
limit on size 1-223
mixing 1-80

modifying a column that has
constraints 1-74

names 1-225
viewing (sysconstraints) 1-82

naming conventions 1-851
number of columns

allowed 1-223
object mode

disabled example 1-657
filtering example 1-657

privileges
See also Privilege,table-level.

shared unique constraint
index 1-80

table-level 1-228
transaction mode 1-669
unique 1-80
with DROP INDEX 1-355
See also Check constraint; Not null

constraint;Primary key
constraint;Referential
constraint; Referntial integrity.

Constraint mode
definition, in CREATE

TABLE 1-238
restriction 1-226
types of 1-239
using 1-240

Constraint Name segment
syntax 1-850

Constructor function 1-895
CONTINUE statement 2-7
Correlated subquery

cascading deletes with 1-237
Correlated subquery. See Subquery,

correlated.
Correlation name

in triggered action 1-271
rules for 1-271
scope of 1-272
table of values 1-273
use with a routine 1-276
when to use 1-272

COS function 1-932, 1-933
COUNT field

with DESCRIBE 1-339
with GET DESCRIPTOR 1-432
with SET DESCRIPTOR 1-702

COUNT function 1-944
with column name

argument 1-947
with DISTINCT keyword 1-946
with (*) argument 1-944

COUNT functions 1-944
CREATE CAST

statement 1-109 to 1-113
EXPLICIT keyword 1-111
IMPLICIT keyword 1-112
WITH clause 1-113

CREATE DATABASE
statement 1-114

ANSI compliance 1-115
logging 1-116
restrictions 1-115
WITH BUFFERED LOG

option 1-116
WITH LOG clause 1-116

CREATE DISTINCT TYPE
statement 1-118

CREATE FUNCTION
statement 1-122 to 1-130

DBA keyword 1-126
DOCUMENT clause 1-128
External Routine Reference 1-128
Procedure List 1-1028
Return clause 1-127, 1-1020
WITH LISTING IN clause 1-129

CREATE INDEX
statement 1-134 to 1-163

ASC keyword 1-142
CLUSTER keyword 1-136
composite indexes 1-150
DESC keyword 1-142
DISTINCT keyword 1-136
FILLFACTOR clause 1-153
fragment by expression 1-155
implicit table locks 1-135
IN dbspace clause 1-154
Index Definition clause 1-137
object modes 1-158 to 1-162
storage option 1-154
UNIQUE keyword 1-136
USING clause 1-148

CREATE OPAQUE TYPE
statement 1-164 to 1-170

ALIGNMENT modifier 1-167
CANNOTHASH modifier 1-167
Index 5

INTERNALLENGTH
modifier 1-165

MAXLEN modifier 1-167
Modifier clause 1-166
PASSEDBYVALUE

modifier 1-167
VARIABLE keyword 1-166

CREATE OPCLASS
statement 1-171 to 1-177

STRATEGY clause 1-173
SUPPORT clause 1-175

CREATE PROCEDURE FROM
statement 1-131, 1-188

CREATE PROCEDURE
statement 1-178 to 1-187

DBA keyword 1-182
DOCUMENT clause 1-185
External Routine Reference 1-184
Procedure List 1-1028
Return clause 1-183
WITH LISTING IN clause 1-185

CREATE ROLE statement 1-190
CREATE ROUTINE FROM

statement 1-192
CREATE ROW TYPE statement

extended field definition 1-199
field definition 1-200
field definition syntax 1-871
syntax 1-194
UNDER clause 1-197

CREATE SCHEMA
statement 1-201

defining a trigger 1-256
GRANT with 1-203

CREATE SYNONYM
statement 1-204 to 1-207

chaining synonyms 1-206
synonym for a table 1-204
synonym for a view 1-204

CREATE TABLE
statement 1-208 to 1-254

access method option 1-252
cascading deletes 1-236
CHECK clause 1-230
column definition clause 1-219
constraint definition

column-level 1-227
table-level 1-228

constraint mode definition 1-238
DEFAULT clause 1-220
FRAGMENT BY clause 1-244
fragmentation by expression

with 1-246
IN dbspace clause 1-243
LOCK MODE clause 1-251
ON DELETE CASCADE

keywords 1-232, 1-236
options clauses 1-240
PUT clause 1-247
REFERENCES clause 1-232
setting columns to NOT

NULL 1-221
storage option 1-242
WITH NO LOG keywords 1-241
WITH ROWIDS keywords 1-241

CREATE TRIGGER
statement 1-255 to 1-285

action clause referencing 1-267
AFTER action keyword 1-262
CREATE SCHEMA with 1-256
DISABLED/ENABLED

keywords 1-283
ESQL/C restriction 1-256
FOR EACH ROW action 1-262
INSERT REFERENCING

clause 1-264
privileges for 1-256
trigger object modes 1-283
triggered action list 1-268
UPDATE clause 1-259
UPDATE REFERENCING

clause 1-266
WHEN condition 1-268

CREATE VIEW
statement 1-286 to 1-291

column data types 1-287
privileges 1-287
virtual column 1-288
WITH CHECK OPTION

1-289
with SELECT * notation 1-287

Current database, specifying with
DATABASE 1-292

CURRENT function 1-839, 1-892
CREATE TABLE with 1-220
example 1-503

CURRENT OF keywords
in DELETE 1-328
in UPDATE 1-789

Cursor
characteristics 1-313
CLOSE statement 1-90
closing 1-90 to 1-93, 1-681

ROLLBACK WORK
effects 1-591

declaring multiple 1-302
dynamic 1-303
fetching values 1-408
freeing automatically with SET

AUTOFREE 1-673
host variable for 1-302
locking considerations 1-309
manipulation statements 1-13
maximum number of 1-302
modes 1-306
name restriction 1-975
OPEN statement

for 1-525 to 1-535
opening 1-526, 1-695
optimizing 1-673, 1-695
prepared statement with 1-316
restricted statements 1-311
scope of 1-302
select hold examples 1-315
sequential function 1-411
sequential select 1-411
statement identifier with 1-316
transaction end with 1-92
transaction with 1-322

example 1-323
guidelines 1-322

trigger with 1-257
types of 1-303

Cursor function 2-28
Cursor name

’execute’, ’select’, ’with’ as 1-978
Cursor Stability isolation level

(Informix) 1-721
Cursor. SeeCollection cursor;

Function cursor; Hold cursor.;
Insert cursor; > Read-only
cursor; Scroll cursor; Select
cursor; Sequential cursor;
Update cursor.
6 INFORMIX

D
Data

inserting values 1-497
loading into database 1-512
unloading from database 1-765

Data conversion. See Data type,
conversion.

Data definition language
statements 1-14

Data distributions
confidence 1-809
on temporary tables 1-806
RESOLUTION 1-809

UPDATE STATISTICS
(HIGH) 1-809

UPDATE STATISTICS
(MEDIUM) 1-809

DATA field
and INDICATOR field 1-707
and TYPE field 1-706
syntax 1-430
with DATETIME and INTERVAL

types 1-707
with DESCRIBE 1-339
with SET DESCRIPTOR 1-706

Data integrity
object modes 1-666
object modes with 1-660 to 1-666
statements 1-15

Data manipulation language
SQL statements for 1-15

Data manipulation statements
object modes with 1-654 to 1-660

Data model
 See also Relational model.

Data type 1-855 to 1-875
casting 1-109, 1-880
changing with ALTER

TABLE 1-76
collection 1-871
complex 1-869
constructing an instance of 1-895
determining dynamically 1-338
distinct 1-868
formatting loaded values 1-514
INSERT considerations 1-499,

1-1013

opaque 1-164
referential constraints rules 1-68
simple large object 1-865
view inherits 1-287
 See also each data type listed

under its own name.
Data Type segment 1-855
Database

access control. See Privilege,
database-level.

closing with CLOSE
DATABASE 1-94

creating with CREATE
DATABASE 1-115

default isolation levels 1-721,
1-742

dropping with DROP
DATABASE 1-349

exception codes 1-439
loading data into 1-512
lock 1-293
naming conventions 1-853
naming with variable 1-854
opening in exclusive mode 1-293
optimizing queries 1-804
privileges. See Privilege,

database-level.
remote 1-854
renaming 1-568
unloading data from 1-765

Database administrator (DBA)
privileges

granting 1-459
list of 1-461
revoking 1-574

Database Name segment
for remote database 1-854
naming conventions 1-852
naming with variable 1-854
syntax 1-852

Database object
creating

revoking privileges for 1-575
database server name

function name qualifier 1-960
DATABASE statement

determining database type 1-293
exclusive mode 1-293

specifying current database 1-292
SQLWARN after 1-293
syntax 1-292

Dataskip
skipping unavailable

dbspaces 1-689
DATE data type 1-866

functions in 1-927
greater than condition 1-1015
unloading 1-766

DATE function 1-927, 1-928
DATETIME data type 1-866

field qualifiers 1-874
functions on 1-927
greater than condition 1-1015
unloading 1-768
with SET DESCRIPTOR 1-707

DATETIME Field Qualifier 1-874
DATETIME function

CREATE TABLE with 1-220
DAY function 1-927, 1-929
DBA See Database administrator

(DBA); Privilege
database-level.

dbaccessdemo7 script Intro-6
DBANSIWARN environment

variable 1-203, 1-288, 1-964
DBBLOBBUF environment

variable 1-769
LOAD with 1-518

DBCENTURY environment
variable

date value interpretation 1-1040
LOAD with 1-514

DBDATE environment
variable 1-766, 1-928

DBDELIMITER environment
variable 1-771

LOAD with 1-520
DBINFO function 1-907

sessionid option with 1-910
DBMONEY environment

variable 1-767
DBMS. See Database management

system.
DBSERVERNAME function 1-890

CREATE TABLE with 1-220
Index 7

dbspace
DBINFO function with 1-909
default 1-115
INFO statement with 1-489
name 1-909
round robin distribution 1-41
setting with CREATE

TABLE 1-243
skipping if unavailable 1-689
temporary tables in 1-243, 1-640

DBSPACETEMP configuration
parameter

CREATE TEMP TABLE
with 1-216

DBSPACETEMP environment
variable 1-640

CREATE TEMP TABLE
with 1-216

DBTIME environment
variable 1-768

DDL.See Data definition language.
Deadlock detection 1-725
DEALLOCATE COLLECTION

statement 1-294
DEALLOCATE DESCRIPTOR

statement 1-296
DEALLOCATE ROW

statement 1-298
DEC data type. See DECIMAL data

type.
DECIMAL data type 1-861

GET DESCRIPTOR with 1-434
precision and scale 1-434
unloading 1-767
with SET DESCRIPTOR 1-707

Decimal point. See ˙, decimal point.
DECLARE

statement 1-300 to 1-323
collection derived table

with 1-828
collection variables with 1-828
CURSOR keyword 1-313
cursors with prepared

statements 1-316
FOR READ ONLY option 1-307
FOR UPDATE column list 1-309
FOR UPDATE option 1-307
restrictions with SELECT with

ORDER BY 1-635

SCROLL keyword 1-314
SELECT with 1-605
transactions with 1-322
WHERE CURRENT OF

clause 1-308
WITH HOLD keywords 1-315

DEFAULT keyword
in CONNECT statement 1-100

Default locale Intro-6
Default value

CREATE TABLE
limitations 1-222

CREATE TABLE syntax for 1-220
Deferred-PREPARE feature 1-695
DEFINE statement 2-8

placement of 2-10
DELETE statement 1-324 to 1-334

cascading 1-327
collection columns with 1-326
Collection derived table

clause 1-330, 1-334
collection derived table

with 1-828
collection variables with 1-329,

1-330, 1-828
count of rows 1-447, 1-910
cursor with 1-308
missing WHERE signalled 1-337
object modes with 1-654
privilege for See Privilege,

table-level.
row variables with 1-334
trigger 1-257
WHERE clause 1-327

checking for 1-337
WHERE CURRENT OF

clause 1-328
with SELECT...FOR

UPDATE 1-636
with update cursor 1-328
within a transaction 1-325

DELIMIDENT environment
variable 1-967

variable name ’global’ with 1-978
Delimiter

specifying with LOAD 1-520
specifying with UNLOAD 1-771

DELIMITER keyword
in UNLOAD 1-771

Demonstration database Intro-6
 See also stores7 database.

DESCRIBE
statement 1-335 to 1-342

collection variable with 1-341
Deferred-PREPARE feature

with 1-696
distinct data type with 1-436
GET DESCRIPTOR with 1-433
INTO sqlda pointer clause 1-340
LENGTH field 1-435
opaque data type with 1-435
statement type 1-336
USING SQL DESCRIPTOR

clause 1-338
with SET DESCRIPTOR 1-709

Descriptor. See System-descriptor
area.

Destroy support function 1-169,
1-326, 1-374

Detached index 1-154
Diagnostic area

message codes in 1-439
Diagnostic table

examples with object mode 1-656
many to one relationship to

violations table 1-660
starting with constraint -mode

and index-mode objects 1-663
Diagnostics area

fields of 1-449
GET DIAGNOSTICS statement

with 1-438
number of exceptions 1-447

Diagnostics table
creating with START

VIOLATIONS TABLE 1-744
examples 1-759, 1-761, 1-764
how to stop 1-763
privileges on 1-757
relationship to target table 1-749
relationship to violations

table 1-749
starting with filtering-mode

objects 1-650
starting with START

VIOLATIONS TABLE 1-744
stopping with filtering-mode

objects 1-651
8 INFORMIX

structure 1-756
use with SET 1-650

Dirty Read isolation level
(Informix) 1-720

Disabled object mode 1-655
DISCONNECT

statement 1-343 to 1-346
ALL keyword 1-346
CURRENT keyword 1-345
DEFAULT option 1-344
transaction with 1-345

Distinct data type 1-868
casting 1-119
casts and DROP TYPE 1-378
creating with CREATE DISTINCT

TYPE 1-118
DESCRIBE with 1-436
dropping casts on 1-348
dropping with DROP TYPE 1-378
dynamic SQL with 1-436
GET DESCRIPTOR with 1-436
in dynamic SQL 1-709
privileges 1-119
restrictions on source type 1-119
source data type 1-436, 1-709
with SET DESCRIPTOR 1-709

DISTINCT keyword
in CREATE INDEX 1-136
use in expression 1-943

Distributions
dropping with DROP

DISTRIBUTIONS clause 1-808
MEDIUM or HIGH

distribution 1-809
privileges required to

create 1-808
divide() operator function 1-954
DML.See Data manipulation

language.
Documentation conventions

icon Intro-10
sample-code Intro-18
syntax Intro-12
typographical Intro-9

Documentation notes Intro-20

Documentation, types of
documentation notes Intro-20
error message files Intro-20
machine notes Intro-20
on-line manuals Intro-19
printed manuals Intro-19
release notes Intro-20

Double colon. See cast operator.
DOUBLE PRECISION data

type 1-863
DOUBLE PRECISION data type.

SeeFLOAT data type.
Double-dash (--) comment

symbol 1-1040
DROP CAST statement 1-347
DROP DATABASE

statement 1-349
DROP FUNCTION

statement 1-351
DROP INDEX statement 1-355
DROP OPCLASS statement 1-357
DROP PROCEDURE

statement 1-359
DROP ROLE statement 1-363
DROP ROUTINE statement 1-365
DROP ROW TYPE statement 1-369

RESTRICT keyword 1-370
DROP SYNONYM statement 1-371
DROP TABLE statement 1-373

CASCADE keyword 1-374
effects of 1-373
RESTRICT keyword 1-374

DROP TRIGGER statement 1-376
DROP TYPE statement 1-378
DROP VIEW statement 1-380
Duplicate values

querying for 1-598
Dynamic management

statements 1-505
Dynamic routine-name

specification
of SPL functions 1-399
of SPL procedures 1-407

E
Enabled object mode 1-654

benefits of 1-668
End of data

with WHENEVER 1-818
Environment variable

IFX_AUTOFREE 1-675, 1-679,
1-680

IFX_DEFERRED_PREPARE
1-697

NODEFDAC 1-126, 1-182
setting

with SYSTEM statement 2-55
en_us.8859-1 locale Intro-6
Equal sign. See=, equals operator.
equal() operator function 1-1015
Error checking

continuing after procedure
error 2-47

error status with ON
EXCEPTION 2-44

with SYSTEM 2-55
Error message files Intro-20
Errors

Informix-specific 1-441
with WHENEVER 1-817

Escape character. See\, backslash;
Condition, comparison,
ESCAPE.

ESQL
See also External routine; External

function;External procedure.
ESQL/C

collection cursor with
FETCH 1-419

collection cursor with PUT 1-560
cursor example 1-315
deallocating collection variable

memory 1-294
deallocating row variable

memory 1-298
DISCONNECT statement

in 1-345
inserting collection variables

with 1-501
inserting row variables 1-503
Index 9

Exceptions. See End of data; Errors;
Error checking; Warning.

Exclamation point . See !,
exclamation point.

Exclusive access
specifying in DATABASE

statement 1-293
specifying in LOCK TABLE

statement 1-523
Exclusive lock

SeeLock
exclusive.

Executable file location 1-1007
EXECUTE FUNCTION

preparing 1-399
EXECUTE FUNCTION

statement 1-394
DESCRIBE with 1-338
how it works 1-395
INTO clause 1-396, 1-414
syntax 1-394

EXECUTE IMMEDIATE statement
restricted statements 1-402
syntax and usage 1-401

EXECUTE PROCEDURE
statement 1-404 to 1-407

how it works 1-406
in FOREACH 2-27
INTO clause 1-407
syntax 1-404

EXECUTE statement
and sqlca record 1-392
Deferred-PREPARE feature

with 1-696
error conditions with 1-392
INTO DESCRIPTOR clause 1-388
INTO keyword 1-384
INTO SQL DESCRIPTOR

clause 1-387
parameterizing a statement 1-390
syntax 1-382
USING DESCRIPTOR

clause 1-392
USING SQL DESCRIPTOR

clause 1-391
EXIT statement 2-20
EXP function 1-913
Explicit temporary table 1-215

Exponential function 1-913
Export support function 1-169,

1-768
Exportbinary support

function 1-169, 1-768
Expression 1-876 to 1-955

aggregate 1-941 to 1-955
boolean 1-832

condition with 1-831
casting 1-880
column 1-881
combined expressions 1-954
concatenating 1-878
constant 1-887 to 1-895
fragment 1-33
function 1-898 to 1-955
in UPDATE 1-784
ordering by 1-635
smart large objects in 1-886

Expression-based distribution
scheme

in CREATE INDEX 1-155
Expresssion

boolean
See alsoCondition, comparison.

EXTEND function 1-927, 1-930
Extension, to SQL

symbol for Intro-14
Extent

revising size 1-251
size 1-84

External function
aggregate function with 1-953
as operator-class strategy

function 1-174
as operator-class support

function 1-175
CREATE FUNCTION 1-125
executing 1-394, 1-542
non-variant 1-957
registering 1-125
variant 1-957
 See also External routine.

External procedure
creating body of 1-181
executing 1-404, 1-542
 See also External routine.

External routine
comments in 1-10
concatenation operator

with 1-879
CREATE PROCEDURE FROM

statement in 1-189
creating a function in 1-132
DEALLOCATE COLLECTION

statement 1-294
ill-behaved 1-1025
pathname syntax 1-1007
preparing 1-542
referencing 1-956
setting SQLSTATE 1-451
 See also Routine; External

function; External procedure.
External routine reference

example 1-957
External Routine Reference

segment 1-956
EXTYPEID field

syntax 1-430
with DESCRIBE 1-339
with SET DESCRIPTOR 1-708

EXTYPELEN field
syntax 1-430

EXTYPELENGTH field
with DESCRIBE 1-339
with SET DESCRIPTOR 1-708

EXTYPENAME field
with DESCRIBE 1-339
with SET DESCRIPTOR 1-708

EXTYPENM field
syntax 1-430

EXTYPEOWNERLENGTH field
with DESCRIBE 1-339
with SET DESCRIPTOR 1-708

EXTYPEOWNERNAME field
with DESCRIBE 1-339
with GET DESCRIPTOR 1-436
with SET DESCRIPTOR 1-708

EXTYPEOWNNM field
syntax 1-430

EXTYPOWNLEN field
syntax 1-430
10 INFORMIX

F
Feature icons Intro-11
Features, product Intro-7
FETCH statement 1-408 to 1-421

checking results with
SQLCA 1-421

CLOSE with 1-91
collection derived table

with 1-828
collection variables with 1-828
collection with 1-419
fetching a row for update 1-418
INTO clause 1-415
locking considerations 1-418
NEXT keyword 1-411
program arrays with 1-415
row numbers 1-413
sequential cursor with 1-411
syntax error, bad cursor

name 1-975
USING DESCRIPTOR

clause 1-417
USING SQL DESCRIPTOR

clause 1-416, 1-434
with

scroll cursor 1-412
X/Open mode 1-411

Field projection 1-883
File

loading data into database 1-512
OUTPUT statement with 1-536
sqexplain.out 1-711
unloading data from

database 1-765
.lok extension, explanation

of 1-725
FILETOBLOB function 1-921
FILETOCLOB function 1-918,

1-919, 1-921
FILLFACTOR clause in CREATE

INDEX 1-153
Filtering object mode 1-655

benefits of 1-668
Fixed-length data type

opaque data type 1-166
FLOAT data type 1-863

unloading 1-767

FLUSH statement 1-423
FOR statement 2-22

IN keyword 2-26
TO keyword 2-24, 2-25

FOREACH statement 2-27
collection derived table

with 1-828
collection variables with 1-828

Foreign key constraint 1-230
Fragment

privileges
duration of 1-481
granting with GRANT

FRAGMENT 1-477
revoking with REVOKE

FRAGMENT 1-586
Fragmentation

adding fragments 1-43
altering 1-27
arbitrary rule 1-246
attaching tables 1-30
CREATE INDEX..BY

EXPRESSION 1-155
CREATE TABLE..FRAGMENT

BY 1-244
dbspace for round-robin 1-41
defining and initializing 1-36
detaching fragments 1-35
disk space 1-29
dropping fragments 1-45
expression-based 1-41
fragment expressions 1-42, 1-156
information (INFO

statement) 1-489
log space 1-29
modifying 1-46
PDQ with SET EXPLAIN 1-716
PDQPRIORITY 1-731
remainder fragment 1-45
round robin distribution 1-41
row space 1-29
rowid columns 1-41
rowid columns with 1-85, 1-241
skipping an unavailable

dbspace 1-689
strategy

arbitrary rule 1-42
by expression 1-155, 1-246

hash rule 1-42, 1-246
range rule 1-42, 1-246
round robin 1-245

Fragmentation initialize 1-36
FREE statement 1-426

cursors with 1-535
implicit 1-674
statement identifier in 1-428
with AUTOFREE feature 1-674

Function 1-898 to 1-955
aggregate 1-941 to 1-955

EXISTS subquery with 1-846
algebraic 1-900 to 1-906
as column name 1-968
casting 1-113
creating indirectly from a stored

file 1-132
creating with CREATE

FUNCTION 1-122 to 1-130
creating with CREATE

FUNCTION FROM 1-131
dropping with DROP

FUNCTION 1-351
dropping with DROP

ROUTINE 1-365
exponential 1-913
expression with 1-898 to 1-941
length 1-915
logarithmic 1-913
name 1-396, 1-959

fully qualified 1-960
privileges 1-126
procedure contrasted with 1-179
shared library 1-917
smart large object 1-920
system catalog tables for 1-124
time 1-927 to 1-931
trigonometric 1-932 to 1-934
user-defined 1-937 to 1-941
See also each function listed under

its own name.
Function cursor 1-305, 1-398

closing 1-91
default mode 1-306
opening 1-528, 1-534
reopening 1-534

Function Modifier 1-1022
Function Name segment 1-959
Function Parameter List 1-1028
Index 11

Functional index
description 1-135
in composite index 1-150
specifying name of 1-141

G
GET DESCRIPTOR

statement 1-430 to 1-437
DECIMAL data type with 1-434
EXTYPEID field with 1-435
EXTYPELENGTH field

with 1-435
EXTYPENAME field with 1-435
EXTYPEOWNERLENGTH field

with 1-436
TYPE field 1-433, 1-434
VALUE clause 1-433, 1-434
X/Open mode 1-434

GET DIAGNOSTICS
statement 1-438 to 1-457

CLASS_ORIGIN keyword 1-450
CONNECTION_NAME

keyword 1-454
error-checking with 1-445
EXCEPTION clause 1-448
INFORMIX_SQLCODE

keyword 1-450
MESSAGE_LENGTH

keyword 1-451
MESSAGE_TEXT keyword 1-451
MORE keyword 1-447
NUMBER keyword 1-447
RETURNED_SQLSTATE

keyword 1-450
ROW_COUNT keyword 1-447
SERVER_NAME keyword 1-452
SQLSTATE codes 1-442
Statement clause 1-446
SUBCLASS_ORIGIN

keyword 1-451
Global Language Support

(GLS) Intro-6
SQL comment symbols with 1-11

GLS. See Global Language Support.
GL_DATE environment

variable 1-514, 1-766

GL_DATETIME environment
variable 1-515, 1-768

GRANT FRAGMENT
statement 1-477

AS grantor clause 1-483
WITH GRANT OPTION

clause 1-483
GRANT statement 1-458 to 1-476

ALL (PRIVILEGES)
behavior 1-465

ANSI compliance 1-203
AS grantor clause 1-475
column-specific privileges 1-465
CREATE SCHEMA statement

with 1-203
database-level

privileges 1-460 to 1-461
EXECUTE ON (user-defined

routine) 1-469
grantor chain 1-474
role name and privileges 1-472
table-level

privileges 1-462 to 1-467
USAGE ON (user-defined data

type) 1-468
view name and privileges 1-467
WITH GRANT OPTION

clause 1-474
greaterthanorequal() operator

function 1-1015
greaterthan() operator

function 1-1015

H
HANDLESNULLS routine

modifier 1-1024
Hash rule 1-156
HEX function

rowid with 1-885
Hold cursor 1-315

transactions with 1-92
Host variable

for cursor 1-302
inserting fetched values 1-434
selecting values into 1-602
system-descriptor fields 1-703

Hyphen. See-, hyphen.

I
Icons

comment Intro-10
compliance Intro-12
feature Intro-11
product Intro-11
syntax diagram Intro-14

IDATA field
in X/Open programs 1-706
syntax

ILENGTH field 1-430
with SET DESCRIPTOR 1-706

Identifier 1-962 to 1-1005
DELIMIDENT environment

variable 1-967
delimited 1-965

example 1-967
keywords as 1-969
multibyte characters in 1-965,

1-967
non-ASCII characters in 1-965,

1-967
IF statement

syntax 2-34
syntax and use 2-34
with null values 2-36

IFX_AUTOFREE environment
variable 1-675, 1-679, 1-680

IFX_DEFERRED_PREPARE
environment variable 1-697

IFX_RELOAD_MODULE
function 1-918

IFX_REPLACE_MODULE
function 1-919

ILENGTH field
in X/Open programs 1-706
with SET DESCRIPTOR 1-706

Implicit temporary table 1-215
Import support function 1-169,

1-516
Importbinary support

function 1-169, 1-516
Index

bidirectional traversal 1-143
cleaner list. See Btree cleaner list.
clustered

altering 1-49
clustering
12 INFORMIX

with ALTER INDEX...TO
CLUSTER 1-50

with CREATE
INDEX...CLUSTER 1-136

constraints, effect on 1-136
converting during upgrade 1-801
creating fragments 1-155
creating with CREATE

INDEX 1-134
detached 1-154
disabled 1-163
DROP INDEX with 1-355
duplicate 1-81, 1-136

object mode 1-652
expansion with 1-153
FILLFACTOR clause with 1-153
fragmentation with 1-34, 1-39,

1-154, 1-157
INFO statement with 1-488
name 1-980
number on same columns 1-151
ORDER BY with 1-144, 1-636
privilege for creating (Index

privilege) See Privilege,
table-level.

sharing with constraints 1-225
side-effect 1-175
temporary table 1-641
unique

adding with object
modes 1-660 to 1-666

duplicate values,
resolving 1-161

Index access method. SeeAccess
method, secondary.

Index Name segment 1-980
INDICATOR field

GET DESCRIPTOR with 1-435
SET DESCRIPTOR with 1-707
syntax 1-430

Indicator variable
in dynamic SQL 1-435, 1-707

Industry standards, compliance
with Intro-21

INFO statement 1-486 to 1-491
COLUMNS FOR 1-488
FRAGMENT keyword 1-489
INDEXES FOR 1-488
PRIVILEGES FOR 1-490

REFERENCES FOR 1-490
STATUS FOR 1-491
TABLES 1-487

Informix Guide to SQL: Syntax,
organization of 1-5

Informix user ID
CONNECT...USER statement

with 1-107
host variable for 1-107

INFORMIXDIR/bin
directory Intro-6

$INFORMIXDIR/etc/sqlhosts. See
sqlhosts file.

Input support function 1-168
Insert buffer

counting inserted rows 1-425,
1-563

cursor with 1-495
filling with constant values 1-555
storing rows with PUT 1-554
triggering flushing 1-562

Insert cursor 1-312, 1-495
benefits 1-313
closing 1-91
opening 1-529
reopening 1-529
restrictions 1-529
sqlca state on closing 1-91
transaction with 1-93
values passed to program 1-556

INSERT statement 1-492 to 1-511
AT clause 1-509
character values 1-499
collection column values 1-501
collection derived table

with 1-506, 1-510, 1-828
collection variable elements 1-506
collection variables with 1-828
collection with

Collection variable, cursor
for 1-560

count of rows inserted 1-447,
1-910

cursor with 1-495
DESCRIBE with 1-338
dynamic 1-505
ESQL/C 1-501, 1-503
examples with object

modes 1-656 to 1-660

insert cursor compared
with 1-313

LOAD with 1-514
object modes with 1-654
opaque variables 1-500
privilege for See Privilege, table-

level.
PUT with 1-554
putting values into program

variables 1-556
row type field values 1-502
row variables 1-510
SELECT statement with 1-504
SERIAL and SERIAL8

columns 1-500
SERIAL and SERIAL8 columns

with 1-909
smart large objects with 1-885
TEXT and BYTE columns 1-499
transaction and 1-496
VALUES clause 1-497

expressions with 1-503
NULL keyword with 1-504

view with 1-494
INT8 data type 1-861

unloading 1-767
INTEGER data type 1-861

unloading 1-767
Integrity. See Data integrity.
INTERNAL routine

modifier 1-1026
INTERVAL data type 1-866

greater than condition 1-1015
loading 1-515
with SET DESCRIPTOR 1-707

INTERVAL Field Qualifier
segment 1-982

INTO DESCRIPTOR
keywords 1-384

in EXECUTE 1-388
INTO SQL DESCRIPTOR

keywords 1-384
in EXECUTE...INTO 1-387

ISAM error code 2-43, 2-49
ISO 8859-1 code set Intro-6
Isolation level

ANSI Read Committed 1-741
ANSI Read Uncommitted 1-741
ANSI Repeatable Read 1-741
Index 13

ANSI Serializable 1-741
default 1-721, 1-742
default in ANSI-compliant

database 1-741
definitions 1-720, 1-741
FETCH statement with 1-418
in external tables 1-722, 1-738
Informix Committed Read 1-720
Informix Cursor Stability 1-721
Informix Dirty Read 1-720
Informix Repeatable Read 1-721
scroll cursor with 1-314

ITERATOR routine
modifier 1-1027

ITYPE field
in X/Open programs 1-706
syntax 1-430
with SET DESCRIPTOR 1-707

J
Join

dynamic hash example 1-713
in Condition segment 1-624
multiple-table join 1-625
outer join 1-626
self-join 1-626
SET EXPLAIN information

about 1-713
two-table join 1-625

Join column. See Foreign key.

K
Keywords

SQL 1-963
using in triggered action 1-270

L
Large object 1-864

attaching tables 1-34
constraints 1-226
fragmentation with 1-34
 See also Simple large object ; Smart

large object.

LENGTH field
and TYPE field 1-706
with DATETIME and INTERVAL

types 1-707
with DECIMAL and MONEY

types 1-707
with DESCRIBE 1-339, 1-706
with SET DESCRIPTOR 1-706

LENGTH function 1-916
Length functions 1-915
lessthanorequal() operator

function 1-1015
lessthan() operator function 1-1015
LET statement

syntax 2-39
Library

shared 1-917
like() operator function 1-842
LIST data type

deleting elements 1-329
deleting elements from 1-326,

1-330
selecting one element from 1-611
unloading 1-766
updating elements 1-786, 1-792,

1-793
updating elements in 1-798

Literal
Collection 1-985 to 1-989

expression with 1-894
nested example 1-988
quotation marks with 1-988
syntax for non-collection

elements 1-986
DATETIME 1-991 to 1-993

current date 1-892
quoted string as 1-1012

INSERT with 1-498
INTERVAL 1-994 to 1-996

expression with 1-893
quoted string as 1-1012

Number 1-997
expression with 1-891

Row 1-999 to 1-1003
expression with 1-895
literal collection with 1-988
nested row containing 1-1002

Literal Collection segment 1-985
Literal DATETIME segment 1-991
Literal Row segment 1-999
LOAD FROM file 1-514
LOAD statement 1-512

DELIMITER clause 1-520
format requirements 1-514
INSERT INTO clause 1-521
LOAD FROM file 1-514
loading CHAR and VARCHAR

data types 1-517
loading CLOB or BLOB

columns 1-518
loading collections 1-519
loading row types 1-519
loading TEXT or BYTE

columns 1-518
opaque-type columns 1-519
privileges 1-513
specifying the table to load

into 1-521
Locale Intro-6
Lock

exclusive 1-236
page 1-251
promotable 1-309
row 1-251
setting with SET LOCK

MODE 1-724
table

changing mode 1-85
creating with ALTER

INDEX 1-50
LOCK TABLE statement 1-522
unlocking 1-773

update 1-779
Lock mode

altering with ALTER TABLE 1-85
LOCK TABLE statement

reversing with UNLOCK
TABLE 1-773

with transactions 1-523
without transactions 1-524

Locking
cursors, effect on 1-309
default table locking 1-251
during

delete 1-325
updates 1-779
14 INFORMIX

FETCH statement and 1-418
overriding row-level 1-523
releasing with COMMIT

WORK 1-96
releasing with ROLLBACK

WORK 1-591
SET ISOLATION with 1-719
transactions with 1-88
waiting period 1-725

LOCOPY function 1-925
LOG10 function 1-914
Logarithmic functions 1-913
Logging

ANSI-compliant database
with 1-116

buffered
changing to with SET

BUFFERED LOG 1-727
setting with CREATE

DATABASE 1-116
buffered versus unbuffered 1-727
cascading deletes 1-237
database creation 1-116
unbuffered

changing to with SET
LOG 1-727

with triggers 1-282
Logical operator

AND 1-848
condition with 1-848
NOT 1-832
OR 1-848
unknown values 1-832, 1-849

LOGN function 1-914
Lohandles support function 1-170
.lok extension 1-725
.lok file extension 1-725
Loop

indefinite with WHILE 2-61
LOTOFILE function 1-923
LVARCHAR data type 1-857, 1-858

greater than condition 1-1015
in INSERT 1-499

M
Machine notes Intro-20
Mail, sending from procedure 2-55
Major features Intro-7
matches() operator function 1-843
MAX function 1-948
MDY function 1-931
Memory

allocating for collection
variable 1-20

allocating for row variable 1-25
allocating for system-descriptor

area 1-22
DEALLOCATE COLLECTION

statement for 1-294
DEALLOCATE DESCRIPTOR

statement for 1-296
DEALLOCATE ROW statement

for 1-298
Message

error 1-439
Messages

End of data 1-439
Not Found 1-439
warning 1-439

MIN function 1-949
minus() operator function 1-954
MOD function 1-903
Model. See Data model.
MONEY data type 1-861

GET DESCRIPTOR with 1-434
loading 1-515
precision and scale 1-434
syntax 1-860
unloading 1-767
with SET DESCRIPTOR 1-707

MONTH function 1-929
MS-DOS operating system. See DOS

operating system.
Multiple triggers

preventing overriding 1-281
MULTISET data type

deleting elements 1-329
deleting elements from 1-326,

1-330

selecting one element from 1-611
unloading 1-766
updating elements 1-786, 1-792,

1-793
updating elements in 1-798

N
NAME field

syntax 1-430
with DESCRIBE 1-339

Named row data type
updating fields 1-798

Named row type 1-870
assigning with ALTER

TABLE 1-83
constraints in table

containing 1-199
creating with CREATE ROW

TYPE 1-194
dropping with DROP ROW

TYPE 1-369
inheritance 1-197
unloading 1-767, 1-771

Naming convention
constraint 1-851
database 1-853
index 1-981
synonym 1-1043
table 1-1045
view 1-1048

NCHAR data type 1-858
loading 1-517
syntax 1-857
with relational operators 1-1015

negate() operator function 1-955
Nested ordering, in SELECT 1-634
NODEFDAC environment

variable 1-126, 1-182, 1-218
effects on new routine 1-126,

1-182
GRANT statement with 1-466,

1-471
Condition

IS 1-840
Index 15

Not found condition. See End of
data.

NOT logical operator 1-832
NOT VARIANT routine

modifier 1-1026
notequal() operator

function 1-1015
NULL comparator 1-840
Null value

AND and OR operators
with 1-849

BETWEEN operator with 1-837
checking for in SELECT 1-384,

1-389
GET DESCRIPTOR with 1-435
IN operator results with 1-839
in SPL IF statement 2-36
inserting with the VALUES

clause 1-504
LIKE and MATCHES results

with 1-840
loading 1-515
NOT operator with 1-832
returned implicitly 2-51
testing for 1-620, 1-840
unloading 1-767
updating a column 1-784
used in the ORDER BY

clause 1-634
WHILE statement with 2-61
with SET DESCRIPTOR 1-707

NULLABLE field
with DESCRIBE 1-339

Number data type
literal 1-997
syntax 1-997

Numeric data type 1-859 to 1-863
 See also DECIMAL;DOUBLE

PRECISION; FLOAT;
INTEGER; INT8; MONEY;
NUMERIC; REAL; SERIAL;
SERIAL8; SMALLINT;
SMALL FLOAT data types.

NUMERIC data type. See
DECIMAL data type.

NVARCHAR data type 1-858
loading 1-517
syntax 1-857
with relational operators 1-1015

O
Object mode

adding objects examples 1-662
benefits of 1-667 to 1-668
data manipulation statements

(INSERT, UPDATE, DELETE)
with 1-654

disabled 1-655
duplicate index 1-652
enabled 1-654

benefits of 1-668
examples 1-656
filtering 1-655

benefits of 1-668
error options in SET 1-649

privileges required for
changing 1-646

setting with SET 1-645
terminology 1-645
trigger 1-283, 1-652
See also Trigger; Constraint;

Index;SET statement
SET statement

See also Object mode
Object See database object.
OCTET_LENGTH function 1-916
ON EXCEPTION statement

placement of 2-45
SET LOCK MODE with 1-979
SET statement with 1-979
syntax 2-43

ON keyword
in CREATE INDEX 1-136

ONCONFIG parameter
DBSPACETEMP 1-640

On-line manuals Intro-19
Opaque data type 1-868

alignment of 1-167
as argument 1-167
creating with CREATE OPAQUE

TYPE 1-164
DESCRIBE with 1-435
dropping with DROP TYPE 1-378
extended identifier 1-435, 1-708
fixed length 1-166
fixed-length 1-166
GET DESCRIPTOR with 1-435
in DELETE 1-326

in DROP TABLE 1-374
in dynamic SQL 1-708
in INSERT 1-500
in LOAD 1-519
in UPDATE 1-788
loading 1-516, 1-519
modifiers 1-166
name of 1-435, 1-708
naming 1-165
owner name 1-436, 1-708
privileges 1-165
row field literal 1-1003
sizing 1-165
support functions 1-168
unloading 1-768
varying length 1-166
varying-length 1-166
with SET DESCRIPTOR 1-708

Opaque variable
inserting 1-500

Opclass. SeeOperator class.
OPEN statement 1-525 to 1-535

collection cursor 1-530
constructing the active set 1-527
cursors for data

manipulation 1-527
Deferred-PREPARE feature

with 1-695
FREE statement with 1-535
function cursor 1-528
insert cursor 1-529
reopening a cursor 1-529, 1-534,

1-681
substituting values for ?

parameters 1-530
USING clause 1-531
USING DESCRIPTOR

clause 1-532
WITH REOPTIMIZATION

clause 1-533
Operator

See Arithmetic operator; Cast
operator; Logical operator;
Relational operator.

Operator class
btree_ops 1-176
creating with CREATE

OPCLASS 1-171
default 1-176
16 INFORMIX

default for B-Tree 1-176
definition 1-142, 1-172
dropping with DROP

OPCLASS 1-357
rtree_ops 1-176
specifying with CREATE

INDEX 1-139, 1-142
Operator function

concat() 1-879
divide() 1-954
equal() 1-1015
greaterthanorequal() 1-1015
greaterthan() 1-1015
lessthanorequal() 1-1015
lessthan() 1-1015
like() 1-842
matches() 1-843
minus() 1-954
negate() 1-955
notequal() 1-1015
plus() 1-954
positive() 1-955
times() 1-954

Optimizer
specifying a high or low level with

SET OPTIMIZATION 1-729
strategy functions 1-173
with UPDATE

STATISTICS 1-804, 1-812
Optimizing

a query 1-711
across a network 1-730
cursor with Deferred-PREPARE

feature 1-695
cursor with SET

AUTOFREE 1-673
database server 1-729

OR logical operator 1-848
ORDER BY keywords

indexes on ORDER BY
columns 1-144

Outer join, forming 1-609
OUTPUT statement 1-536

PIPE with 1-537
Output support function 1-168

Owner
ANSI-compliancy 1-472, 1-1045
function name qualifier 1-959
in Constraint Name

segment 1-850
in CREATE SYNONYM 1-204
in RENAME COLUMN 1-566
in RENAME TABLE 1-569
index name qualifier 1-980
procedure name qualifier 1-1004
table-name qualifier 1-1045
view name with 1-1048

P
Parallel distributed query. SeePDQ.
Parent-child relationship 1-67,

1-233
PDQ

SET PDQPRIORITY
statement 1-731

with SET EXPLAIN 1-716
PDQPRIORITY environment

variable 1-731
PERCALL_COST routine

modifier 1-1025
Permission

running operating-system
command from a routine 2-55

See Privilege.
Phantom row 1-720, 1-741
plus() operator function 1-954
positive() operator function 1-955
POW function 1-904
Precedence

dot notation rules 1-884
PRECISION field

with DESCRIBE 1-339
with SET DESCRIPTOR 1-707

PREPARE statement
deferring 1-695
executing 1-382
for collection variables 1-542
freeing resources with

FREE 1-428
FROM INSERT...VALUES 1-557

increasing performance
efficiency 1-550

multi-statement text 1-549, 1-550
parameterizing a statement 1-544
parameterizing for SQL

identifiers 1-546
question (?) mark as

placeholder 1-539
restrictions with SELECT 1-541
statement identifier 1-316
statement identifier use 1-540
syntax 1-538
valid statement text 1-541
with CREATE FUNCTION 1-130
with CREATE

PROCEDURE 1-186
with external routines 1-542
with SPL routines 1-542

Prepared statement
comment symbols in 1-541
DESCRIBE statement with 1-336
executing 1-382
parameterizing 1-390, 1-546
prepared object limit 1-539
valid statement text 1-541

Primary key constraint 1-67
data type conversion 1-76
enforcing 1-225
modifying a column with 1-75
naming 1-81
referencing 1-67
rules of use 1-233
shared unique index 1-80
using 1-229

Printed manuals Intro-19
Privilege

chaining grantors 1-474
effect of REVOKE 1-584

CREATE SCHEMA with
GRANT 1-203

database-level
granting 1-460 to 1-461
revoking 1-574 to 1-575

DBA 1-461
DROP ROLE effects 1-363
Execute 1-469

defaulting to DBA 1-126, 1-182
trigger requirements 1-277

Execute (user-defined routine)
Index 17

ANSI-compliancy 1-471
revoking 1-580

fragment
granting with GRANT

FRAGMENT 1-477
revoking with REVOKE

FRAGMENT 1-586
granting with GRANT 1-458
INFO statement for 1-490
needed

to create a cast 1-110
on an opaque type 1-165
public

NODEFDAC effect on 1-466,
1-471

revoking 1-577
role name 1-472, 1-583

purpose 1-190
table-level

ANSI-compliancy 1-466
column-specific 1-463
creating a view 1-287
effect on view 1-467
revoking 1-576 to 1-579

Usage 1-468
revoking 1-579

Usage (user-defined data
type) 1-468

Procedure
creating

from separate file 1-188
with CREATE PROCEDURE

FROM 1-188
creating from file 1-189
dropping with DROP

PROCEDURE 1-359
dropping with DROP

ROUTINE 1-365
function contrasted with 1-179
naming conventions 1-406
privileges 1-182, 1-186
system catalog tables for 1-180

PROCEDURE data type 2-17
Procedure Modifier 1-1023
Procedure Parameter List 1-1028
Product icons Intro-11

Program variables
inserting 1-556
preparing 1-557

Projection
column with dot notation 1-883
field with dot notation 1-883

Promotable lock
SeeLock

promotable
PUT statement

checking results with
SQLCA 1-562

collection derived table
with 1-828

collection variables with 1-828
FLUSH with 1-554
FROM keyword 1-557
insert cursor 1-556
multiple with transactions 1-316
source of row values 1-555
syntax 1-552
trigger with 1-257
use in transactions 1-554
USING DESCRIPTOR

clause 1-559
USING SQL DESCRIPTOR

clause 1-558

Q
Quoted string

See also”, double quotes
QRT function 1-905
Query

complex vs. simple 1-715
design plan 1-533
memory for returned

values 1-413
multirow

statements for 1-410
optimization information

statements 1-16
optimizing 1-533
ordering with UNION

operator 1-642
piping results 1-537
UNION operator with 1-642
See also Subquery.

Question mark. See? (question
mark).

Quotation marks
double

around quoted string 1-1010
within quoted string 1-1012

single
around quoted string 1-1010
within quoted string 1-1012

Quoted Pathname segment 1-1007
Quoted string

comparing 1-836
DATETIME, INTERVAL

with 1-1012
inserting values with 1-1013
LIKE, MATCHES condition

with 1-1012
examples 1-620

TRACE statement with 2-59
Quoted String segment 1-1010

R
RAISE EXCEPTION statement 2-49
RANGE function 1-949
Range rule 1-156
Read Committed isolation level

(ANSI) 1-741
Read Uncommitted isolation level

(ANSI) 1-741
Read-only cursor

opening 1-527
REAL data type 1-863
REAL data type. SeeSMALLFLOAT

data type.
REATE TRIGGER statement

DELETE REFERENCING
clause 1-265

Receive support function 1-169
References 1-8
Referential constraint 1-67

disallowing with REVOKE
REFERENCES 1-577

enforcing 1-225
establishing with CREATE

TABLE..REFERENCES 1-234
index name 1-226
locking 1-236
18 INFORMIX

modifying a column with 1-75
with other constraints 1-80
See alsoConstraint; Cascading

deletes.
Referential constraints

ALTER
TABLE...REFERENCES 1-65

Referential integrity
See alsoReferential constraint;

Constraint.
Relational operator

BETWEEN 1-619, 1-837
condition with 1-836
EXISTS 1-622, 1-846
IN 1-619, 1-838
LIKE 1-620, 1-841
MATCHES 1-620, 1-842
segment 1-1014
SELECT statement with 1-618

Release notes Intro-20
RENAME DATABASE

statement 1-568
RENAME TABLE statement

ANSI-compliant naming 1-569
syntax 1-569

Repeatable Read isolation level
emulating during update 1-419
with SET ISOLATION

statement 1-721
with SET TRANSACTION 1-741

Reserved words 1-963
delimited identifiers with 1-966
identifiers with 1-963

Resolution
in UPDATE STATISTICS 1-809
with data distributions 1-809

RETURN statement 2-51 to 2-53
Return value

declaring in CREATE
FUNCTION 1-1020

RETURN statement for 2-51
REVOKE FRAGMENT

statement 1-586 to 1-590
REVOKE statement

ALL keyword behavior 1-579
CASCADE keyword 1-584
column-specific privileges 1-578
effect on grantor chain 1-584

EXECUTE ON (user-defined
routine) 1-580

No record found message 1-578
Privilege not revoked

message 1-579
privileges needed 1-573
RESTRICT option 1-585
role name and privileges 1-583
table-level privileges 1-576

Role
creating with CREATE

ROLE 1-190
dropping with DROP

ROLE 1-363
enabling with SET ROLE 1-734
establishing with CREATE,

GRANT, SET 1-473
granting name with

GRANT 1-473
granting privileges with

GRANT 1-474
revoking privileges with

REVOKE 1-583
ROLLBACK WORK statement

syntax 1-591
use with WHENEVER 1-592
WHENEVER with 1-89, 1-95
with DROP DATABASE 1-350

ROOT function 1-904
ROUND function 1-904
Routine

creating with CREATE ROUTINE
FROM 1-192

dropping with DROP
ROUTINE 1-365

header 2-10
parameter list 1-1028
privileges 1-186
restrictions in SQL

statements 1-1039
setting SQLSTATE 1-450
specific name 1-1035
SQL statements not valid

in 1-1038
SYSTEM statements

permission 2-55
See also User-defined routine.

Routine Modifier 1-1022

Routine modifier
CLASS 1-1025
CLIENT 1-1025
HANDLESNULLS 1-1024
INTERNAL 1-1026
ITERATOR 1-1027
NOT VARIANT 1-1026
PERCALL_COST 1-1025
SELFUNC 1-1025
STACK 1-1026
VARIANT 1-1026

Routine resolution
internal routines 1-1026
return values 1-1020

Row
empty, finding with indicator

variable 1-953
engine response to locked

row 1-725
insert cursor 1-495
inserting

with a stored procedure 1-506
with a user-defined

function 1-506
inserting through a view 1-494
inserting values 1-497
loading into database 1-513
multirow, fetching with

cursor 1-410
none selected, finding with

COUNT (*) 1-953
number vs. rowid with

FETCH 1-413
order, effect on trigger 1-263
phantom 1-720, 1-741
unloading from database 1-766
updating through a view 1-777
writing buffered rows with

FLUSH 1-423
ROW constructor 1-895
Row lock. See Lock, row.
Row type

collection type literal in 1-1003
constructor syntax 1-895
deleting 1-334
dot notation with 1-883
field-level literal values 1-1002
loading field values 1-515, 1-519
nested 1-1002
Index 19

selecting fields 1-601, 1-615
selecting from 1-614
unloading 1-767, 1-771
updating 1-785, 1-798

Row type See also Named row type;
Unnamed row type.

ROW type. See Unnamed row type.
Row variable

accessing 1-830
allocating memory for 1-25
deallocating memory for 1-298
deleting 1-334
inserting 1-502
inserting into 1-510
literalSee Literal, Row
selecting from 1-614
updating 1-798
See alsoCollection derived table.

Rowid
adding with ALTER

FRAGMENT 1-41
adding with ALTER TABLE 1-85
adding with CREATE

TABLE 1-241
column expression with 1-885
column name as 1-972
restrictions 1-885

R-tree index
creating 1-149
default operator class 1-176
rtree_ops operator class 1-176
uses 1-148

rtree secondary access
method 1-148

Rule
arbitrary 1-157
hash 1-156
range 1-156

S
Sample-code conventions Intro-18
SB_SPACE_NAME environment

CREATE TABLE with 1-248
SCALE field

with DESCRIBE 1-339
with SET DESCRIPTOR 1-707

Schema. See Data model.
Scroll cursor 1-314

active set 1-314, 1-413
FETCH with 1-412
position options 1-412

Secondary access method
B-tree 1-148
CREATE INDEX... USING 1-148
default operator class 1-176
definition 1-135, 1-172
See Access method, secondary; Index.
specifying with CREATE

OPCLASS 1-172
secondary access method

R-tree 1-148
Security

See alsoPrivilege.
Segment 1-821

Literal INTERVAL 1-994
Select cursor 1-305

closing 1-91
default mode 1-306
opening 1-527, 1-534
reopening 1-534

Select cursor. SeeCursor,select.
SELECT statement 1-593 to 1-643

aggregate function with 1-600
ALL keyword 1-598
BETWEEN condition 1-619
collection derived table

with 1-828
collection variables with 1-828
collection with 1-610
column expression in 1-599
column numbers 1-635
constant expression in 1-599
cursor for 1-636, 1-637
DESCRIBE with 1-338
DISTINCT keyword 1-598
expressions in select list 1-598
FOR READ ONLY clause 1-637
FOR UPDATE clause 1-636
FROM Clause 1-607
function expression in 1-600
GROUP BY clause 1-627
HAVING clause 1-629
IN condition 1-619
indicator variables with 1-398,

1-604

INSERT with 1-504
INTO clause 1-414, 1-602

array variable with 1-605
INTO clause restrictions 1-541
INTO TEMP clause 1-639
IS NULL condition 1-620
joining tables in WHERE

clause 1-624
LIKE or MATCHES

condition 1-620
ORDER BY clause 1-631

ascending/descending
order 1-634

column number with 1-635
null values in 1-634
UNION operator 1-642

privilege for See Privilege,
table-level.

relational-operator
condition 1-618

restrictions in routine 1-1039
routine argument as 1-826
row type 1-601
row type with 1-614
rowid

example 1-885
SELECT clause 1-595
select numbers 1-635
singleton 1-603
smart large objects with 1-885
SPL function in 1-600
subquery in WHERE clause 1-618
UNION operator 1-641
UNIQUE keyword 1-598
WHILE or FOR loop with 1-978
with

FOREACH 2-27
LET 2-40

writing rows retrieved to an
ASCII file 1-765

SELFUNC routine modifier 1-1025
Send support function 1-169
Sequential cursor

active set 1-411
DECLARE with 1-313
FETCH with 1-411
with FETCH 1-411

Sequential cursor. SeeCursor,
sequential.
20 INFORMIX

SERIAL data type
inserting values 1-500
length 1-862
resetting values 1-76
value range 1-862
with routines 2-11

See also SERIAL8 data type
SERIAL8 data type

See also SERIAL data type
inserting values 1-500
value range 1-862

See also SERIAL data type
Serializable isolation level

with SET TRANSACTION 1-741
Serializable isolation level (ANSI)

with SET TRANSACTION 1-739
Server

See also Database server.
Session control block

accessed by DBINFO
function 1-910

contents of 1-910
Session ID

obtaining with DBINFO() 1-910
SessionID

returned by DBINFO
function 1-910

SET AUTOFREE statement
1-673 to 1-681

cursor-AUTOFREE mode 1-677,
1-680

DISABLED option 1-679
ENABLED option 1-674
global-AUTOFREE mode 1-675,

1-679
IFX_AUTOFREE environment

variable with 1-680
with IFX_AUTOFREE

environment variable 1-697
SET BUFFERED LOG

statement 1-727
SET CONNECTION

statement 1-682 to 1-688
CURRENT keyword 1-687
DEFAULT option 1-686

SET CONSTRAINT statement
trigger activated 1-279

SET data type
deleting elements 1-329
deleting elements from 1-326,

1-330
selecting one element from 1-611
unloading 1-766
updating elements 1-786, 1-792,

1-793
updating elements in 1-798

SET DATASKIP statement
restrictions 1-690
syntax 1-689

SET DEBUG FILE TO statement
syntax and use 1-692
with TRACE 2-57

SET DEFERRED_PREPARE
statement 1-695 to 1-698

DISABLED option 1-697
ENABLED option 1-696

SET DESCRIPTOR
statement 1-699 to 1-709

COUNT keyword 1-702
IDATA field 1-435
PUT with 1-558
VALUE clause 1-703
X/Open mode 1-705

SET EXPLAIN
statement 1-711 to 1-718

DYNAMIC HASH JOIN
information 1-713

examples 1-714
interpreting output 1-712
MERGE JOIN information 1-713
optimizer access paths 1-712
SORT SCAN information 1-713
with fragmentation 1-716
with PDQ 1-716
with SET OPTIMIZATION 1-718
with table inheritance 1-718

SET ISOLATION
statement 1-719 to 1-722

default database levels 1-721
definition of isolation levels 1-720
effects of isolation 1-722
similarities to SET

TRANSACTION
statement 1-739

SET keyword
use in UPDATE 1-782

SET LOCK MODE
statement 1-724 to 1-726

kernel locking 1-725
ON EXCEPTION statement

with 1-979
setting wait period 1-725

SET LOG statement 1-727
SET OPTIMIZATION

statement 1-729
HIGH keyword 1-729
LOW keyword 1-729
with SET EXPLAIN 1-718

SET PDQPRIORITY
statement 1-731

SET ROLE statement 1-734
SET SESSION AUTHORIZATION

statement 1-736
SET statement 1-645 to 1-671

diagnostics tables with 1-650
error options 1-649
ON EXCEPTION statement

with 1-979
privileges required for

executing 1-646
relationship to START

VIOLATIONS TABLE 1-746
transaction mode format 1-669
trigger object modes 1-284
violations tables with 1-650

SET TRANSACTION statement
default database levels 1-742
definition of isolation levels 1-741
effects of isolation 1-743
similarities to SET ISOLATION

statement 1-739
syntax 1-738

SHARE keyword, syntax in LOCK
TABLE 1-522

Shared library 1-917
Shared lock

SeeLock
shared.

Side-effect index 1-175
Simple assignment 2-40
Index 21

Simple large object 1-865
 See also BYTE data type; Large

object ; TEXT data type.
inserting 1-499
loading 1-515, 1-518
syntax 1-864

Simple large-object data type
unloading 1-767, 1-769

SIN function 1-932, 1-933
Single-threaded application 1-684
Singleton SELECT statement 1-603
SITENAME function 1-890

CREATE TABLE with 1-220
SMALLFLOAT data type 1-863

unloading 1-767
SMALLINT data type

unloading 1-767
Smart large object 1-865

column data
accessing 1-886

copying to a file 1-923
copying to a smart large

object 1-925
creating from a file 1-918, 1-919,

1-921
expressions with 1-885
FILETOBLOB function 1-921
FILETOCLOB function 1-921
functions for copying 1-920
generating filename for 1-924
handle values 1-885
LOCOPY function 1-925
LOTOFILE function 1-923
modifying characteristics 1-75
syntax 1-864
 See also BLOB data type; CLOB

data type; Large object.
Smart large-object

loading values 1-515, 1-518
Smart large-object data type

access time 1-249
extent size 1-248
logging 1-248
unloading 1-767, 1-769

SMI.SeeSystem Monitoring
Interface.

Software dependencies Intro-5
Sorting

in SELECT 1-631

SOURCEID field
with GET DESCRIPTOR 1-436
with SET DESCRIPTOR 1-709

SOURCETYPE field
with GET DESCRIPTOR 1-436
with SET DESCRIPTOR 1-709

Specific name
syntax 1-1034

SPL
statements described 2-3

SPL function
CREATE FUNCTION 1-124
CREATE FUNCTION

example 1-124
cursors with 2-27
dynamic routine-name

specification 1-399
executing 1-394, 1-542
optimization 1-124
punctuation for 1-124
registering 1-124
registering from inside an

external routine 1-132
SPL procedure

creating with CREATE
PROCEDURE 1-180

dynamic routine-name
specification 1-407

executing 1-404, 1-542
optimization 1-180
registering with CREATE

PROCEDURE 1-180
TRACE output file 1-692

SPL routine
comments 1-1040
executing operating system

commands from 2-54
loop

expression with FOR...IN 2-26
multiple ranges for 2-25
range and expression with FOR

statement 2-26
range of FOR..TO 2-24

loop, controlled 2-22
modifying, restrictions on 1-368
passing BYTE or TEXT argument

to 2-18
preparing 1-542

sqexplain.out file 1-711

SQL
keywords 1-963

SQL API
comments with 1-10
concatenation operator

with 1-879
SQL command script file 1-10
SQL Communications Area

(SQLCA)
checking for WHERE

clause 1-337
CLOSE results 1-91
cursor with 1-527
inserting rows 1-909, 1-912
processing rows 1-910
result after DATABASE 1-293
result after DESCRIBE 1-336
result after EXECUTE 1-392
result after FETCH 1-421
result after FLUSH 1-424
result after PUT 1-562
result after SELECT 1-606
SQLCODE field. See SQLCODE

field.
SQLERRD array. See SQLERRD

array.
SQLWARN array. See

SQLWARN array.
warning when dbspace

skipped 1-689
warnings in 1-817

SQL procedure
debugging 2-57

SQL statement
diagnostics area 1-438

SQL statements 1-12 to 1-19
access method 1-12
ANSI-compliant 1-17
client/server connection 1-13
comment symbol 1-10
comments examples 1-10
comments in 1-9
data access 1-13
data definition 1-14
data integrity 1-15
data manipulation 1-15
dynamic management 1-15
GET DIAGNOSTICS for 1-439
Informix extensions 1-17
22 INFORMIX

messages in SQLSTATE
variable 1-439

not available in routines 1-1038
parts of 1-6
restrictions on invoking

routines 1-1039
segments describe shared

syntax 1-5
SQLCA. See SQL Communications

Area.
SQLCODE field

End of Data condition 1-818
errors in 1-817
Not Found condition 1-818

SQLCODE variable
 See also SQL Communications

Area (SQLCA).
sqlda structure

DESCRIBE statement with 1-335
FETCH statement with 1-417
FETCH with 1-410
in DESCRIBE 1-340
in EXECUTE 1-385, 1-390
in EXECUTE...INTO 1-388
in EXECUTE...USING 1-392
in PUT 1-554, 1-559
OPEN...USING

DESCRIPTOR 1-532
SQLERRD array

count of rows 1-910
value of inserted SERIAL

value 1-909
value of inserted SERIAL8

value 1-912
SQLNOTFOUND constant

with EXECUTE 1-393
with PREPARE 1-549

SQLSTATE variable
ANSI compliance 1-441
applications with 1-445
class and subclass codes 1-442
cursor with 1-92, 1-528
end of data class code 1-440
End of Data condition 1-818
errors class code 1-440
errors in 1-817
Informix-specific message,

subclass code 1-441
message in 1-439

not found class code 1-440
Not Found condition 1-818
quick reference 1-440
subclass codes 1-440
success class code 1-440
warning class code 1-440
warnings in 1-817
X/Open mode 1-439

SQLWARN array
when dbspace skipped 1-689
with DBANSIWARN

environment variable 1-964
with SELECT 1-606
with WHENEVER 1-817

STACK routine modifier 1-1026
START VIOLATIONS TABLE

statement 1-744 to 1-762
privileges required for

executing 1-747
relationship to SET 1-746
relationship to STOP

VIOLATIONS TABLE 1-746
Statement

SQL
Statements not valid in stored

routine 1-1038
Statement block 1-1037 to 1-1041

statements not allowed in 1-1038
Statement identifier

cursor for 1-316
DECLARE statement 1-301
definition of 1-540
dynamic 1-541
releasing 1-540
scope of 1-383
syntax

in PREPARE 1-538
use

in PREPARE 1-540
Statement local variable

declaration 1-938
expression 1-939
using 1-939

Statement. See SQL, statement.
STDEV function 1-950
STOP VIOLATIONS TABLE

statement
description of 1-763

privileges required for
executing 1-764

relationship to START
VIOLATIONS TABLE 1-746

syntax 1-763
Stored procedure

dropping with DROP
PROCEDURE 1-362

executing 1-405
handling multiple rows 2-52
inserting data with legacy

SPL 1-506
replaced by SPL function 1-123,

1-730
replaced by SPL procedure 1-180
Return clause 1-1020
saving return values 1-407
sending mail from 2-55
simulating errors 2-49
 See also Procedure;SPL

Procedure;SPL routine.
Stored Procedure Language. See

SPL.
stores7 database Intro-6

 See also Demonstration database.
Strategy function

definition 1-173
optimizer use of 1-173
side-effect data 1-175
specifying in CREATE

OPCLASS 1-173
Structured Query Language. See

SQL.
Subquery 1-618

ALL/ANY/SOME 1-846
examples 1-623

beginning with IN
keyword 1-622

condition with 1-844 to 1-848
UNIQUE or DISTINCT

keyword 1-845
correlated

condition dependencies
for 1-844

DISTINCT keyword with 1-598
restrictions with UNION

operator 1-642
Subscripting

on character columns 1-633
Index 23

Substring
in ORDER BY clause of

SELECT 1-633
Subtable

inherited properties 1-213
SUM function 1-949
Support function

assign 1-169, 1-500, 1-520, 1-788
compare 1-170
defining 1-168
definition 1-175
destroy 1-169, 1-326, 1-374
export 1-169
exportbinary 1-169
import 1-169
importbinary 1-169
input 1-168
lohandles 1-170
output 1-168
receive 1-169
send 1-169
specifying in CREATE

OPCLASS 1-175
Synonym

ANSI-compliant naming 1-204
chaining 1-206, 1-371
creating with CREATE

SYNONYM 1-204
difference from alias 1-204
dropping with DROP

SYNONYM 1-371
identical names 1-206
loading data into 1-512
naming conventions 1-1043
private 1-205
privileges 1-205
privileges. See Privilege,table-

level.
public 1-205

Synonym Name segment 1-1042
Syntax conventions

elements of Intro-13
example diagram Intro-16
how to read Intro-16
icons used in Intro-14

Syntax Guide
diagrams in 1-7
Elements, Purpose, Restrictions,

and segment location
(Syntax) 1-7

organization 1-5
References sections 1-8
Segments sections 1-5

Sysmaster database
See alsoSystem catalog. 36

System catalog
location 1-115
syschecks 1-566
sysdepend

use with DROP VIEW 1-380
sysviews 1-566
sysxtdtypes 1-165
user-defined function

information 1-124
user-defined procedure

information 1-180
System descriptor area

DATA
fetching null value 1-435

host variables in 1-703
IDATA field 1-435
PRECISION field 1-434
X/Open standard with 1-434

System name, in database
name 1-854

SYSTEM statement
setting environment variables

with 2-55
syntax 2-54

System-defined cast
See Cast, system-defined.

System-descriptor area
allocating memory for 1-22
COUNT field. See COUNT field.
DATA field. See DATA field.
deallocating memory for 1-296
determining number of

values 1-432
FETCH statement with 1-416
FETCH.. USING SQL

DESCRIPTOR with 1-416
getting values from 1-433
IDATA field. See IDATA field.

ILENGTH field. See ILENGTH
field.

INDICATOR field. See
INDICATOR field.

item descriptors 1-23
ITYPE field. See ITYPE field.
LENGTH field. See LENGTH

field.
modifying contents of 1-433
NAME field. See NAME field.
NULLABLE field. See

NULLABLE field.
number of items allocated 1-702
obtaining values from 1-430
OPEN using 1-532
PRECISION field 1-434
PRECISION field. See PRECISION

field.
SCALE field 1-434
SCALE field. See SCALE field.
setting number of values 1-702
setting with SET

DESCRIPTOR 1-699
TYPE field 1-433, 1-434
TYPE field. See TYPE field.
undefined 1-702
with DESCRIBE 1-338, 1-339
with EXECUTE...INTO 1-387
with EXECUTE...USING 1-391
with PUT 1-558

sysxtdtypes
DESCRIBE and GET

DESCRIPTOR with 1-435,
1-436

sysxtdtypes system catalog
table 1-165, 1-378, 1-708, 1-709

T
TABLE 1-744
Table

alias. See Alias.
check constraints for 1-231
creating

a synonym for 1-204
creating with CREATE

TABLE 1-208
diagnostic 1-756
24 INFORMIX

dropping
from database 1-373
synonym for 1-371
tables protected from 1-375

engine response to locked
table 1-725

fragmenting with CREATE
TABLE...FRAGMENT
BY 1-244

INFO...TABLES with 1-487
isolating 1-243
joining 1-624
joins in Condition segment 1-624
loading data into 1-512
lock mode changes 1-85
name.SeeTable name.
privileges

column-specific 1-578
granting 1-462 to 1-467
revoking 1-576 to 1-579

privileges on 1-217
status 1-491
synonym. See Synonym.
target 1-749
temporary. SeeTemporary table.
trigger, maximum number

of 1-257
typed. SeeTyped table.
types of 1-217
unlocking 1-773
untyped 1-214
violations 1-748

Table inheritance
with SET EXPLAIN 1-718

Table lock. See Lock, table.
Table name 1-1044 to 1-1046

alias for 1-974
alias in SELECT 1-607
workarounds for keyword 1-974
’statistics’, ’outer’ as 1-972

Table Name segment 1-1044
Table-level constraint

definition 1-228
TAN function 1-933
Target table

relationship to diagnostics
table 1-749

relationship to violations
table 1-749

Temporary file. See File, temporary.
Temporary table

building distributions 1-806
creating with SELECT...INTO

TEMP 1-640
DBSPACETEMP environment

variable 1-640
description 1-215
explicit 1-215, 1-640
implicit 1-215
INFO statement restrictions 1-215
naming 1-215
storage location 1-216
updating statistics 1-806
when deleted 1-215

TEXT data type 1-865
loading 1-515
referencing in SPL routine 2-11
referencing in User-defined

routine (UDR) 2-18
unloading 1-767, 1-769
with SET DESCRIPTOR 1-709
 See also Simple large object.

Thread
in multithreaded

application 1-684
Thread-safe application

description 1-684, 1-687
disconnecting in 1-345

Thread-safe environment 1-684
Time data types 1-866
Time function

DATE function 1-928
restrictions with GROUP

BY 1-628
syntax 1-927

times() operator function 1-954
Time. See DATETIME data type.
TODAY function 1-839, 1-891

CREATE TABLE with 1-220
example 1-503

TP/XA. See Transaction manager.
TRACE statement

syntax 2-57
Transaction

BEGIN WORK 1-88
COMMIT WORK 1-96
concurrent 1-102
cursors in 1-92, 1-322

DISCONNECT behavior 1-345
example 1-315
inserting rows 1-496
ROLLBACK WORK 1-591
scroll cursor in 1-314

Transaction mode
constraints 1-669

Trigger
action clause syntax 1-261
actions 1-269 to 1-278

BEFORE and AFTER 1-262
merged 1-262
order 1-261
references check 1-276
REFERENCING 1-267
triggering table 1-274
WHEN 1-268

actions FOR EACH ROW 1-262
correlation name with 1-264
guidelines 1-263

activating event 1-256
DELETE...REFERENCING 1-26

6
execution time 1-258
INSERT

ON...REFERENCING 1-264
UPDATE 1-259
UPDATE with cascading

triggers 1-279
activating from external

database 1-257
ALTER TABLE...DROP column

effects 1-73
anyone can use 1-278
cascading 1-278

restrictions 1-279
client/server environment 1-281
conditional actions 1-268
constraint checking 1-279
correlation name 1-264, 1-272,

1-276
CREATE TRIGGER 1-255
cursor with 1-257
DROP TRIGGER 1-376
fragmentation with 1-31, 1-34
multiple triggers on

update 1-260, 1-262
name 1-258
number allowed 1-257
Index 25

object mode 1-652
object modes

DISABLED/ENABLED 1-283
setting with SET 1-644

preventing overriding 1-281
privileges 1-277
privileges to activate 1-258
privileges to create 1-256
referential constraint

restriction 1-257
renamed column and 1-566
WHEN...FOR EACH ROW

with 1-269
Triggering statement

achieving consistent results 1-270
Triggering table

action on 1-274
Trigonometric

functions 1-932 to 1-934
TRIM function 1-935
TRUNC function 1-906
TYPE field

and DATA field 1-706
and LENGTH field 1-706
changing from BYTE or

TEXT 1-709
in X/Open programs 1-705
with DESCRIBE 1-339
with SET DESCRIPTOR 1-704

Typed table
ALTER TABLE..ADD TYPE 1-83
altering 1-86
DROP TYPE clause 1-87
inheritance with 1-213

U
Underscore. See _, underscore.
Unique constraint

modifying a column with 1-75
naming 1-81
rules of use 1-229, 1-233
shared unique index 1-80

UNIQUE keyword
in CREATE INDEX 1-136

Unique key.SeePrimary key.

UNIX
authorization for connecting to

database 1-108
UNKNOWN truth values 1-849
UNLOAD statement

DELIMITER clause 1-771
privileges 1-766
syntax 1-765
UNLOAD TO file 1-766
unloading CLOB or BLOB

columns 1-769
unloading collections 1-771
unloading row types 1-771
unloading TEXT or BYTE

columns 1-769
unloading VARCHAR

columns 1-768
UNLOAD TO file 1-766
UNLOCK TABLE statement 1-773
Unnamed row data type

updating fields 1-798
Unnamed row type 1-870

field definition 1-871
unloading 1-767, 1-771

Untyped table. SeeTable.
Updatable view 1-290
Update cursor 1-307, 1-789

opening 1-527
use in DELETE 1-328
use in UPDATE 1-789
with collection variable 1-329,

1-792
Update lock. See Lock, update.
Update privilege

with a view 1-777
UPDATE statement

and transactions 1-778
collection columns with 1-786,

1-790
collection derived table

with 1-793, 1-828
collection variables with 1-792,

1-793, 1-828
column restrictions 1-310
cursor example 1-323
cursor with 1-308, 1-789
FETCH statement with 1-418
locking considerations 1-779
missing WHERE signalled 1-337

NULL with 1-784
number of rows 1-447, 1-910
object modes with 1-654
opaque-type columns 1-788
privileges for See Privilege,

table-level. 37
rolling back updates 1-778
row types 1-785
SELECT with 1-636
SET clause 1-779
single-column SET clause 1-780,

1-782
smart large objects with 1-885
syntax 1-776
trigger 1-257, 1-259
updating fields of a row

type 1-785, 1-798
use of expressions 1-780
view with 1-777
WHERE clause 1-788

checking for 1-337
WHERE CURRENT OF

clause 1-789
with

SET keyword 1-782
UPDATE STATISTICS

statement 1-801 to 1-812
distribution bins 1-805
dropping data distributions 1-808
index pages 1-810
LOW distribution 1-807
only one table in hierarchy 1-807
optimizing search

strategies 1-804, 1-812
recommended procedure for

using 1-812
specifying distributions

only 1-810
temporary tables 1-806
when to execute 1-805

Upgrading the database
server 1-805

USER function 1-839, 1-890
ANSI compliance with 1-890
CREATE TABLE with 1-220
example 1-503

User-defined base type. See Opaque
data type.
26 INFORMIX

Opaque type; Extended data type;
Cast, user-defined; CREATE
TYPE; CREATE CAST; Support
functions.

User-defined data type 1-867
 See alsoDistinct type 37
privileges 1-468

revoking 1-579
User-defined

function 1-937 to 1-941
cursor 1-398
in functional index 1-141
inserting data with 1-506
noncursor 1-397
variant 1-1026

User-defined function. See User-
defined routine; Function.

User-defined procedure . See User-
defined routine; Procedure.

User-defined routine
 See alsoRoutine; SPL routine;

External routine; Function;
Proc

arguments 1-167
dropping with DROP

ROUTINE 1-365
error codes 1-441
inserting data with 1-505
privileges

ANSI-compliancy 1-471
revoking 1-580

REFERENCES keyword with
BYTE or TEXT data type 2-18

Using correlation names 1-271

V
VALUES clause. See statement

containing clause.
VARCHAR data type 1-858

greater than condition 1-1015
unloading 1-766, 1-768

Variable
default values 2-13, 2-14
global 2-11
inserting values with PUT 1-556
local 2-10, 2-14
PROCEDURE type 2-17

SPL 2-8
unknown values in IF 2-36

Variable name
'global' 1-978
'on', 'off', 'procedure' 1-977

VARIANCE function 1-951
VARIANT routine modifier 1-1026
Varying-length data type

opaque data type 1-166
Varying-length opaque data

type 1-167
Vertical bar (|), delimiter 1-520,

1-771
View

alias. See Alias.
base table changes with 1-73
creating synonym for 1-204
creating with CREATE VIEW

statement 1-286
creating with SELECT *

notation 1-287
dependencies 1-380
dropping with DROP

VIEW 1-380
listing with INFO

statement 1-487
loading data into 1-512
naming conventions 1-1048
privilege when creating 1-287
privileges 1-467
privileges. See Privilege, table-

level.
renamed column in 1-566
restrictions with UNION

operator 1-642
updatable 1-290
updating 1-777
virtual column 1-288

View Name segment 1-1047
Violations table

creating with START
VIOLATIONS 1-744

examples 1-752, 1-755, 1-764
examples with object mode

examples 1-656
how to stop 1-763
privileges on 1-750
relationship to diagnostics

table 1-749

relationship to target table 1-749
starting 1-744
starting with constraint-mode and

index-mode objects 1-663
starting with filtering-mode

objects 1-650
stopping with filtering-mode

objects 1-651
structure 1-748
use with SET 1-650

W
Warning

if dbspace skipped 1-689
with WHENEVER 1-817

WEEKDAY function 1-930
WHENEVER

statement 1-814 to 1-820
CALL clause 1-819
CONTINUE keyword 1-818
GOTO keyword 1-818
NOT FOUND keywords 1-818
scope of 1-816
SQLERROR keyword 1-817
SQLWARNING keyword 1-817
STOP keyword 1-818
use 1-815

WHERE clause
relational operators 1-617
See alsoCondition; statement

containing clause.
WHERE CURRENT OF keywords

use
in DELETE 1-328
in UPDATE 1-789

WHILE statement 2-61
null value condition with 2-61

Wildcard
value passed to insert

cursor 1-557
Wildcard character

LIKE condition examples 1-621
LIKE condition with 1-841
MATCHES condition with 1-842
MATCHES keyword with 1-621
with LIKE or MATCHES 1-620,

1-1012
Index 27

Wildcard character. See also*,
asterisk; ?, question mark.

WITH CHECK keywords
use in CREATE VIEW 1-289

WITH MAX keywords 1-23
WITH RESUME keywords, in

RETURN 2-52

X
X/Open

specifications, icon for Intro-12
X/Open compliance

level Intro-21
X/Open mode

FETCH statement 1-411
GET DESCRIPTOR

statement 1-434
SET DESCRIPTOR

statement 1-705
SQLSTATE 1-439

Y
YEAR function 1-930
Year. See DATE data type;

DATETIME data type.

Symbols

!, exclamation point
generating smart large-object

filename 1-924
", double quotes

around delimited identifier 1-965
around quoted string 1-889,

1-1010
within delimited identifier 1-968
within quoted string 1-1012

%, percent sign, LIKE condition
wildcard 1-841

', single quote
restrictions on using in

conditions 1-841
', single quotes

condition with 1-836

*, asterisk
wildcard in MATCHES

condition 1-842
*, asterisk, wildcard character in

SELECT 1-596
--, double dash, comment

symbol 1-9, 1-1040
example 1-10

., period
dot notation 1-883

/etc/hosts.equiv 1-108
/etc/passwd 1-107
?, question mark

generating unique large-object
filename with 1-924

parameterizing prepared
statement 1-390

placeholder in PREPARE 1-539,
1-544

placeholder in prepared
statement 1-390

for insert cursor 1-557
requires OPEN...USING 1-530

replacement options in USING
clause 1-530

wildcard in MATCHES
condition 1-842

@, at sign, in database server
name 1-959

[...], square brackets
array subscript delimiters 1-605
range delimiters in

condition 1-842
\, backslash

escape character with
LOAD 1-516

escape character with
UNLOAD 1-772

\, backslash, as escape character
with LOAD 1-516

\, backslash, escape character
LIKE condition with 1-841
MATCHES condition with 1-842

^, caret, wildcard in
condition 1-842

_, underscore, wildcard in LIKE
condition 1-841

{}, curly brackets, comment
symbol 1-9, 1-1040

example 1-11
|, vertical bar, default

delimiter 1-520, 1-771
||, concatenation operator 1-878
’, single quotes

around quoted string 1-1010
within quoted string 1-1012
28 INFORMIX

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Manual
	Organization of This Manual
	Types of Users
	Software Dependencies
	Assumptions About Your Locale
	Demonstration Database

	Major Features
	Documentation Conventions
	Typographical Conventions
	Icon Conventions
	Comment Icons
	Feature and Product Icons
	Compliance Icons

	Syntax Conventions
	Elements That Can Appear on the Path
	How to Read a Syntax Diagram

	Sample-Code Conventions

	Additional Documentation
	On-Line Manuals
	Printed Manuals
	Error Message Files
	Documentation Notes, Release Notes, Machine Notes

	Compliance with Industry Standards
	Informix Welcomes Your Comments

	SQL Statements
	How to Enter SQL Statements
	How to Enter SQL Comments
	Categories of SQL Statements
	ANSI Compliance and Extensions
	Statements
	ALLOCATE COLLECTION
	ALLOCATE DESCRIPTOR
	ALLOCATE ROW
	ALTER FRAGMENT
	ALTER INDEX
	ALTER TABLE
	BEGIN WORK
	CLOSE
	CLOSE DATABASE
	COMMIT WORK
	CONNECT
	CREATE CAST
	CREATE DATABASE
	CREATE DISTINCT TYPE
	CREATE FUNCTION
	CREATE FUNCTION FROM
	CREATE INDEX
	CREATE OPAQUE TYPE
	CREATE OPCLASS
	CREATE PROCEDURE
	CREATE PROCEDURE FROM
	CREATE ROLE
	CREATE ROUTINE FROM
	CREATE ROW TYPE
	CREATE SCHEMA
	CREATE SYNONYM
	CREATE TABLE
	CREATE TRIGGER
	CREATE VIEW
	DATABASE
	DEALLOCATE COLLECTION
	DEALLOCATE DESCRIPTOR
	DEALLOCATE ROW
	DECLARE
	DELETE
	DESCRIBE
	DISCONNECT
	DROP CAST
	DROP DATABASE
	DROP FUNCTION
	DROP INDEX
	DROP OPCLASS
	DROP PROCEDURE
	DROP ROLE
	DROP ROUTINE
	DROP ROW TYPE
	DROP SYNONYM
	DROP TABLE
	DROP TRIGGER
	DROP TYPE
	DROP VIEW
	EXECUTE
	EXECUTE FUNCTION
	EXECUTE IMMEDIATE
	EXECUTE PROCEDURE
	FETCH
	FLUSH
	FREE
	GET DESCRIPTOR
	GET DIAGNOSTICS
	GRANT
	GRANT FRAGMENT
	INFO
	INSERT
	LOAD
	LOCK TABLE
	OPEN
	OUTPUT
	PREPARE
	PUT
	RENAME COLUMN
	RENAME DATABASE
	RENAME TABLE
	REVOKE
	REVOKE FRAGMENT
	ROLLBACK WORK
	SELECT
	SET
	SET AUTOFREE
	SET CONNECTION
	SET DATASKIP
	SET DEBUG FILE TO
	SET DEFERRED_PREPARE
	SET DESCRIPTOR
	SET EXPLAIN
	SET ISOLATION
	SET LOCK MODE
	SET LOG
	SET OPTIMIZATION
	SET PDQPRIORITY
	SET ROLE
	SET SESSION AUTHORIZATION
	SET TRANSACTION
	START VIOLATIONS TABLE
	STOP VIOLATIONS TABLE
	UNLOAD
	UNLOCK TABLE
	UPDATE
	UPDATE STATISTICS
	WHENEVER

	Segments
	Argument
	Collection Derived Table
	Condition
	Constraint Name
	Database Name
	Data Type
	DATETIME Field Qualifier
	Expression
	External Routine Reference
	Function Name
	Identifier
	Index Name
	INTERVAL Field Qualifier
	Literal Collection
	Literal DATETIME
	Literal INTERVAL
	Literal Number
	Literal Row
	Procedure Name
	Quoted Pathname
	Quoted String
	Relational Operator
	Return Clause
	Routine Modifier
	Routine Parameter List
	Specific Name
	Statement Block
	Synonym Name
	Table Name
	View Name

	SPL Statements
	CALL
	CONTINUE
	DEFINE
	EXIT
	FOR
	FOREACH
	IF
	LET
	ON EXCEPTION
	RAISE EXCEPTION
	RETURN
	SYSTEM
	TRACE
	WHILE

	Index

